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Neutrinos are key to probing the deep structure of matter and the high-energyUniverse. Yet, until recently,
their interactions had only been measured at laboratory energies up to about 350 GeV. An opportunity to
measure their interactions at higher energies opened up with the detection of high-energy neutrinos in
IceCube, partially of astrophysical origin. Scattering off matter inside Earth affects the distribution of their
arrival directions—from this, we extract the neutrino-nucleon cross section at energies from 18 TeV to 2 PeV,
in four energy bins, in spite of uncertainties in the neutrino flux. Using six years of public IceCube High-
Energy Starting Events, we explicitly show for the first time that the energy dependence of the cross section
above 18 TeV agrees with the predicted softer-than-linear dependence, and reaffirm the absence of new
physics that would make the cross section rise sharply, up to a center-of-mass energy

ffiffiffi

s
p

≈ 1 TeV.
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Introduction.—Neutrino interactions, though feeble, are
important for particle physics and astrophysics. They
provide precise tests of the standard model [1–3], probes
of new physics [4–6], and windows to otherwise veiled
regions of the Universe. Yet, at neutrino energies
above 350 GeV there had been no measurement of their
interactions. This changed recently when the IceCube
Collaboration found that the neutrino-nucleon cross section
from 6.3 to 980 TeV agrees with predictions [7].
Because there is no artificial neutrino beam at a TeVand

above, IceCube used atmospheric and astrophysical neu-
trinos, the latter discovered by them up to a few PeV
[8–16]. References [4,6,17–20] showed that, because
IceCube neutrinos interact significantly with matter inside
Earth, their distribution in energy and arrival direction
carries information about neutrino-nucleon cross sections,
which, like IceCube [7], we extract.
However, Ref. [7] extracted the cross section in a single,

wide energy bin, so its energy dependence in that range
remains untested. A significant deviation from the pre-
dicted softer-than-linear dependence could signal the pres-
ence of new physics, so we extract the cross section in
intervals from 18 TeV to 2 PeV. While Ref. [7] used only
events born outside of IceCube we use instead only events
born inside of it, which leads to a better handle on the
neutrino energy.
Figure 1 shows that the cross section that we extract is

compatible with the standard prediction. There is no
indication of the sharp rise, at least below 1 PeV, predicted
by some models of new physics [6,21–29].
Neutrino-nucleon cross section.—Above a few GeV,

neutrino-nucleon interactions are typically deep inelastic

FIG. 1. Charged-current inclusive neutrino-nucleon cross sec-
tion measurements [30–47]. The new results from this work,
based on 6 years of IceCube HESE showers [8,48–50], are an
average between cross sections for ν and ν̄, assuming equal
astrophysical fluxes of each. In the highest-energy bin, we only
set a lower limit (1σ shown). The thick dashed curve is a standard
prediction of deep inelastic scattering (DIS), averaged between ν
and ν̄. Horizontal thin dashed lines are global averages from
Ref. [51], which do not include the new results.

PHYSICAL REVIEW LETTERS 122, 041101 (2019)

0031-9007=19=122(4)=041101(9) 041101-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.041101&domain=pdf&date_stamp=2019-01-28
https://doi.org/10.1103/PhysRevLett.122.041101
https://doi.org/10.1103/PhysRevLett.122.041101
https://doi.org/10.1103/PhysRevLett.122.041101
https://doi.org/10.1103/PhysRevLett.122.041101


scatterings (DIS), where the neutrino scatters off one of the
constituent partons of the nucleon—a quark or a gluon. In
both the charged-current (CC, ν

ð−Þ
l þ N → l∓ þ X) and

neutral-current (NC, ν
ð−Þ

l þ N → ν
ð−Þ

l þ X) forms of this
interaction, the nucleon N is broken up into partons that
hadronize into a final state X. The final-state hadrons carry
a fraction y—the inelasticity—of the initial neutrino
energy, while the final-state lepton carries the remaining
fraction (1 − y).
Calculation of the cross section σνN requires knowing the

parton distribution functions (PDFs) in the nucleon. PDFs
depend on two kinematic variables: Q2 ≡ −q2, the four-
momentum transferred to the mediatingW or Z boson, and
the Bjorken scaling x, the fraction of nucleon momentum
carried by the interacting parton [52].
To compute cross sections at neutrino energiesEν between

TeV and PeV, we need PDFs evaluated at x≳mW=
Eν ∼ 10−4. Because these are known—at low x, from ep
collisions inHERA [53,54]—the uncertainty in the predicted
TeV-PeV cross sections is small. References [4,55–65] have
performed such calculations, some of which are shown in
Fig. 3. Below ∼10 TeV, they yield σνN ∝ Eν, revelatory of
hard scattering off partons, and in agreement with data.
Above ∼10 TeV, where Q2 ∼m2

W , they yield a softer-than-
linear energy dependence, which has only been glimpsed in
the available data up to 350 GeV [1–3].
Detecting high-energy neutrinos.—IceCube is the largest

optical-Cherenkov neutrino detector. It consists of strings
of photomultipliers buried deep in the clear Antarctic ice,
instrumenting a volume of about 1 km3.
Above TeV, CC interactions of νe and ντ with nucleons

in the ice, and NC interactions of all flavors, create
localized particle showers, with roughly spherical
Cherenkov-light profiles centered on the interaction vertex.
CC interactions of νμ additionally create muons that make
elongated tracks of Cherenkov light, several kilometers
long and easily identifiable. (Other, flavor-specific signa-
tures require energies higher than in our analysis [66–74].)
From the amount of collected light in a detected event,

and its spatial and temporal profiles, IceCube infers its
energy and arrival direction. But it cannot distinguish
neutrinos from antineutrinos, or NC from CC showers,
since they make similar light signals.
Using contained showers only.—Because cross sections

vary with neutrino energy, we use exclusively a class of
IceCube events where the incoming neutrino energy can be
inferred using as few assumptions as possible. These are
“starting events,” where the neutrino interaction was con-
tained in the detector. Of these, we use only showers, not
tracks, due not to a fundamental limitation, but to the
IceCube data that is publicly available. Our approach
differs from that of Ref. [7], which used only through-
going muons, born in neutrino interactions outside the

detector, for which estimation of the neutrino energy
requires making important assumptions.
We use the publicly available 6-year sample of IceCube

High-Energy Starting Events (HESE) [8,48–50], consisting
of 58 contained showers with deposited energies Edep from
18 TeV to 2 PeV. Below a few tens of TeV, about half of the
showers are due to atmospheric neutrinos and half to
astrophysical neutrinos [50]; above, showers from astro-
physical neutrinos dominate [75,76].
Figure 2 shows the HESE showers distributed in Edep

and zenith angle θz. Representative uncertainties are 10%
in Edep and 15° in θz [77], which we adopt to describe the
detector resolution. Showers are scarce above 200 TeV
because the neutrino flux falls steeply with Eν.
In CC showers, the full neutrino energy is deposited in

the ice, i.e., Edep ≈ Eν, because both the outgoing electron
or tau and the final-state hadrons shower. In NC showers,
only a fraction y of the neutrino energy is deposited in the
ice, i.e., Edep ¼ yEν, because only final-state hadrons
shower. Standard calculations yield an average hyi ¼
0.35 at 10 TeV and 0.25 at 1 PeV [55]. Because of this
low value and because the neutrino fluxes fall steeply with
Eν, NC showers are nominally subdominant at any value
of Edep.
In starting tracks, the shower made by final-state hadrons

is containedby thedetector, but themuon track typically exits

FIG. 2. Neutrino-induced showers from the IceCube 6-year
HESE [8,48–50] sample. Neutrinos arrive from above
(cos θz > 0); from below, through Earth (cos θz < 0); and hori-
zontally (cos θz ¼ 0). They travel a distance D inside Earth (of
radius R⊕ ¼ 6371 km) to IceCube, buried at a depth of 1.5 km.
The background shading represents the fraction of isotropic
neutrino flux that survives after being attenuated by νN inter-
actions inside Earth, calculated using cross sections predicted in
Ref. [59].
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it. An assumption-free reconstruction ofEν requires knowing
separately the energy of the hadronic shower Esh and the
muon energy loss rate dEμ=dX, which is proportional to the
muon energy Eμ [77]. Yet, while these quantities are known
internally to the IceCube Collaboration, public data only
provide, for each starting track, the total deposited energy,
Esh þ jdEμ=dXjΔX, where ΔX is the track length in the
detector. Without additional information, in order to deduce
Eν, we would need to assume values of y and ΔX for each
event [78]. Hence, in keeping to our tenet of using few
assumptions to deduce Eν, we do not include starting tracks
in our analysis. This choice also reduces the chance of
erroneously using a track created by an atmospheric muon,
not a neutrino.
To use through-going muons in extracting the cross

section, IceCube [7] inferred the most likely parent neutrino
energy from the measured muon energy [77] by assuming
the inelasticity distribution dσνN=dy from Ref. [59]. By
using only contained showers, we forgo the need to assume
an inelasticity distribution, and remain more sensitive to
potential new physics that could modify it.
Sensitivity to the cross section.—Neutrino-nucleon inter-

actions make Earth opaque to neutrinos above 10 TeV, so
neutrino fluxes are attenuated upon reaching IceCube.
More neutrinos reach it from above—after crossing a
few kilometers of ice—than from below—after crossing
up to the diameter of Earth.
A flux of incoming neutrinos with energy Eν and zenith

angle θz is attenuated by a factor e−τνNðEν;θzÞ ≡ exp ½−DðθzÞ=
LνNðEν; θzÞ�, where τνN is the opacity to νN interactions,D is
the distance from the point of entry intoEarth to IceCube, and
LνN ¼ mN=½ðσCCνN ðEνÞ þ σNCνN ðEνÞÞhρ⊕ðθzÞi� is the neutrino
interaction length. Here, σCCνN and σNCνN are, respectively, the
CCandNCcross sections,mN is the average nucleonmass in
isoscalar matter, and hρ⊕i is the averagematter density along
this direction, calculated using the density profile from the
preliminary reference Earth model [55,79]. Details are in the
Supplemental Material [80], which includes Refs. [81–94].
Attenuation growswith the cross sections—which growwith
Eν—and with D; both effects are evident in the background
shading in Fig. 2.
Within an energy interval, the number of events induced by

a neutrino fluxΦν is Nsh ∝ Φνe−τνNσνN . Down-going show-
ers (cos θz > 0)—unaffected by attenuation—fix the product
ΦνσνN , while up-going showers (cos θz < 0)—affected by
attenuation—break the degeneracy between Φν and σνN via
e−τνN , providing sensitivity to the cross sections.
Extracting cross sections.—We propagate atmospheric

and astrophysical neutrinos through Earth and produce test
samples of contained showers in IceCube, taking into
account its energy and angular resolution; see the
Supplemental Material [80]. To extract the cross sections,
we compare the distributions in Edep and cos θz of the test
showers—generated with varying values of the cross
sections—to the distribution observed by IceCube.

To probe the energy dependence of the cross sections, we
bin showers in Edep and extract the cross section from data
in each bin independently of the others. Except for global
assumptions on detector resolution and the choice of
atmospheric neutrino spectrum (see below), parameters
extracted in different bins are uncorrelated.
The first three bins contain comparable numbers of

showers: 18–50 TeV (17 showers), 50–100 TeV (18
showers), and 100–400 TeV (20 showers). The final bin,
400–2004 TeV, contains only 3 downgoing showers,
between 1–2 PeV. Because of their short travel distances
(D≲ 10 km) and negligible expected attenuation, in this
bin we only set a lower limit on the cross section. This
stresses the need for upgoing HESE events above 400 TeV.
For atmospheric neutrinos, we use the most recent

calculation of the νe, ν̄e, νμ, and ν̄μ fluxes from pion and
kaon decays from Ref. [95]. Their zenith-angle distribution
at the South Pole, though anisotropic, is symmetric around
cos θz ¼ 0, so it does not introduce spurious directional
asymmetries. We do not include a contribution from
prompt atmospheric neutrinos [96–109], since searches
have failed to find evidence of them [8–16]. We include the
self-veto [110,111] used by the HESE analysis to reduce
the atmospheric contribution.
For astrophysical neutrinos, we assume, independently in

each energy bin, an isotropic power-law energy spectrum
Φν ∝ E−γ

ν for all flavors of neutrinos and antineutrinos, in
agreement with theoretical expectations [112] and IceCube
findings [113]. The value of γ is obtained from a fit to data in
each bin. This makes our results robust against variations
with energy of the spectral shape of astrophysical neutrinos,
unlike Ref. [7], which assumed a single power law spanning
the range 6.3–980 TeV. We assume flavor equipartition, as
expected from standard mixing [68,78,114–118] and in
agreement with data [14,119]. Because IceCube cannot
distinguish neutrinos from antineutrinos, we can only extract
a combination of their cross sections, each weighed by
its corresponding flux. We assume the likely case [120,121]
of equal fluxes, coming, e.g., from proton-proton inter-
actions [122].
Assumptions.—Because data are scant, to reduce the

number of free parameters to fit, we make three reasonable
assumptions inspired on standard high-energy predictions.
With more data, they could be tested.
First, the rate of CC showers dominates over the rate of

NC showers at any value of Edep, based on the arguments
above. For simplicity, we adopt a constant hyi ¼ 0.25 for
NC showers. This assumption allows us to express the
extracted cross section as a function of Eν ≈ Edep.
Second, CC cross sections dominate over NC cross

sections. We assume σNCνN ¼ σCCνN =3 and σNCν̄N ¼ σCCν̄N =3,
following, e.g., Ref. [4]. This assumption allows us to fit
only for CC cross sections.
Third, the ratio of ν̄N to νN cross sections is fixed in

each bin. Hence, when fitting, σCCν̄N ¼ hσCCν̄N =σCCνN iσCCνN ,
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where hσCCν̄N =σCCνN i is the average ratio in that bin predicted
by Ref. [59] (see Table I). This assumption allows us to fit
only for νN cross sections.
Thus, within each energy bin, we independently vary

only the νN CC cross section σCCνN and three nuisance
parameters—the number of showers due to atmospheric
neutrinos Natm

sh , the number of showers due to astrophysical
neutrinos Nast

sh , and the astrophysical spectral index γ. To
avoid introducing bias, we assume flat priors for all of
them. For each choice of values, we compare our test
shower spectrum to the HESE shower spectrum via a
likelihood. To find the best-fit values of the parameters, we
maximize the likelihood. The Supplemental Material
describes the statistical analysis in detail [80].
Results.—Table I shows the extracted cross section,

marginalized over the nuisance parameters. Because σνN
and σν̄N are not independent in the fit, we present their
average there and in Figs. 2 and 3.
Figure 3 shows that, in each bin, results agree within 1σ

with widely used standard predictions. The IceCube
Collaboration has adopted the cross section from
Cooper-Sarkar et al. [59]. We include other calculations
for comparison [4,55,56,60,62]. All predictions are con-
sistent with our measurements within errors.
Our results are consistent with the IceCube analysis [7],

which found a cross section compatible with Ref. [59].
Their smaller uncertainty is due to using ∼104 through-
going muons. However, by grouping all events in a single
energy bin, their analysis did not probe the energy
dependence of the cross section. Like that analysis, our
results are also consistent with standard cross-section
predictions, but in narrower energy intervals.
Because the number of showers in each bin is small,

statistical fluctuations weaken the interplay of down-going
versus up-going showers described above. To isolate the
dominant statistical uncertainty, we minimized again the
likelihood, this time keeping the nuisance parameters fixed at
their best-fit values (seeTable II in the SupplementalMaterial
[80]). The resulting uncertainty, attributed to statistics only, is

0.51, 0.63, and 0.62 in the first three bins, where we have a
measurement. The systematic uncertainty, obtained by sub-
tracting thesevalues in quadrature from the total uncertainties
in Table I is 0.14, 0.23, and 0.25 in each bin, slightly higher
than in Ref. [7], due to a less detailed modeling of the
detector. While Ref. [7] found comparable statistical and
systematic uncertainties, we are presently dominated by
statistics, since it uses an event sample that is smaller by a
factor of ∼200.
Nevertheless, our results disfavor new-physics models

where the cross section rises sharply below 1 PeV [6,22–
29]. Figure 3 shows as example a model of TeV-scale
gravity with large extra dimensions [21]. While this model
was disfavored by the LHC [123,124], we provide inde-
pendent confirmation via a different channel. More strin-
gent tests of new-physics models, beyond the scope of this
Letter, should also consider the effect of modifications to
the inelasticity distribution.
Limitations and improvements.—IceCube is sparsely

instrumented and designed to detect the enormous light
imprints made by high-energy neutrinos. Except for high-
energy muons, it cannot track individual particles or
reconstruct Q2 and x, unlike densely instrumented detec-
tors. Hence, we can only extract the cross section as a

TABLE I. Neutrino-nucleon charged-current inclusive cross
sections, averaged between neutrinos (σCCνN ) and antineutrinos
(σCCν̄N ), extracted from 6 years of IceCube HESE showers. To
obtain these results, we fixed σCCν̄N ¼ hσCCν̄N =σCCνN iσCCνN—where
hσCCν̄N =σCCνN i is the average ratio of ν̄ to ν cross sections calculated
using the standard prediction from Ref. [59]—and σNCνN ¼ σCCνN =3,
σNCν̄N ¼ σCCν̄N =3. Uncertainties are 1σ, statistical plus systematic,
added in quadrature.

Eν [TeV] hEνi [TeV] hσCCν̄N =σCCνN i log10½12 ðσCCνN þ σCCν̄N Þ=cm2�
18–50 32 0.752 −34.35� 0.53
50–100 75 0.825 −33.80� 0.67
100–400 250 0.888 −33.84� 0.67
400–2004 1202 0.957 > −33.21ð1σÞ

FIG. 3. Neutrino-nucleon charged-current cross section, aver-
aged for neutrinos and antineutrinos, from different predictions
(lines) [4,56,59,60,62], compared to measurements from this
work (stars). The low-energy global average [51] has the linear
dependence on Eν appropriate below ∼10 TeV. The model of
large extra dimensions, included for illustration, is from Ref. [21]
(quantum-gravity scale of 1 TeV and all partial waves summed),
corrected here to match modern standard predictions of the cross
section below 1 PeV.
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function of energy, integrated over other kinematic varia-
bles. While we cannot extract individual PDFs, we can test
their combination in the cross section.
Further, IceCube cannot distinguish if a particular

shower was made in a CC or an NC interaction, and by
a neutrino or an antineutrino. The differences are too subtle
to unequivocally identify them in individual showers [125],
but it might be possible to extract them statistically from a
large enough data sample [126].
Lastly, we assumed that the astrophysical neutrino flux is

isotropic [14,127,128]. Nevertheless, there are hints of a
Galactic contribution [14,127,129,130], with data allowing
< 14% of the all-sky flux to come from the Galactic Plane
[128]. If a Galactic flux is discovered, future cross-section
analyses will need to acknowledge its anisotropy to avoid
incorrectly attributing the distribution of arrival directions
solely to in-Earth attenuation.
Summary and outlook.—We have extracted the energy

dependence of the neutrino-nucleon cross section at ener-
gies beyond those available in man-made neutrino beams,
making use of the high-energy reach of IceCube. Our
results are compatible with predictions based on nucleon
structure extracted from scattering experiments at lower
energies and disfavor extreme deviations that could stem
from new physics in the TeV–PeV range.
It would be straightforward to repeat the present analysis

using a larger HESE shower sample. The proposed upgrade
IceCube-Gen2 [131] could have an event rate 5–7 times
higher, thus reducing the impact of random fluctuations.
These showers could be combined with showers from the
upcoming KM3NeT detector [132]; their improved angular
resolution of ∼2° above 50 TeV would allow for better
estimates of in-Earth attenuation. Starting tracks can also be
considered, as long as one does not rely on predictions of
the inelasticity distribution to reconstruct the parent neu-
trino energy.
An interesting possibility is to measure the inelasticity

distribution [133]. This can be done using starting tracks
where the hadronic shower energy Esh and the outgoing
muon energy Eμ are known individually, in order to
reconstruct the inelasticity y ¼ ð1þ Eμ=EshÞ−1 [134,135].
At the EeV scale, differences between cross-section

predictions increase. Measuring σνN at these energies
would probe x ∼mW=Eν ≲ 10−6, beyond the reach of
laboratory scattering experiments. This would prove instru-
mental in testing not only new physics, but also predictions
of the potentially nonlinear behavior of PDFs at low x, such
as from BFKL theory [136–139] and color-glass conden-
sates [140]; see, e.g., Refs. [63,141,142]. However, because
the predicted neutrino flux at these energies, while uncer-
tain, is smaller than at PeV, precision measurements of the
cross section will likely be limited by statistics; see
Ref. [143] for details. Nevertheless, large-volume neutrino
detectors like ARA [144–146], ARIANNA [147,148],
GRAND [149], and POEMMA [150] might differentiate

[151] between predictions provided the event rate is high
enough.
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