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Abstract
Organisms adapt to changing environments by adjusting their development, metabolism, and behavior to improve their 
chances of survival and reproduction. To achieve such �exibility, organisms must be able to sense and respond to changes in 
external environmental conditions and their internal state. Metabolic adaptation in response to altered nutrient availability 
is key to maintaining energy homeostasis and sustaining developmental growth. Furthermore, environmental variables exert 
major in�uences on growth and �nal adult body size in animals. This developmental plasticity depends on adaptive responses 
to internal state and external cues that are essential for developmental processes. Genetic studies have shown that the fruit �y 
Drosophila, similarly to mammals, regulates its metabolism, growth, and behavior in response to the environment through 
several key hormones including insulin, peptides with glucagon-like function, and steroid hormones. Here we review emerg-
ing evidence showing that various environmental cues and internal conditions are sensed in di�erent organs that, via inter-
organ communication, relay information to neuroendocrine centers that control insulin and steroid signaling. This review 
focuses on endocrine regulation of development, metabolism, and behavior in Drosophila, highlighting recent advances in 
the role of the neuroendocrine system as a signaling hub that integrates environmental inputs and drives adaptive responses.

Keywords Drosophila�• Insulin�• Adipokinetic hormone�• Metabolism�• PTTH�• Ecdysone

Introduction

Organisms must adapt to changing environments by adjust-
ing their developmental growth, metabolism, and behavior 
to promote survival and reproduction. This adaptation relies 
on the ability to sense and respond to changes in internal 
and external environmental conditions. This involves com-
plex sensing of nutritional conditions, temperature, oxygen, 
and light. Animals at all developmental stages integrate this 
information and adjust their metabolism and behavior to take 
advantage of available resources and to maintain homeosta-
sis. Furthermore, juvenile animals�those that are still in 
the non-reproductive growth phase of their development�
adjust their growth and development to meet resource avail-
ability in such a way that the �nal adult animal is most likely 

to be reproductively successful. The mechanisms that govern 
developmental, metabolic, and behavioral adaptations fre-
quently make use of systemic endocrine signals to adjust 
the parameters of underlying genetic programs that control 
growth, developmental transitions, and physiology. This 
review explores endocrine mechanisms of environmental 
adaptation in the fruit �y Drosophila melanogaster, �rst 
investigating the modulation of growth and maturation dur-
ing juvenile larval life and then investigating adult behav-
ioral and metabolic adaptation. Environmental and internal 
inputs re�ecting temperature, light, nutritional stores, food 
qualities (composition, odor, taste), and oxygen are covered, 
although others exist beyond the scope of this review such 
as humidity,  CO2, and gut microbiota.

Drosophila has become an attractive model for under-
standing the endocrine regulation of growth and metabolic 
adaptation. Nutrients are digested and absorbed through the 
intestine, which is also a key endocrine organ that plays a 
central role in sensing nutritional information and relaying it 
to other tissues to maintain systemic metabolic homeostasis 
[1]. The Drosophila fat body and peripheral oenocytes serve 
the functions of the mammalian hepatic and adipose tissues 
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[2, 3], both of which store energy (as glycogen and lipid, 
respectively) but also have endocrine function. In Drosoph-
ila, growth is restricted to larval stages called instars, and 
maturation is induced by reaching a critical size that triggers 
the onset of metamorphosis, which transforms the juvenile 
growing larva into the reproductive adult and largely limits 
any further growth [4, 5]. The larva can alter its growth rate 
and the duration of its growth period (determined by the 
timing of metamorphosis) to reach a �nal adult size that 
maximizes �tness and survival in variable environments. 
In nutrient-rich conditions, animals grow quickly and soon 
develop into adults. On the other hand, when nutrients are 
limited, the larval growth period is extended to allow addi-
tional growth and to ensure an appropriate �nal adult size 
under unfavorable growth conditions.

The main factors regulating growth and development 
according to the environment in animals are the conserved 
insulin and insulin-like growth factors (IGFs) and steroid 
hormones [6�8]. Work has shown that the Drosophila 
insulin-like peptides (DILPs) are the main regulators of tis-
sue growth, whereas the steroid hormone ecdysone is the 
main factor that controls the duration of the growth period, 
although it also a�ects growth rate [9, 10]. The primary 
source of systemically acting growth-regulating DILPs is 
the population of so-called insulin-producing cells (IPCs) 
in the brain [11], thought to be equivalent to the mammalian 
pancreatic � cells [12]. The DILPs�act in peripheral target 
tissues through a single insulin receptor (InR). Ecdysone is 
produced and released from the prothoracic gland (PG), a 
major endocrine organ, in response to DILPs and prothoraci-
cotropic hormone (PTTH), another brain-derived neuropep-
tide [5, 13]. Developmental and environmental cues are inte-
grated in the IPCs and PTTH-producing neurons (PTTHn) 
as well as by the PG itself to adjust insulin and ecdysone 
signaling according to intrinsic and extrinsic conditions, in 
order to adapt growth and development. These systems are 
all discussed in detail below.

Insulin/IGF signaling has two important roles: to regulate 
overall growth during development and to control metabolic 
homeostasis [14, 15]. As in mammals, circulating sugar lev-
els and energy storage versus mobilization are regulated by 
the opposing e�ects of two hormones in Drosophila, insulin 
and Adipokinetic hormone (Akh, in some ways functionally 
analogous to mammalian glucagon). Following the intake of 
dietary sugar, insulin secretion promotes its tissue uptake 
from the hemolymph (insect circulatory �uid), whereas 
Akh induces mobilization of lipids and breakdown of gly-
cogen to maintain hemolymph levels of lipids and sugars 
in response to starvation or exertion. In addition to these 
metabolic homeostatic circuits, regulation of food intake 
by modulation of appetite, odor and taste sensation, for-
aging, and food palatability is a major factor required for 
adaptation to nutritional conditions. Following prolonged 

deprivation of protein in their diet, �ies preferentially select 
amino acid-rich food, based on certain taste neurons whose 
activity is regulated by the internal nutritional state [16]. 
On the other hand, deprivation of dietary sugars speci�cally 
increases feeding on sugar-rich foods. Feeding decisions are 
controlled by neuromodulators such as neuropeptides and 
hormones that change the motivational state according to the 
nutritional demand of the animal. In �ies, these include the 
neuropeptide Diuretic hormone 44 (Dh44), an orthologue 
of the mammalian corticotropin-releasing hormone (CRH), 
which is involved in detecting the nutritional value of con-
sumed sugars [17] and amino acids [18].

The mammalian hormone leptin provides an example of 
the useful parallels between �y and mammalian develop-
mental endocrinology. Leptin, released from adipose cells 
in response to their lipid content (a re�ection of nutritional 
state), modulates appetite and metabolism by signaling to the 
brain [19]. It furthermore regulates the activity of the neu-
roendocrine/steroid system that controls the onset of sexual 
maturation [20], which may explain the link between child-
hood obesity and early puberty. Flies possess a structurally 
and functionally similar hormone named Unpaired-2 (Upd2). 
Like leptin, Drosophila Upd2 is a nutrient-dependent adi-
pokine that relays nutritional information to the brain [21]. 
Upd2 stimulates insulin secretion, which promotes growth 
and maturation onset through its e�ect on the production of 
the steroid hormone ecdysone [9, 22]. Thus, during develop-
ment in both insects and mammals, endocrine signals related 
to the amount of body fat provide nutrient-status informa-
tion to the neuroendocrine signaling system that initiates 
maturation. Here we will review some of the recent advance 
to highlight how inter-organ signaling networks allow Dros-
ophila to adjust larval growth and development to variable 
environments, and we also examine endocrine mechanisms 
underlying metabolic and behavioral adaptations.

Adaptation of�larval growth 
and�development

Animals reared in environments di�ering in temperature, 
oxygen level, and the availability of food develop at di�er-
ent rates into adults of di�erent sizes. In nutritionally poor 
or low-oxygen (hypoxic) environments, Drosophila larvae 
grow slowly and attain a smaller adult body size, whereas 
in nutrient- and oxygen-rich environments, larvae develop 
more quickly into larger adults [23�27]. In contrast, low 
temperature also slows the growth of larvae and prolongs 
their development but results in increased adult body size 
[28], suggesting that temperature a�ects developmental 
growth by di�erent mechanisms than oxygen and nutrients. 
Furthermore, changes in these environmental conditions 
a�ect the proportions of di�erent body parts relative to the 
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whole body [26, 29]. This developmental �exibility involves 
adaptive responses within the boundaries of species-speci�c 
genetic developmental frameworks to produce adults of sizes 
and proportions that suit prevailing environmental condi-
tions. This developmental plasticity is regulated by nutri-
tion-dependent hormonal signaling pathways that control 
tissue growth and feed into the endocrine system that deter-
mines the timing of metamorphosis and thus the length of 
the growth period.

Steroid-hormone and insulin-like signaling pathways 
form the core axes of environmentally adaptive systemic 
regulation of growth and development in metazoans, and 
these pathways are thus evolutionarily ancient and have 

been conserved since before the divergence of �ies and 
humans [6�8]. In Drosophila, DILPs (or insulin for sim-
plicity), the steroid molting hormone 20-hydroxyecdysone 
(or "ecdysone" hereafter)�and the sesquiterpenoid juvenile 
hormone (JH), as well as the intracellular nutrient-sensing 
Target of Rapamycin (TOR) pathway, are the principal regu-
lators of growth rate and duration (Fig.�1). In this section, 
we review recent �ndings elucidating mechanisms by which 
larval signaling hubs integrate internal and external informa-
tion and transduce it into growth-regulatory signals (insulin 
and ecdysone) that systemically�control growth. In addition, 
we also discuss one of the most important environmentally 
sensitive checkpoints, named �critical weight,� which allows 

Fig. 1  Growth-regulating environmental and internal cues are inte-
grated through inter-organ communication in the Drosophila larva. 
In the main panel, larval organs communicate with one another via 
di�usible factors to govern growth and development. The upper right 
panel shows a magni�ed view of the larval central nervous system 
including the insulin-producing cells (IPCs) and PTTH-producing 
neurons (PTTHn) and the ring gland, which comprises the ecdysone-

synthesizing prothoracic gland (PG), the Akh-producing cells 
(APCs) of the corpora cardiaca (CC), and the JH-producing corpora 
allata (between the lobes of the PG). Factors that act on growth and 
development via these various cells are indicated. The bottom-right 
schematic illustrates the relationships between size, growth rate, and 
growth duration
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animals to adapt their growth period to di�erent nutritional 
conditions, to reach an appropriate �nal body size. Finally, 
we propose a hypothesis that may explain how studying this 
checkpoint mechanism can potentially contribute to our 
understanding of human size regulation.

Linking growth to�nutrition, oxygen, 
and�temperature through�the�DILP signaling 
pathway

Nutritional availability is a major environmental factor gov-
erning growth and development [30, 31]. Systemic DILP 
signaling and the cell-autonomous TOR pathway are the 
main mechanisms that regulate growth in response to nutri-
tion. Because these pathways intersect with each other and 
share many downstream components, these pathways are 
often referred to jointly as insulin/TOR signaling. In Dros-
ophila, high internal energy levels induces the activation 
of TOR in the fat body, which releases humoral factors to 
cause the IPCs to express and release various DILPs [11, 
32]. Although the DILPs are di�erentially regulated by vari-
ous stimuli, they act through the single InR. The primary 
systemically acting DILPs are DILP2, DILP3, and DILP5, 
expressed and released independently in response to nutri-
tional conditions [11]. These DILPs are produced in bilat-
eral clusters of neurosecretory cells�the IPCs�within the 
larval and adult medial protocerebrum [11], thought to be 
equivalent to the mammalian pancreatic � cells [12]. These 
cells send projections to neurohemal release sites near the 
esophageal foramen and, in the larva, to the PG, where they 
contribute to the regulation of ecdysone synthesis [9, 22]. 
Beyond the central IPCs, other tissues also produce DILPs 
for local or systemic signaling. For example, neuroblast 
growth within the nervous system is driven by local DILP 
production in glia, not from the IPCs [33, 34]. Furthermore, 
after the onset of metamorphosis, when larvae stop feeding, 
tissue growth is sustained through the secretion of DILP6 by 
the fat body [35, 36]. Thus, the pool of DILPs that mediate 
tissue growth is diverse in spatial and temporal expression.

Activation of InR by DILP binding results in a series 
of signaling events mediated by insulin receptor substrate 
(IRS; Chico in the �y) [37], phosphatidylinositide 3-kinase 
(PI3K or Dp110), and Akt (protein kinase B) [38]. One of 
the primary Akt targets is the transcription factor Forkhead 
Box class O (FoxO), which negatively regulates cellular 
growth through transcriptional e�ects on downstream tar-
gets, including the translational repressor 4E-binding protein 
(4EBP, Thor) [39, 40]. In well-fed animals, in which insulin 
signaling and thus Akt are active, phosphorylated FoxO is 
excluded from the nucleus, thereby allowing growth to pro-
ceed, whereas under nutrient-restricted conditions, deacti-
vation of Akt allows FoxO to enter the nucleus and act on 
its target genes, including 4EBP, to suppress cell growth. 

Thus, the insulin/TOR pathway promotes nutrition-depend-
ent growth partly through the inactivation of FoxO. Akt also 
mediates crosstalk with the TOR pathway through inhibi-
tion of� the Tuberous sclerosis complex 1 and 2 (Tsc1/2) 
proteins, which are negative regulators of TOR signaling. 
Therefore, TOR signaling senses internal nutritional status 
by two routes: via its diverse cell-autonomous nutrient-sens-
ing mechanisms and through inputs from the insulin pathway 
via Akt [41, 42]. Although TOR has been known mainly for 
sensing free amino acids, recent work has shown that TOR 
activity is dependent on internal oxygen concentration as 
well [27, 43], indicating that TOR integrates both amino-
acid and oxygen sensing to regulate cell growth in adaptation 
to changing environmental conditions. When TOR is active, 
it phosphorylates 4EBP, suppressing its inhibitory activity, 
which results in enhanced binding of mRNAs to ribosomes 
and thus in increased translation [44]. TOR signaling also 
promotes translation through the phosphorylation of ribo-
somal protein S6, mediated by S6 kinase (S6K), to enhance 
ribosomal activity [44].

Although the insulin/TOR signaling pathway directly 
regulates cellular and systemic growth rates, this pathway 
also controls the duration of the growth period by a�ect-
ing ecdysone biosynthesis in the PG, which determines the 
onset of metamorphosis. Activating insulin/TOR signal-
ing in the PG upregulates the expression of the Halloween 
genes phantom (phm) and disembodied (dib), which mediate 
ecdysone biosynthesis, leading to increased ecdysone pro-
duction and thus to accelerated metamorphosis [9, 22, 45, 
46]. Increased ecdysone signaling under these conditions 
results in the development of small adults not only due to 
the shortening of the larval growth period but also due to 
reduced growth rate, since ecdysone negatively regulates 
systemic growth. On the other hand, downregulation of the 
insulin/TOR pathway in the PG delays pupariation (the onset 
of metamorphosis), thereby increasing the growth period, 
which leads to overgrowth. Furthermore, overexpression of 
DILPs in the IPCs results in similar upregulation of phm and 
dib [47], indicating that ecdysone-mediated development 
can also be considered to be nutrition-dependent through 
the insulin pathway.

The TOR signaling pathway itself regulates the produc-
tion of DILPs in Drosophila in response to amino-acid 
intake. Amino-acid sensing in the fat body via the TOR 
pathway controls DILP synthesis and secretion in the IPCs 
via inter-organ signaling [25, 48]. Recent studies have shown 
that a number of humoral factors are secreted from the fat 
body in an amino-acid-sensitive, TOR-dependent manner 
to regulate DILP expression in and secretion from the IPCs 
in the brain (Fig.�1); these factors include Growth-blocking 
peptide 1 (GBP1) and GBP2 [49], Stunted [50], Eiger [51], 
and Female-speci�c independent of transformer (Fit) [52] 
(Table�1). In addition�to these� amino-acid-sensitive signals, 
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the tracheal airway system to permit greater oxygen deliv-
ery to tissues. This adaptive growth and metabolic response 
promotes survival under environmental conditions with low 
oxygen. Furthermore, DILP secretion is also regulated by 
temperature, through a neuronal circuit involving a group of 
larval cold-sensing neurons that sense temperature �uctua-
tion [28]. These neurons directly synapse upon the IPCs to 
activate the synthesis and secretion of DILPs in a tempera-
ture-sensitive manner. Taken together, the IIS/TOR pathway 
thus integrates amino acids, sugars, lipids, tissue oxygen, 
and temperature to control growth in response to changes in 
environment cues.

Integrating photoperiod, organ growth status, 
and�nutritional information through�PTTH signaling

It is critical for animals such as insects to synchronize their 
developmental transitions to daily environmental cycles, 
and therefore� the systems controlling developmental tim-
ing are under photoperiod control. Furthermore, developing 
organisms also need enough time to complete the growth of 
their organs, as well as the adaptive plasticity to adjust their 
growth to compensate for impaired tissue growth or injury, 
to ensure developmental stability. These adaptive responses, 
which maximize survival and reproductive success, require 
the integration of photoperiod and organ-growth status with 
developmental programs. Photoperiodic inputs and tissue-
damage signals are integrated by the PTTHn, two pairs of 
neurosecretory cells in the larval brain that produce PTTH 
and directly innervate the PG [55]. PTTH controls develop-
mental timing through its e�ects on the PG, where it acti-
vates its receptor tyrosine kinase Torso, leading to the pulse 
of ecdysone production that initiates metamorphosis [56]. 
Activated Torso stimulates the phosphorylation of extracel-
lular signal-regulated kinase (ERK) through the canonical 
MAPK pathway including Ras, Raf, and MEK. Ablation of 
the PTTHn, loss of PTTH in these cells, or loss of Torso or 
ERK in the PG delays larval development in Drosophila 
due to delayed production of ecdysone in the PG. Thus, 
PTTH is an important neuropeptide that regulates growth 
duration in Drosophila [55, 56]. The PG undergoes apop-
tosis during�metamorphosis; in adults, ecdysone has non-
developmental functions and is thought to be produced in 
the gonads [57�61].

The PTTHn integrate developmental and environmental 
cues to adjust the length of the growth period during larval 
development by changing the timing of PTTH secretion. For 
instance, photoperiod strongly a�ects PTTH secretion in a 
broad range of insect species, although Drosophila shows 
weak responses compared to other insects [62, 63]. Dur-
ing larval development, the PTTHn are regulated by neu-
rons producing the neuropeptide Pigment-dispersing factor 
(PDF), which are known to be associated with the circadian 

clock and to receive input from photoreceptors in Bolwig�s 
organ, the larval light-sensing tissue [55, 64]. Furthermore, 
beyond controlling the developmental growth period by 
determining the timing of metamorphosis, PTTH also coor-
dinates larval behavior with this developmental transition 
to maximize survival. PTTH acts via Torso on two light 
sensors, the Bolwig�s organ and the peripheral class-IV den-
dritic arborization neurons, in developing Drosophila larvae 
to control light-avoidance behavior, ensuring that the ani-
mals stay in dark environments that minimize the risk of des-
iccation and predation [63]. The PTTH neurons themselves 
may be regulated by transitions in light intensity, forming a 
feedback loop between development, environment, and the 
nervous system [65].

When insect larvae face abnormality in tissue develop-
ment, such as injury, accidental asymmetric growth of a 
paired organ, tissue overgrowth, or tumorigenesis, they slow 
their development to allow time for healing or regeneration 
[66�68]. In response to abnormal growth, the tissue primor-
dia that give rise to adult appendages�the imaginal discs�
secrete DILP8 [69, 70], which delays metamorphosis by 
changing the timing of ecdysone peaks. DILP8 secreted by 
abnormally growing organs is sensed by the receptor Lgr3 
in a pair of neurons that synapse upon the PTTHn [71�73], 
suggesting that abnormal organ growth delays developmen-
tal timing primarily by a�ecting the timing of PTTH secre-
tion. DILP8 also a�ects the growth-controlling DILPs via 
contact between Lgr3 neurons and the IPCs [73], suggesting 
that it coordinates growth (through regulation of DILPs) and 
maturation (through regulation of PTTH).

Developmental coordination between growth and matu-
ration is also mediated by the neuropeptide Allatostatin A 
(AstA) and its receptor AstA receptor 1 (AstA-R1), which 
regulate developmental timing by controlling PTTH and 
insulin signaling [74, commentary in 75]. RNAi-medi-
ated knockdown of AstA-R1 in the PTTH-producing cells 
impairs PTTH secretion. Moreover, AstA-R1 also stimulates 
DILP secretion from the IPCs [74]. Interestingly, AstA and 
AstA-R1 are homologous to human kisspeptin (KISS) and 
its receptor GPR54 [76], which are known to be required 
for human puberty through their control of gonadotropin-
releasing hormone (GnRH) secretion from the brain, which 
initiates maturation by inducing sex-steroid production [77]. 
This suggests that the neuroendocrine architecture that con-
trols the initiation of maturation has been evolutionarily 
conserved and that this system in Drosophila coordinates 
developmental growth with the juvenile-to-adult transition 
to achieve an appropriate size under di�erent environmen-
tal conditions to maximize adult �tness. AstA is regulated 
by nutrition, at least in adults [78], suggesting that in addi-
tion to photoperiod and organ-growth status, nutrition may 
modulate PTTH secretion. This is in line with a recent report 
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showing that PTTH secretion is regulated by amino-acid 
levels [79].

Furthermore, studies in lepidopterans have indicated 
that PTTH secretion is gated not only by the photoperiod 
but also by JH, which represses ecdysone biosynthesis and 
metamorphic development [30]. One of the functions of JH 
is to change the duration of the growth period by modulating 
the timing of PTTH and ecdysone release [62]. Although 
it is not clear whether JH regulates PTTH in Drosophila, 
removing the corpora allata (CA), which comprises the JH-
producing cells, induces developmental delay [80], suggest-
ing a potential interaction with ecdysone production. This 
may occur through PTTH signaling, as seen in other spe-
cies. The transcription factor Krüppel homolog 1 (Kr-h1), 
which mediates JH signaling, has been shown to attenuate 
ecdysone biosynthesis in the PG by directly inhibiting the 
expression of the �Halloween� biosynthetic enzymes [81]. 
Since the mechanism by which JH might a�ect PTTH is 
unknown in Drosophila, future studies should determine 
whether JH signaling through Kr-h1 regulates PTTH.

Taken together, recent advances have shown that the 
PTTHn integrate several intrinsic and extrinsic cues to mod-
ulate the timing of steroid-hormone production and secre-
tion, and thus developmental maturation, by modulating the 
timing of PTTH secretion. PTTH, therefore, seems to be the 
key factor in the adaptive plasticity that allows animals to 
adjust development to variable environmental conditions. To 
achieve such �exibility, the neuroendocrine network control-
ling PTTH, the principal regulator of maturation in Dros-
ophila, likely integrates a wide range of inputs to control 
PTTH secretion. Understanding how internal and external 
cues are integrated via PTTH signaling will be a key direc-
tion for future research.

The larval prothoracic gland is�a�center 
for�the�integration of�signals

PTTH is the primary factor stimulating ecdysone produc-
tion in the PG, according to the classical model of the insect 
neuroendocrine system. However, it has become evident 
in recent years that the PG itself functions as a decision-
making center that integrates a broad array of cues. Dur-
ing Drosophila larval stages, the PG is part of the major 
endocrine organ called the ring gland that also comprises 
the JH-producing CA and the Akh-producing cells (APCs) 
of the corpora cardiaca (CC). Ecdysone is synthesized 
from sterols in the PG in a series of reactions mediated by 
enzymes encoded by the so-called Halloween genes [82, 83]. 
Ecdysone produced and released into circulation by the PG 
is converted to a more biologically potent form, 20-hydrox-
yecdysone (20E; ecdysone is used here interchangeably 
with 20E for simplicity), by another Halloween enzyme, 
Shade, in peripheral tissues such as the fat body [59, 84, 

85]. Interestingly, Shade-mediated 20E production by the 
fat body is nutrient-dependent, and peripherally produced 
20E itself regulates the IPCs, indicating multidirectional 
linkage between nutrition and steroid-hormone activation 
in peripheral tissues [86].

Ecdysone binds to a heterodimeric nuclear hormone-
receptor complex, consisting of the ecdysone receptor (EcR) 
and its partner Ultraspiracle (Usp) [87�89], that regulates 
transcriptional responses to ecdysone [90]. In response to a 
wide range of signals, the PG generates a pulse of ecdysone 
that induces wandering behavior, which terminates feeding 
in the �nal larval instar and ultimately leads to pupariation. 
Therefore, ecdysone is considered to be a primary factor for 
ending the juvenile growth period, thereby limiting growth 
duration and determining adult size [13, 31, 91]. In the third 
and �nal larval instar, three small ecdysone pulses followed 
by a large pulse are believed to drive developmental pro-
gression [92]. The third small pulse is associated with the 
cessation of feeding and the onset of wandering behavior, in 
which animals leave the food to �nd appropriate pupariation 
sites [13, 92]. Although PTTH plays a key role in stimulating 
ecdysone production in the PG, this tissue itself also senses 
organismal nutritional status. Insulin and TOR signaling in 
the PG works upstream of ecdysone production and adjusts it 
to match nutritional status [9, 22, 46]. Insulin appears to gov-
ern ecdysone biosynthesis through e�ects on the Warts-Yor-
kie-bantam pathway, which regulates delivery of the steroid 
precursor cholesterol for ecdysone biosynthesis through an 
autophagosomal cholesterol-tra�cking mechanism [10, 93]. 
Autophagy is a conserved mechanism for the degradation 
and recycling of intracellular components that is involved 
in cellular adaptation to starvation; autophagy-dependent 
ecdysone regulation controls basal ecdysone levels, which 
regulates the growth rate, rather than the ecdysone peak that 
determines the growth period by triggering the onset of met-
amorphosis. In the PG, this nutrient-dependent mechanism 
allows animals to adapt organismal growth to nutritional 
conditions through regulation of ecdysone�synthesis.

In addition to brain-derived signals, the PG also receives 
information from other tissues such as the gut and imagi-
nal discs. In developing Drosophila larvae, the gut senses 
nutrient availability and produces a circulating lipoprotein-
associated form of Hedgehog (lipo-Hh). Circulating lipo-
Hh directly acts on the PG to regulate ecdysone biosyn-
thesis [94]. In addition, a subset of serotonergic neurons 
also a�ect ecdysone production in a nutrition-dependent 
manner [95]. Larvae raised on a yeast-poor diet with low 
amino-acid content grow more slowly; under this condi-
tion, certain serotonergic neurons sparsely innervate the 
PG, whereas these neurons arborize extensively onto the 
PG when animals grow rapidly on a yeast-rich diet. Moreo-
ver, blocking serotonin signaling from these neurons delays 
larval development, suggesting that they regulate ecdysone 
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production in response to internal nutritional conditions 
[95]. Furthermore, TGF-� signaling via the ligands Activin 
and Decapentaplegic (Dpp) appears to regulate ecdysone 
production in the PG. Blocking the TGF-�/Activin signaling 
pathway in this tissue results in animals that fail to initiate 
metamorphosis and thus persist as feeding, growing larvae, 
eventually attaining a giant size [96], a phenotype typically 
associated with failure of ecdysone production. Consistent 
with such a failure, reducing TGF-�/Activin signaling in the 
PG downregulates expression of both the PTTH receptor 
Torso and the DILP receptor InR, suggesting that TGF-�/
Activin signaling in the PG is necessary to induce its com-
petence to respond to PTTH and insulin signals [96]. Thus, 
TGF-�/Activin signaling appears to be necessary to ensure 
that both developmental and nutritional prerequisites are 
met before metamorphosis is triggered, although the nature 
and source(s) of the TGF-� ligand(s) that act upon the PG 
remains an open question [97]. Conversely, Dpp derived 
mainly from imaginal discs acts on the PG through TGF-�/
BMP pathway to repress ecdysone biosynthesis, at least in 
part by interacting with insulin/Warts/bantam signaling [98]. 
Dpp is more commonly known as a disc morphogen, similar 
to Hh; its signaling from the discs to the PG suggests that 
it might represent an additional mechanism by which the 
endocrine system assesses the patterning and growth status 
of developing organs to make the irreversible "go/no-go" 
maturation decision.

Circadian rhythms also govern insect development; this 
has been generally reviewed elsewhere [99]. Of particular 
interest here is the suggestion that PG physiology is gov-
erned in a circadian fashion. As discussed above, the PTTHn 
receive circadian input; however, the PG also possesses an 
endogenous peripheral clock that drives cyclical changes 
in gene expression, including that of InR, which is down-
regulated at subjective �night,� when feeding is reduced and 
insulin levels fall [100]; in the proposed model, circadian 
downregulation of insulin signaling potentiates PG-acti-
vating Torso signaling [100]. Although the speci�cs of this 
model are somewhat surprising, one may speculate that, in 
general, matching of the rhythms of (1) feeding behaviors 
and insulin, (2) light-induced rhythmicity of PTTH, and (3) 
the PG-intrinsic clock optimizes the timing of ecdysone 
production.

Neuroendocrine signaling hubs integrate 
developmental and�environmental cues

Blocking either PTTH/Torso signaling [55, 56] or DILP/InR/
PI3K signaling [9, 22, 47] alone in the PG induces a delay in 
pupariation, whereas simultaneously blocking both signal-
ing routes into the PG results in a failure to pupariate due 
to the lack of ecdysone production [96]. These observations 
suggest that PTTH and DILPs are the major PG-extrinsic 

signals that regulate ecdysone production. Since the PTTHn 
and IPCs are sensitive to a number of di�erent intrinsic and 
extrinsic stimuli, and the PG itself also senses changes in 
environmental and internal cues, we propose that this neu-
roendocrine network between the PTTHn, IPCs, and the PG 
acts as a cue-integrating hub for environmental and devel-
opmental signals (Fig.�1). Because insulin and ecdysone are 
the key regulators of growth rate and duration, organismal 
adaptation of growth and development to environmental 
conditions is mediated by the integration of signals through 
this neuroendocrine hub.

Under favorable food and oxygen conditions, active 
insulin signaling induces rapid growth and at the same time 
promotes ecdysone production, which accelerates metamor-
phosis. In contrast, when larvae are exposed to unfavorable 
conditions, reduced insulin signaling slows ecdysone pro-
duction, prolonging the growth period by delaying metamor-
phosis (Fig.�1). In addition to nutritional and oxygen inputs, 
a developmental checkpoint for tissue growth and injury is 
processed by the PTTHn and IPCs. Growing and damaged 
discs release DILP8, a signal that regulates insulin signaling 
and suppresses PTTH secretion, which extends the growth 
period by delaying metamorphosis, mediating plasticity that 
promotes developmental stability. Furthermore, photoperi-
odic input is mediated by PTTH signaling, while tempera-
ture is relayed to the neuroendocrine system by the IPCs, 
which receive inputs from cold-sensing neurons. Thus, tem-
perature can a�ect ecdysone indirectly via DILP-mediated 
regulation of synthesis in the PG of Drosophila. Oxygen and 
temperature may also be integrated by the PG itself, as sug-
gested from studies in other insects [101, 102]. Interestingly, 
ecdysone regulates growth negatively in larval tissues in 
Drosophila through a fat-body relay mechanism that inhib-
its systemic insulin signaling [9, 103]. Reducing ecdysone 
signaling speci�cally in the fat body results in an increased 
growth rate. In suboptimal nutritional conditions, relatively 
high ecdysone levels seem to suppress growth. Thus, both 
ecdysone and insulin �ne-tune growth rate and duration to 
produce a species-speci�c adult body size in response to 
changes in environmental and internal conditions.

Regulation of�the�growth period by�a�nutritional 
checkpoint

In insects, one of the most important environment-sensitive 
checkpoints that ensures an appropriate adult body size 
under different nutritional conditions is called �critical 
weight.� Before this checkpoint is satis�ed, developmen-
tal progression is nutrition-dependent [30]. In contrast, 
when critical weight is reached, larvae become committed 
to undergoing metamorphosis into adults on a �xed sched-
ule irrespective of further nutritional inputs. Thus, critical 
weight is a checkpoint-based mechanism that ensures that 
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animals adjust their larval growth period to nutritional con-
ditions, extending its duration under conditions of nutrient 
scarcity, in which critical weight is reached after prolonged 
feeding. However, this raises questions regarding the nature 
of the molecular mechanism by which Drosophila and other 
animals sense their own size and critical-weight attainment 
during development. Drosophila larvae appear to rely on 
nutritional status rather than actual body size, which seems 
to be similar to the mechanism that governs mammalian 
maturation [31, 104]. Insect metamorphosis is the key devel-
opmental event in the juvenile-to-adult transition in holo-
metabolous insects, analogous to mammalian puberty. Both 
metamorphosis and puberty are ultimately orchestrated by 
steroid hormones, which are tightly regulated by the acti-
vation of a neuroendocrine signaling cascade, suggesting 
that the architecture of the system that triggers maturation 
is conserved.

The �rst clear description of the Drosophila nutritional 
checkpoint based on the relationship between nutritional 
input and the duration of the growth period was made almost 
a century ago [105]. Later, this developmental checkpoint 
was named �critical weight� based on observations in the 
lepidopteran Manduca sexta [30]. Critical weight generally 
occurs early in the �nal larval instar and triggers a cascade 
of events that ultimately initiates the terminal growth period, 
which is the period between critical-weight attainment and 
the onset of metamorphosis. Thus, while pre-critical-weight 
animals can extend their growth period under nutrient-poor 
conditions to compensate for slow growth, the post-criti-
cal-weight terminal growth period is largely �xed in dura-
tion�and cannot be extended even by starvation. However, 
environmental factors do still govern the animal�s growth 
rate during the terminal growth period, and thus adult size 
is largely determined by the conditions prevailing during 
this window.

Wild-type Drosophila larvae developing at 25�°C under 
normal atmospheric oxygen levels (~ 21%) reach critical 
weight 8�12�hours after the molt to the third and �nal instar 
[22, 55, 106�112], which coincides with a small nutrient-
sensitive pulse of ecdysone [92, 113]. This rise in ecdysone 
is believed to result from nutrient-dependent insulin/TOR 
signaling in the PG and is thought to underlie the critical-
weight transition in Drosophila, since pre-critical-weight 
larvae fed ecdysone pupariate without delay when starved 
[106]. Consistent with this notion, insulin signaling gradu-
ally increases in the PG when newly molted third-instar lar-
vae feed continuously [106]. Furthermore, activating insulin/
TOR signaling in the PG induces precocious critical-weight 
attainment, whereas reducing it delays this [9, 22, 45, 46, 
106, 114]. One hypothesis proposes that this small nutri-
ent-sensitive ecdysone peak is caused by increased insu-
lin signaling [106]; another holds that nutrient-dependent 
TOR-mediated progression of endocycles of chromosomal 

replication in the cells of the PG leads to an irreversible 
activation of ecdysone biosynthesis that triggers the critical-
weight transition [110, 115]. Notably, these hypotheses are 
not mutually exclusive, and perhaps rising insulin signal-
ing is able to activate an ecdysone pulse only after enough 
chromosomal duplication has occurred to induce a transcrip-
tional state that commits the PG to synthesize ecdysone. In 
any case, taken together, these observations suggest that crit-
ical weight depends on insulin/TOR signaling in the PG that 
is correlated with the nutritional condition of the animal, 
rather than its body size per se. In addition to nutrients, other 
intrinsic and extrinsic factors also a�ect critical weight. In 
hypoxic conditions, Drosophila larvae reach critical weight 
at a smaller size, which results in reduced adult size [116]. 
Temperature also a�ects this developmental checkpoint: at 
lower temperatures, animals including Drosophila reach 
larger adult sizes at least partially because larvae tend to 
reach critical weight later, at a larger size [112]. Further-
more, sex-dependent size di�erences can also be explained 
partially through e�ects on critical weight [109].

Once animals reach critical weight, they commit to 
releasing PTTH, which triggers the neuroendocrine signal-
ing cascade leading to the maturation-inducing ecdysone 
pulse that initiates metamorphosis. Since PTTH secretion 
from the PTTHn is an outcome of the critical-weight transi-
tion, modulation of the PTTH receptor Torso in the PG or 
ablation of the PTTH-producing cells induces phenotypes 
similar those observed in animals with altered insulin sign-
aling in the PG [55, 56]. In this scenario, PTTH is required 
for the animal to respond to critical weight, which depends 
on an insulin/TOR-mediated rise in the ecdysone produc-
tion in the PG. Alternatively, signaling through insulin/TOR 
and PTTH collectively is responsible for generating the �rst 
small ecdysone peak that triggers the critical-weight transi-
tion. Animals lacking PTTH reach critical weight later at 
a larger size, suggesting that PTTH signaling is important 
in setting critical weight [111]. Furthermore, Ptth mutants 
are delayed in the terminal growth period, but eventually 
do pupariate and develop into adults, suggesting that other 
signals are su�cient to drive ecdysone production in the 
PG. During the prolonged feeding period of animals lack-
ing PTTH signaling, the additional accumulation of nutri-
ents and thus increased adiposity may eventually induce 
ecdysone signaling through increased insulin signaling. 
Thus, the PTTH, insulin, and TOR pathways are key to inte-
grating environmental cues and internal nutritional status to 
coordinate growth and developmental transitions.

This evidence suggests that nutritional factors and nutri-
ent sensing, rather than organismal size, are used to assess 
the attainment of critical weight. The Drosophila larval fat 
body is the primary nutrient-storage organ, and it also acts 
as a central nutrition sensor. In response to nutrient intake, 
the fat body secretes a number of insulin-regulatory factors, 
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which couple growth to nutritional conditions by remote 
control of DILP secretion from the IPCs (Table�1). During 
development, the fat body senses adipose storage of nutri-
ents and relays that information to control insulin signaling, 
which promotes the ecdysone production that triggers the 
critical-weight transition. In a similar phenomenon observed 
in humans, body weight strongly correlates with the timing 
of menarche, leading initially to the use of the term �critical 
weight� for humans [117�119]. However, human �critical 
weight� appears to arise from e�ects due more speci�cally 
to adiposity, rather than overall body size. Obese children 
tend to undergo puberty earlier than non-obese children of 
similar height, whereas malnourished children who lack 
body fat exhibit delayed puberty [120]. In this model, the 
neuroendocrine pathways controlling maturation onset in 
humans thus likely receive input from hormones produced 
by adipose tissues. Interestingly, in mammals, including 
humans, the adipokine leptin regulates pubertal matura-
tion [121]. Leptin concentrations in the bloodstream re�ect 
adiposity, and leptin de�ciency causes a failure to undergo 
puberty. In Drosophila, the functional analog of leptin is 
the adipokine Upd2; this factor is released from the fat body 
in a nutrient-dependent manner and from the musculature 
in response to daily activity cycles, and it regulates insulin 
secretion from the IPCs and Akh release from the APCs [21, 
122]. Based on these similarities, one might speculate that in 
the Drosophila larva, the adipose tissue releases one or more 
humoral factors in response to stored nutrient levels and, 
further, that these signals act via the IPCs to promote DILP 
release onto the PG, signaling that larvae have accumulated 
su�cient nutrients to undergo successful metamorphosis 
and to maximize �tness in adulthood.

Metabolic and�behavioral adaptation 
to�changing environments

Both during and after their�development, organisms must 
adapt their metabolism to maintain energetic homeostasis 
under the changing current environment as well as to antici-
pate near- and distant-future conditions. In animals, these 
metabolic adaptations require a balance between energy 
consumption and utilization through regulation of nutrient 
intake, storage, and expenditure. This metabolic �exibility 
relies on endocrine signaling networks that control tissue-
speci�c adjustment of carbohydrate, amino-acid, and lipid 
metabolism, as well as signals that regulates locomotion, 
feeding, and reproduction, all of which have a large impact 
on energy balance (Fig.�2). The tight linkage between growth 
and metabolic control in Drosophila means that many of the 
systems that regulate larval growth and development also 
play a role in adult metabolic control.

In both mammals and insects, well-fed conditions lead 
to an increase in circulating sugar levels, which induces 
the release of insulin or insulin-like peptides that promote 
cellular energy uptake either for immediate use or for stor-
age as a bu�er against future scarcity. Flies, like mammals, 
store excess energy in the form of tri- and diacylglycerides 
(TAGs and DAGs), primarily in the fat body (function-
ally analogous to mammalian liver and adipose tissues [2, 
123]), as well as the branched glucose polymer glycogen, 
largely in the larval and adult musculature [124, 125], fat 
body [125�127], and nervous system [128]. Both groups of 
animals also produce a hormone that counters the actions 
of insulin-like signaling when circulating sugar levels drop 
because of physical activity (high depletion) or starvation 
(insu�cient supply) by promoting the breakdown of stored 
energy into circulating species. Glucagon plays this role in 
mammals; in insects, this function is primarily performed 
by Akh.

Drosophila insulin-like peptides (DILPs) govern 
cellular energy uptake and�storage

In mammals, insulin is secreted by the pancreatic � cells in 
response to high blood sugar levels and promotes the cel-
lular uptake and utilization or storage of glucose to prevent 
hyperglycemia. This system is evolutionarily ancient, and 
an orthologous system exists in insects. In the �y, DILPs 
(introduced above) regulate the uptake of metabolic spe-
cies, including sugars. Within the brain, the larval IPCs�
which are genetically homologous to the mammalian � cells 
[12, 129, 130]�persist through metamorphosis into the 
adult and produce a context-dependent mixture of DILP1, 
DILP2, DILP3, and DILP5, as well as the cholecystokinin 
orthologue Drosulfakinin (Dsk) [131]. In addition, larval 
Dh44-producing cells are also recruited into an insulin-
producing role�in the adult, secreting DILP2 (in addition to 
Dh44, but not DILP3 or -5) onto or around the foregut/crop 
[132]. DILP6, produced in the fat body of the non-feeding 
pupal stage to promote metamorphic growth [35, 36], is also 
upregulated in the larval and adult fat body during starva-
tion [133].

Cells that produce metabolism-regulating hormones 
such as DILPs and Akh must be able to sense the ani-
mal�s nutritional state, either cell-autonomously or via 
other signals, in order to respond with appropriate hor-
monal cocktails (see Fig.�2 and Table�1). Mammalian 
insulin-producing pancreatic � cells respond directly to 
blood glucose. Imported glucose leads to ATP produc-
tion, increasing the ratio of ATP to ADP, which results in 
the closure of ATP-sensitive  K+ channels and depolariza-
tion of the cells. In turn this leads to opening of voltage-
gated  Ca2+ channels and endocrine secretion of insulin. 
Similarly, mammalian glucagon-producing pancreatic 
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� cells are directly regulated by sugars via ATP as well 
and release glucagon under low sugar levels, although 
some mysteries remain regarding the precise mechanisms 
involved [134�136]. In Drosophila larvae, insulin secre-
tion is tightly linked to amino-acid intake during develop-
ment [25, 48], since DILPs are the major growth factors. 

Larval IPCs sense the amino acid leucine via the protein 
Minidiscs and upregulate DILP2 and DILP5 in response 
to higher leucine availability [137]. Although sugar also 
a�ects larval DILP signaling, the larval IPCs do not appear 
to be competent to respond directly to sugar levels, indi-
cating that they are not directly regulated by intracellular 

Fig. 2  Metabolism and behavior are regulated via the integration of 
environmental and internal cues through inter-organ communica-
tions in Drosophila adults. The top panel shows adult organs and the 
di�usible factors that link them to control metabolism and feeding 
behaviors. Circadian clocks are located within the brain as well as in 

peripheral tissues and regulate tissue physiology. Gustatory and olfac-
tory receptor neurons (GRNs and ORNs) are regulated by DILP and 
Akh signaling (as well as many other factors) and in�uence feeding 
behavior. The bottom panel schematizes adult organs and interactions 
that govern the level of circulating sugars
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sugar sensing [138]; rather, a relay via Akh appears to 
regulate IPC sugar responses [139]. Isolated adult IPCs, 
however, do appear to be directly sugar-responsive in their 
electrical activity, suggesting that the IPCs of the adult �y 
are regulated via a glucose-sensing mechanism similar to 
that of mammalian insulin-producing � cells [140].

Each of the DILPs is under independent transcriptional 
and secretory regulation. Their relative expression varies 
over developmental time during larval life [141]. Further-
more, in the larva and the adult, each DILP-encoding gene is 
responsive to di�erent nutritional cues [11, 139, 142], ena-
bling the animal to adapt its metabolism to a broad variety 
of nutritional combinations. Indeed, within the nutritional 
space encountered by Drosophila in the wild (i.e., the range 
nutrients associated with rotting fruits), adult Dilp2 expres-
sion appears to be upregulated by high ratios of carbohydrate 
to protein in the diet, whereas in contrast, Dilp3 shows an 
irregular expression pro�le in adults, with a peak of expres-
sion on a diet of roughly 8% sugar and 1% protein [142], 
which suggestively approximates the composition of natu-
ral fruits. Adult transcription of Dilp5 appears to increase 
with the overall calorie level of the diet [142], whereas adult 
Dilp6 expression does not vary much with food composition 
in fed conditions [142] and appears to be in�uenced primar-
ily by starvation [133].

Whereas the growth and metabolic functions of mam-
malian insulin-like factors are divided into parallel path-
ways, with insulin and its receptor governing metabolism 
and the IGFs and their cognate receptors (IGFRs) control-
ling growth, the �y expresses only a single insulin receptor, 
which responds to multiple DILPs and regulates both growth 
and metabolism. Thus, to be able to induce alternative down-
stream responses, the DILPs exhibit varying biochemistry. 
These peptides are varied in sequence and structure (e.g., 
DILP2, 3, and 5 are likely processed by cleavage into A and 
B chains, with the removal of the intervening �C peptide,� 
whereas DILP6, like mammalian IGFs, is likely not cleaved 
[32, 35]). These di�erences allow them to bind with di�erent 
kinetics to the insulin receptor and thereby to bring about 
alternative intracellular responses [143]. In addition, sev-
eral hemolymph proteins�Drosophila Acid-labile subunit 
(dALS), Ecdysone-inducible gene L2 (ImpL2), and Secreted 
decoy of InR (Sdr)�di�erentially bind circulating DILPs 
and modulate their interaction with InR, thus further func-
tionally di�erentiating the DILPs from one another. dALS 
appears to be required for e�cacious signaling of DILP2 and 
DILP5, but it does not bind DILP3 [144]. ImpL2 is released 
during poor nutritional conditions and sequesters circulating 
DILPs to block their activity [145]�most strongly inter-
acting in ex-vivo pulldown assays with DILPs 1, 2, 5, and 
6 and more weakly with DILPs 3 and 4 [146]�while at 
the same time promoting local DILP2 actions at speci�c 
anatomical sites [147, 148]. In contrast, Sdr most strongly 

binds DILP3 in pull-down assays, but it also can interact 
with DILPs 1, 2, and 7, and to a lesser degree with DILPs 5 
and 6 [146]. Many of these factors modulating circulating 
DILPs have mainly been studied during development, but 
they likely play similar roles in adults. Thus, even though 
all DILPs act through the same receptor, the DILP system 
o�ers broad functional �exibility to allow di�erent nutri-
tional stimuli to induce a range of intracellular adaptive 
responses in the face of a range of dietary inputs. Further-
more, complex feedback-regulatory relationships control 
Dilp expression; DILP2, DILP5, and DILP6 act as negative 
regulators of DILP-gene expression, while DILP3 feeds back 
positively via either autocrine action or intermediate signals 
[133, 149]. This dynamic transcriptional interplay further 
�ne-tunes expression of DILP genes to produce the complex 
mixtures necessary to homeostatically regulate the internal 
metabolism of the �y.

In addition to the DILPs, the IPCs also produce the pep-
tide hormone Drosulfakinin (Dsk), which is an orthologue 
of mammalian cholecystokinin [131, 150]. This peptide has 
been studied in a variety of insects and has a range of func-
tions in signaling satiety and regulating food intake. Dsk 
transcription is reduced upon starvation, and Dsk-depleted 
animals consume signi�cantly more food, whereas Dsk pep-
tide injection conversely reduces nutrient ingestion [131, 
151�153]. Moreover, Dsk appears to reduce olfactory sen-
sitivity to attractive odors in larvae [154] and to inhibit the 
consumption of unpalatable food in adults [131], consistent 
with a role in not only regulating food intake, but also in the 
neuronal processing that underlies food choice. As demon-
strated for human cholecystokinin [155], Sulfakinin-family 
proteins also regulate critical aspects of gut physiology in a 
variety of insect systems: in the locust, Sulfakinin injection 
reduces secretion of digestive enzymes [156], while there 
is evidence that it may act as a regulator of gut/crop con-
tractions in adult Periplaneta and larval Drosophila [157]. 
Taken together, this pleiotropic peptide thus appears to regu-
late many aspects of feeding behavior, making Dsk a key 
player in the regulation of metabolic stability across a range 
of animal systems.

Adipokinetic hormone (Akh) governs 
the�mobilization of�energy reserves

Maintaining biological functions under negative energy 
balance depends on the release of a hormone that instructs 
tissues to mobilize stored energy reserves in order to make 
sugars and lipids available to peripheral tissues. Metabolic 
homeostasis in complex animals is thus reliant on constant 
communication between nutrient-storing and nutrient-con-
suming tissues to o�set potential deleterious �uctuations in 
circulating energy levels during periods of energy stress. 
In insects, the best-studied nutrient-mobilizing hormone is 
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Akh, which induces glycemia-increasing e�ects similar to 
those of mammalian glucagon (Fig.�2). It is worth noting 
that although the Akh and its receptor AkhR are functionally 
analogous with glucagon and its receptor, these two sys-
tems are not closely�evolutionarily related. Whereas gluca-
gon achieves its glycemic e�ect by inducing glycogenolysis, 
with possible e�ects on lipids whose nature and relevance 
are controversial [158], Akh in Drosophila appears to act 
primarily as a lipolysis-inducing factor. Although loss of 
Akh function in larvae does not increase fat stores under 
normal conditions [159, 160], larval Akh overexpression 
does reduce fat stores [160]; disruption of Akh signaling 
in adults partially blocks lipid mobilization under starva-
tion [161] and results in larger fat stores [159, 162]. Reports 
of Akh e�ect on glycogen, however, vary. Most studies for 
which glycogen levels are reported have found no e�ect of 
Akh-signaling disruption on larval or adult glycogen levels 
[126, 159, 161]; however, another report �nds that AkhR loss 
results in slightly increased adult glycogen levels and that 
AkhR overexpression (driven by AkhR-GAL4) reduces adult 
glycogen levels, both e�ects becoming more pronounced 
after starvation [162]. Akh-independent mechanisms of 
lipid and glycogen mobilization also exist and are discussed 
below.

In both larval and adult Drosophila, prepro-Akh is 
expressed by the neuroendocrine APCs of the CC [163]. The 
prepropeptide is enzymatically processed [164, 165] into the 
N-terminally phosphorylated, C-terminally amidated Akh 
octapeptide and an Akh precursor-related peptide (APRP). 
Akh peptide has been mass-spectrometrically identi�ed in 
adult [159, 164�166] and larval [164, 167] CC-associated 
tissues, and APRP has recently been observed in adult tis-
sues [159], thus con�rming prepropeptide processing and 
production of active peptide.

The release of the bioactive peptide into the hemolymph 
from the APCs appears to be induced cell-autonomously 
by low hemolymph sugar (trehalose) levels, although exog-
enous factors, discussed below, impose additional control 
(Table�2). Extracellular trehalose levels a�ect APC cytoplas-
mic glucose levels, which in turn govern the ATP-producing 

activity of the mitochondria; low hemolymph sugar thus 
leads to reduced ATP production and a greater ratio of AMP 
to ATP. This ratio is detected by the actions of the AMP-
activated protein kinase (AMPK) complex, which as in 
mammals integrates internal energy cues to modulate APC 
excitability and Akh release [168]. ATP-dependent mem-
brane-associated  K+

ATP channels also regulate cell excitabil-
ity; these channels act as cellular AMP/ATP sensors that 
couple rapid decreases in sugar levels to the activation of 
voltage-sensitive  Ca2+ channels and thus to hormone release 
[138]. These intracellular mechanisms show remarkable 
functional analogy to mammalian glucagon release from 
pancreatic islet � cells [169].

Interestingly, Akh release is also reported to be induced 
by hypertrehalosemia in Drosophila larvae [139], which was 
further supported by a recent study showing that chronic 
exposure to a high-sugar diet induces a prominent Akh-
dependent response in the fat body [170]. These results sug-
gest that Akh secretion is biphasically regulated by both low- 
and high-hemolymph trehalose concentrations, which may 
be interpreted as a mechanism necessary to support the high 
energy demands during rapid larval growth as well as the 
requirement to maintain normoglycemia during the wander-
ing and pupal stages when feeding has ceased. Intriguingly, 
similar paradoxical glucagon stimulation has been described 
from isolated mouse pancreatic islets [171], just as humans 
with severe diabetes often show pronounced hyperglucagon-
emia [172], indicating that biphasic hormone release may be 
an evolutionarily ancient mechanism conserved since the 
divergence of insects and mammals. Whether this biphasic 
release also exists in adult Drosophila�a stage with funda-
mentally di�erent physiological requirements�is unknown 
and represents an exciting question for the future.

The Drosophila genome encodes a single Akh receptor 
(AkhR), which is strongly expressed in fat-body cells, con-
sistent with the energy-mobilizing roles of the Akh signal-
ing system [173, 174]. Ablation of the cells of the CC [138, 
160, 164, 175], prevention of the proteolytic processing 
of prepro-Akh [164], precisely targeted disruption of the 
genomic region encoding the processed Akh peptide [159, 

Table 2  Factors that regulate the APCs in the larva, the adult, or both

APC-in�uencing factors Larval data Adult data

Autonomous sugar sensing Via  KATP channels [138] and AMPK [168]; 
also [139]

Via AMPK [168]

Akh/AkhR feedback No larval data Negative feedback (at least indirect) [159]
AstA Source unidenti�ed; via AstA-R2 [78] Source unidenti�ed; via AstA-R2 [78]
Bursicon-Alpha No larval data From gut; inhibits CC via unspeci�ed neuronal relay [200]
sNPF No larval data From sugar-sensing neurons presynaptic to CC; inhibits 

via sNPF-R [224]
Upd2 No larval data From muscle to CC; via Domeless [122]
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176], and manipulation of AkhR [139, 161, 162] have been 
used to probe the Akh signaling pathway. The pathway does 
not appear to be necessary for larval survival or growth on 
normal diets, although AkhR mutants develop quite slowly 
on low-protein (low-yeast) food, likely due to e�ects medi-
ated by e�ects on DILP3 [139]. Pathway loss by any means 
generally leads to reduced circulating sugar levels in larvae 
and adults, with little or no e�ect on larval lipid stores, at 
least in feeding larvae; however, starvation induces much 
stronger reduction of circulating sugars in larvae lacking 
CC cells than in controls, suggesting that the Akh de�cient 
animals are unable to mobilize stores such as lipids [138]. 
Inactivation of the Akh pathway in adults, however, induces 
obvious phenotypes: adults with impaired Akh signaling 
exhibit reduced (but not eliminated) lipid mobilization, 
leading to increased lipid stores. Akh/AkhR phenotypes are 
especially marked under starvation�the reduction of the 
lipid mobilization rate allows lipid stores to be maintained 
longer, prolonging survival under starvation, and animals 
eventually succumb with substantial remaining fat stores 
[159�162, 175, 176].

The IPCs and�APCs are also�regulated by�exogenous 
factors

In metazoans, di�erent aspects of the work of life are dis-
tributed among discrete specialized organs. Each organ has 
direct access to only a part of the information available to 
and within the whole animal, and therefore, to maintain 
homeostasis, organs coordinate their activities through the 
interchange of inter-organ signals as well as neuronal net-
works. In particular, the gut, fat, and nervous system release 
many neuropeptides and hormonal signals in response to 
cues that they are specialized to perceive. The gut, as the �rst 
organ to encounter ingested nutrients, is the source of many 
�phasic� factors that likely re�ect recent nutritional intake, 
whereas the fat, as a central organ of metabolite storage 
and processing, produces �tonic� signals re�ecting internal 
metabolite levels. The nervous system serves as an integra-
tor and processor of multiple streams of hormonal, sensory, 
and behavioral information. The IPCs make up one key hub 
for the relay and integration of many neuronal and hormonal 
inputs from di�erent tissues (Table�1); these modulate the 
expression and release of DILPs and Dsk. Several excel-
lent comprehensive reviews of the in�uences that regulate 
DILP production and release have been published [15, 177, 
178], and, therefore, only certain factors will be discussed in 
detail below. Likewise, although the hormonal regulation of 
APC activity has not been systematically investigated, some 
factors that govern Akh expression and release have been 
identi�ed (below and Table�2).

Signals that�regulate the�IPCs

The DILPs and Dsk are involved in a range of physiological 
and metabolic processes. To coordinate these, the larval and 
adult IPCs integrate a number of di�erent inputs that modu-
late peptide expression and secretion. Many of these factors 
have been investigated in either larvae or adults, but not both 
(see Table�1). IPC regulation is known to di�er between 
larvae and adult�e.g., in sugar sensitivity (above), and thus 
factors described here may or may not function similarly in 
adult and larval life. As mentioned above, information about 
the internal nutritional status following ingestion of food is 
sensed by the fat body, which relays this information to the 
IPCs in the brain via signals released into circulation. These 
adipokines include Eiger, the Drosophila Tumor Necrosis 
Factor Alpha (TNF-alpha) orthologue, which is released 
from larval fat-body cells under conditions of low internal 
amino-acid concentrations [51]. This signal acts through its 
receptor Grindelwald in the larval IPCs to activate the Jun 
Kinase cascade, leading to inhibition of DILP-gene expres-
sion. On the other hand, other larval nutrient-dependent fat-
body signals such as CCHa2, Stunted, and GBP1/2 mediate 
positive actions on DILP production and release [49�51, 54, 
179, 180]. The Activin-like factor Dawdle (Daw) is another 
IPC-modulating hormone, secreted by the larval fat body 
in response to the consumption of sugar [181]. Expression 
of daw is under the control of the carbohydrate response 
element binding protein (ChREBP) transcription factor 
Mondo-Mlx [182], and this hormone acts on the midgut to 
downregulate digestive enzymes after a sugary meal, a phe-
nomenon called glucose repression that prevents acute nutri-
tional overload [181]. Daw also promotes (likely indirectly) 
the release of insulin from the larval IPCs and regulates the 
expression of key metabolic enzymes of the tricarboxylic-
acid (TCA) cycle [53]. Furthermore, neuronal populations 
that regulate energy storage are targets of Daw signaling, 
and ablation of these cells leads to starvation susceptibility 
due to lack of reserves [183]. Daw thus regulates energy 
absorption, storage, and use to maintain sugar homeostasis 
after intake. Fat-to-brain signaling via these various adi-
pokines that regulate insulin signaling is, therefore, impor-
tant to couple metabolism to the intake of nutrition. The 
CC is another source of IPC regulation. In the larva, high 
trehalose promotes Akh release, which appears to act on the 
IPCs to promote DILP3 release [139]. In the adult, at least, 
the CC also expresses the unrelated peptide Limostatin (Lst), 
which appears to be induced by sugar starvation [184]. The 
Lst receptor, LstR/PK1-R, is expressed in the adult IPCs and 
acts in these cells to reduce insulin release [184].

Furthermore, the IPCs also receive neuronal inputs 
via neuromodulators such as Leucokinin (Lk) [185]. In 
the adult, Lk is expressed in a set of neurons in the brain 
and nerve cord, and Lk/Lkr signaling appears to reduce 
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adult DILP expression and release [186]. Lk also seems 
to coordinate behavioral responses with metabolic ones, 
since Lk also promotes adult food intake and locomotor 
activity [185] and regulates adult gustatory responses 
associated with the avoidance of bitter foods [187]. Taken 
together, these data �t a model in which Lk is a starvation-
induced factor that acts to block insulin release, enhance 
the palatability of foods, and promote food-seeking and 
consumption behaviors to enhance animal survival under 
nutritionally poor environmental conditions. Pigment-dis-
persing factor (PDF), perhaps released synaptically from 
clock neurons onto IPC projections, also regulates adult 
IPC activity in response to circadian day-length stimuli, 
inhibiting insulin signaling and thus promoting the repro-
ductively dormant diapause state under short-day condi-
tions [188, 189].

Gut hormones also play key roles in metabolic adapta-
tions and signal to a diverse set of target organs. Genetic, 
transcriptomic, and immunohistochemical evidence sug-
gests that larval or adult midgut enteroendocrine cells 
express *AstA, *Allatostatin C (AstC), BursA, *CCHa1, 
*CCHa2, CNMamide (CNMa), Crustacean cardioactive 
peptide (CCAP), *Diuretic hormone 31 (Dh31), Ion-trans-
port peptide (ITP), *Myoinhibitory peptide/Allatostatin 
B (MIP), Neuropeptide F (NPF), Neuropeptide-like pre-
cursor 2 (NPLP2, likely functioning as an apolipoprotein 
rather than, or in addition to, as�a prepropeptide [190]), 
Orcokinin, *sNPF, and *Tachykinin (Tk), expressed in ste-
reotyped combinations and anatomical regions [191�197]. 
However, without evidence of proper peptide processing 
and release, prepropeptide expression alone is insu�cient 
to prove biological activity. Processed peptides from those 
prepropeptides marked with an asterisk have been iden-
ti�ed in mass-spectrometric assays of the adult midgut 
[198]. Evidence for release of enteroendocrine peptides 
(processed or not) and downstream function has been 
reported for BursA [199�201], Dh31 [202, 203], NPF 
[204], and Tk [205]. Tk, either from neurons terminating 
near or on the IPCs or from the gut, activates its recep-
tor TkR99D in the IPCs, where it is required for proper 
regulation of DILP2 and DILP3 expression [205, 206]. 
In the adult, loss of TkR99D in the IPCs leads to faster 
depletion of sugars under starvation and reduces survival 
under these conditions. Moreover, gut-derived Tk regu-
lates gut lipid metabolism and overall lipid homeostasis in 
response to yeast feeding [205]. Tk also regulates aspects 
of starvation-induced modulation of sensory sensitivity 
[207]. Thus, this peptide is important for sensitivity to 
feeding cues, feeding drive, and proper utilization of the 
consumed materials. Furthermore, animals such as Dros-
ophila need to modulate their metabolism and growth not 
only to nutrient conditions, but also to changing tempera-
tures. Part of this response is mediated by cold-responsive 

thermosensory neurons that synapse directly upon the 
IPCs and regulate DILP expression and release to control 
larval growth according to changing temperatures [28].

Signals that�regulate the�APCs

Akh expression appears to be tightly controlled, with similar 
peptide levels in animals carrying 1, 2, or 3 copies of the Akh 
genomic region [163]; furthermore, loss of the Akh pep-
tide leads to increased Akh reporter-gene expression [159], 
suggesting that feedback inhibition occurs via AkhR either 
directly in the APCs or via intermediary cells. A handful 
of APC-exogenous hormonal and neuronal in�uences upon 
the APCs are known (Table�2), although there have been 
no reports of systematic attempts to identify these. Most of 
these in�uences are reported to act on both the APCs and 
the IPCs, and these are discussed in the next section. Only 
one APC-exogenous factor is reported to act on the APCs 
alone (indirectly): in the adult, gut-derived Bursicon-Alpha 
(BursA) acts via a neuronal relay to reduce Akh signaling 
during starvation [200]. However, several studies have been 
performed in the locust. In this insect, �ight activity induces 
Akh expression [208] and peptide release to mobilize energy 
for long-distance travel [209]. Diverse small amines and 
peptides regulate the locust APCs [210�216], and it there-
fore seems likely that the regulation of the Drosophila APCs 
is rich and responsive to many behavioral and environmental 
stimuli as well.

Signals that�regulate both�the�IPCs and�APCs 
to�mediate nutritional adaptation

Under changing nutritional conditions, linking the regula-
tion of energy uptake and release, mediated by the oppos-
ing e�ect of DILPs and Akh, through common nutritionally 
regulated mediators is important for maintaining homeo-
static control. Several peptide hormones are known to act 
on both the IPCs and the APCs to promote homeostasis via 
the dual control of this regulatory circuit (see Fig.�2 and 
Tables�1, 2). In Drosophila, like mammals, the coordinated 
regulation of DILPs and Akh is key to adaptive responses 
to ingestion of di�erent ratios of carbohydrate and pro-
teins. While dietary sugar promotes insulin signaling and 
decreases Akh signaling to prevent hyperglycemia, inges-
tion of protein concomitantly increases both insulin and Akh 
to prevent insulin-induced hypoglycemia after protein-rich 
meals [217]. Thus, the coordinated regulation of DILPs and 
Akh maintains sugar homeostasis in response to varying 
dietary intake of sugar and protein. In larvae and adults, the 
neuropeptide receptor AstA-R2 is expressed in both the IPCs 
and APCs, suggesting that it regulates both DILP and Akh 
signaling. AstA and AstA-R2 are di�erentially regulated by 
consumption of sugars and protein, and this signaling system 
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regulates feeding choices between these nutrients, promoting 
protein intake over sugar [78]. Activation of AstA-express-
ing neurons also inhibits the starvation-induced increase 
in gustatory sensitivity to sugar and blocks feeding [218]. 
Together these observations suggest that AstA is regulated 
by the dietary sugar-to-protein ratio and coordinates adaptive 
metabolic responses through regulation of DILPs and Akh.

Another peptide that has been shown to modulate both 
DILP and Akh signaling is sNPF, which is secreted from 
certain neurons of the brain in larvae and adults. In response 
to starvation, sNPF release upregulates feeding and DILP-
gene expression (in anticipation of new nutrients) through 
the sNPF receptor (sNPF-R) in the IPCs, which is coupled 
to stimulatory G-proteins in these cells [219�224]. In a feed-
back arrangement, sNPF-positive neurons also express InR 
and, in response to DILP signaling, produce more sNPF to 
promote continued feeding. This feedback loop is required 
for the increase in feeding induced by short periods of star-
vation [223]. Other sNPF-expressing neurons of the adult 
brain sense hemolymph sugar and, under higher-sugar con-
ditions, release peptide onto the IPCs and the APCs simul-
taneously [224]. In the IPCs, this is an activating stimulus 
that induces DILP release, while in the APCs, sNPF-R acts 
through inhibitory G-proteins, and, therefore, sNPF signal-
ing blocks Akh release [224]. This peptide also regulates 
adult olfactory sensitivity, described below [225, 226]. 
Thus, in response to consumed sugars, this pleiotropic pep-
tide coordinately raises insulin levels and lowers Akh lev-
els, which promotes tissue uptake of hemolymph sugars and 
downregulates lipid-mobilizing processes [224], while also 
governing food-seeking behavior.

Insulin and Akh are also jointly controlled by Upd2. This 
protein is released by cells of the fat body in both larvae and 
adults in the fed state and acts through the receptor Dome-
less to inhibit certain GABAergic neurons of the brain, 
which synapse on the IPCs [21]. Upd2 signaling thus leads 
to derepression of the IPCs and promotion of insulin release 
in fed conditions. Furthermore, Upd2 is released from the 
adult musculature and acts on the APCs to govern Akh 
secretion and thereby to control lipid mobilization for energy 
use [122]. Thus, this signal is released from energy-storing 
and -consuming tissues and acts through both DILPs and 
Akh to coordinate metabolite storage, mobilization, and use.

Hormonal control of�lipid storage and�release

Stored energy provides a bu�er against times of scarcity or 
exertion. In nutrient-rich conditions, the �y sets aside excess 
energy in the form of TAG, stored within lipid droplets in the 
cells of the fat body. These stored lipids can be degraded and 
mobilized by metabolic enzymes such as lipases [227�229]. 
Among the most important fat-body lipases for metabolic 
adaptation is Brummer (Bmm), the Drosophila orthologue 

of mammalian adipose triglyceride lipase (ATGL) [230]. 
In the fed state, DILP signaling in the fat body via InR 
induces sugar uptake from the hemolymph and represses the 
expression of genes required for lipolysis [231�234]. Insu-
lin signaling prevents FoxO activation of genes important 
for lipolysis, including bmm [234], and low Akh signaling 
allows expression of genes required for lipogenesis, such as 
midway [235]. High DILP activity and low Akh signaling 
thus gear the physiology of the fat body towards storage 
under fed conditions.

In lean times, hormonal in�uences including Akh/AkhR 
signaling induce the triacylglyceride-lipase-mediated break-
down of stored TAGs into DAGs in Drosophila [236]. The 
DAGs can then be transported in the hemolymph complexed 
with one of several lipid-carrier proteins [237]; alternatively, 
lipid components (fatty acids and glycerol) can be further 
broken down and reformed into trehalose through the pro-
cess of gluconeogenesis (more speci�cally, trehaloneogen-
esis), reviewed elsewhere [238, 239]. In studied insects of a 
range of species, AkhR signaling passes through stimulatory 
G-proteins and has been shown directly to increase intra-
cellular concentrations of cAMP and calcium [240�242]. 
Reports in Drosophila suggest that binding of Akh to AkhR 
may trigger an intracellular  Ca2+  (iCa2+) second-messenger 
response via the G protein subunits G�q and G�1 and phos-
pholipase 21C (Plc21C) [235, 243]. Genetic experiments 
involving conditional knockdown of these downstream 
signaling components or the store-operated calcium entry 
(SOCE) component Stim lead to a blockage of fat-body  Ca2+ 
entry and subsequent defects in organismal lipid mobiliza-
tion [235, 243]. However, a direct demonstration of AkhR�s 
signaling mechanism in Drosophila�through, e.g., ex-vivo 
fat-body calcium or cAMP quanti�cation after Akh exposure 
has not been reported, to our knowledge.

In any case, second-messenger cascades initiated by 
AkhR signaling induce repression of the lipogenic gene 
midway and activate the expression of lipase genes, thereby 
blocking lipid synthesis while activating lipid breakdown 
[161, 232, 235]. This upregulation is aided by relief of 
DILP-induced inhibition [231, 232]. Together, in a fasting 
state, reduced DILP signaling and increased Akh activity 
switch the fat body into lipid-breakdown mode. The main 
intracellular sensor of nutrition (primarily amino acids), 
TOR, is also a component of lipid-metabolism regulation. 
Because insulin signaling and TOR are interlinked via Akt, 
TOR mediates some DILP-induced e�ects downstream of 
InR and also has e�ects of its own. Reduction of TOR activ-
ity in the fat body leads to smaller lipid droplets and reduced 
lipid storage [244]. Interestingly, TOR also regulates fat-
body autophagy, a starvation-induced process that cells use 
to release and recycle store nutrients. In starved conditions, 
inactivation of TOR induces autophagy-mediated break-
down of nutrients, which can be released from the fat to 
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sustain overall organismal survival under such conditions 
[245]. Through these mechanisms, fat-body intracellular 
nutritional levels thus also regulate lipid metabolism.

To provide greater control over lipid physiology, signals 
from other tissues modulate the AkhR signaling pathway 
in the fat body to gate lipid release. During development, 
at least, the TGF-� ligand Activin-� (Act�) is secreted by 
endocrine cells of the gut and acts directly on cells of the 
fat body through its receptor Baboon (isoform A only) 
to regulate lipid metabolism and hemolymph sugar levels 
[170]. Baboon[A] signaling activates the downstream tran-
scription factor dSmad2, which regulates AkhR expression, 
thereby adjusting fat cells� sensitivity to the starvation-
induced Akh signal. Chronic high-sugar feeding disturbs 
the balance of cell proliferation in the gut and leads to an 
increased number of Act�-secreting cells; this extra Act� 
induces abnormally high fat-body expression of AkhR, 
which triggers aberrant lipolysis and gluconeogenesis, 
thereby leading to carbohydrate imbalance and hypergly-
cemia [170].

However, the AkhR pathway, including modulators 
of its activity, is not the sole regulator of fat-body lipid 
mobilization. Additional, unidenti�ed pathways appear to 
participate in the regulation of starvation-induced lipolysis 
in adipose tissue. Expression of Bmm lipase requires Akh 
signaling during short-term starvation (4�h) [232], but not 
over longer-term starvation, since fat-body bmm is upregu-
lated even in AkhR mutants starved for 6�h [161]. Akh 
signaling during early starvation regulates lipases beyond 
Brummer, but Brummer is speci�cally required for later 
lipolysis [161]. Only in AkhR bmm double mutants is star-
vation-induced lipid mobilization fully suppressed, with 
identical lipid levels between fed �ies and �ies starved to 
death [161], suggesting the existence of other, uncharac-
terized signal(s) that regulate lipolysis through Bmm.

In addition to Act�, the gut also secretes a lipid-associ-
ated form of the protein Hedgehog (Hh) under starvation 
conditions. This signal promotes lipid mobilization in the 
fat body in both larvae and adults and supports hemo-
lymph sugar levels, but only in starved animals, indicat-
ing the requirement for other permissive mobilization 
signal(s) [94, 246]. Recent work shows that Hh acts on the 
fat to upregulate bmm expression. Furthermore, the sugar-
induced gut-secreted factor BursA [200] may also act on 
the fat body. Burs dimers activate the transcription factor 
Relish, the Drosophila orthologue of mammalian NF-�B, 
in the fat body. This activates innate-immunity pathways 
to prevent infection during these transitions [247]. Relish 
also antagonizes FoxO-induced bmm expression to limit 
fasting-induced lipolysis [248]. Investigating the emerging 
link between immune response and metabolism will be 
an important direction for future research. Furthermore, 
characterizing the signals that a�ect the fat will be key to 

the understanding of lipolytic control and the mobilization 
of resources in the face of environmental and nutritional 
challenges.

Mobilization of�glycogen stores

As in other multicellular organisms, the polysaccharide gly-
cogen is the main storage form of carbohydrates in Drosoph-
ila [249]. In both the larval and adult stages, glycogen is syn-
thesized and stored in several tissues including the central 
nervous system (CNS), fat body, and skeletal muscles, and 
the dynamic regulation of glycogen metabolism�especially 
during starvation�plays a key role in maintaining metabolic 
homeostasis [124, 126]. For example, glycogen stores in lar-
val body-wall muscles and fat body, but not CNS, are rapidly 
depleted during larval starvation, suggesting that glycogen 
mobilization is di�erentially regulated between organs, and 
that especially the fat body acts as an important carbohydrate 
reservoir bu�ering circulating energy levels [126, 250]. Sim-
ilarly, although glycogen appears to be largely dispensable 
for adult �tness under fed conditions, muscle glycogen is a 
crucial factor in maintaining stereotypic locomotor activ-
ity and wing-beat frequency during starvation [250, 251], 
indicating that glycogen metabolism is regulated in both a 
tissue- and stage-speci�c manner. Glycogen metabolism is 
controlled by two enzymes, glycogen synthase (GlyS) and 
glycogen phosphorylase (GlyP), the latter of which catalyzes 
the rate-limiting step in glycogen breakdown. The control 
of these processes appears to depend largely on hemolymph 
sugar levels, and they are generally regulated organ-auton-
omously rather than by systemic signals such as Akh [126]. 
The systemic stress peptide Corazonin (Crz) and its recep-
tor CrzR�paralogues of Akh and AkhR [173, 252, 253]�
may regulate glycogen content of the adult fat body [254]. 
Knockdown of CrzR using transgenes targeting this tissue 
does not a�ect lipid metabolism but does increase glyco-
gen stores [254]; however, the authors do not rule out these 
transgenes also target the salivary glands, which also express 
CrzR and are also involved in energy balance via production 
of feeding-related enzymes and �uids [254]. Furthermore, 
glycogen breakdown is also regulated by autophagy-depend-
ent mechanisms, at least in skeletal muscle, and genetic 
experiments reveal that both mechanisms are necessary for 
maximal glycogenolysis. Interestingly, GlyS may be a cen-
tral regulator of both pathways via its direct interaction with 
Atg8, hereby linking glycogenolytic activities with glycogen 
autophagy to homeostatically control glycogen breakdown 
in �ies [255].

Circadian rhythms of�metabolism

The adult �y is exposed to the daily cycling of the ambi-
ent photic and thermal environment, which brings both 
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opportunity (�nding food sources and mates) and danger 
(predation and desiccation). To anticipate these cycles and 
schedule appropriate behavior and physiology, �ies possess 
a central neuronal circadian clock that governs rhythmic 
behaviors such as feeding and sleeping (Fig.�2). This review 
focuses on metabolic rhythms; an excellent general review 
of Drosophila circadian rhythm has recently been published 
[256].

The adult IPCs are synchronized with the internal circa-
dian clock via synaptic connections, with greater IPC elec-
trical activity in the subjective morning; however, feeding 
animals at night, when the IPCs are normally quiet, induces 
morning-like electrical activity in these cells [257]. The 
IPCs also express receptors for PDF, the main output factor 
of the clock, and for sNPF, which is co-expressed in certain 
PDF-expressing cells [188]; these inputs also connect cir-
cadian rhythms to the IPCs, and they appear to be part of a 
diapause-antagonizing system as well. Daily activity regu-
lates Akh signaling as well, via the cytokine Upd2 [122]. 
Thus, circadian information is integrated into metabolic 
programming.

Beyond the central-brain clock that drives systemic sign-
aling, scattered peripheral intracellular oscillators regulate 
local processes (Fig.�2). One such peripheral clock governs 
fat-body physiology [258]. Flies lacking this clock eat more 
than controls, especially at night, and are sensitive to starva-
tion, due to low glycogen levels, indicating a loss of proper 
energy storage regulation [258]. The adult gut also exhibits 
endogenous circadian oscillation in gene expression and cell 
proliferation [259, 260]. As a result of circadian rhythm-
driven changes in physiology, metabolite levels also vary 
in a circadian fashion: in a recent study, 14% of metabo-
lites were seen to vary in abundance with a daily rhythm, 
and ~ 64% of these were observed to cycle even under con-
stant darkness [261].

Local oscillators also participate in behavioral govern-
ance. Olfactory receptor neurons (ORNs) express their own 
clock systems, leading to cyclical patterns in the amplitude 
of odor responses [262�264]. These patterns of antennal 
response translate into cyclical odor-driven behavioral pat-
terns [265]. Likewise, gustatory receptor neurons (GRNs) 
display cyclical patterns of electrophysiological responses to 
tastants, and this cyclicity translates into circadian rhythms 
of behavioral response to tasted compounds [266]. Abolish-
ing the clock in these GRNs mimics starvation and leads to 
overeating and increased metabolite stores [266].

Adaptive modulation of�feeding behaviors

In changing environmental conditions, the location and 
quality of food sources are dynamic. Flies are attracted by 
certain chemicals in the food while being repelled by other 
cues that represent potential danger. Drosophila sense the 

positive and negative qualities of potential food sources 
through taste and smell and will initially avoid marginal 
sources. When nutritional balance is low, �ies exhibit sev-
eral stereotypical behavioral changes that increase their 
ability to �nd new sources of food, as well as make them 
more amenable to consuming marginal or dangerous food. 
They become more active, they sleep less, and they adjust 
their senses of olfaction (chemosensation of airborne chem-
icals��smell�) and gustation (chemosensation by contact, 
or �taste�). It is thought that increased locomotor activity 
increases the chances that a �y will encounter a food source, 
and adjustment of sensory sensitivity makes a �y both more 
likely to be attracted to weak food odors and less likely to 
be repelled by noxious ones. Feeding regulation in the �y 
has been intensively researched, identifying a broad array 
of factors governing food-related behaviors. We cover here 
adaptive feeding responses regulated by DILPs and Akh 
(Fig.�2), although many other factors have been character-
ized, including AstA [78, 218, 267], Dh44 [17, 18], Hugin 
[268�272], Lk [185, 186, 273], NPF [274�276], sNPF [220, 
222, 277, 278], and members of the TGF-� family [53, 170, 
181, 183]. The general regulation of feeding is reviewed 
comprehensively elsewhere [178, 279, 280]. Through these 
and other changes, the starved �y becomes more likely to be 
able to survive, although at the risk of toxicity or exhaustion.

Starvation-induced hyperactivity

Akh signaling is essential for the phenomenon of starva-
tion-induced hyperactivity, thought to represent an adaptive 
food-seeking behavioral response to nutritional deprivation. 
Hypotrehalosemia-induced Akh release triggers starvation-
induced hyperactivity, including during periods normally 
characterized by inactivity or sleep [160, 281]. This response 
is induced by Akh/AkhR signaling in certain octopaminergic 
neurons of the brain [282, 283]. Octopamine is generally 
considered the insect analogue of noradrenaline, and it acts 
through several receptors in many cells to increase arousal. 
Interestingly, these AkhR-expressing octopaminergic neu-
rons also express InR, whose activation by DILPs inhibits 
their signaling [282]. Thus, when sugar is low, Akh acts 
to increase arousal via these octopaminergic cells, which 
promotes wakefulness and locomotor activity as a way to 
�nd food; then, when food has been consumed, the increase 
in hemolymph sugar induces DILP release, which termi-
nates the excitatory octopamine signal and thus promotes 
quiescence.

Modulation of�olfaction by�nutritional status

Olfaction, which detects chemical signals from potentially 
remote sources, is an important component of food-seeking 
behavior and adaptation to dynamic environments (Fig.�2). 
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Under fasted situations, animals� acuity for appetitive odors 
is heightened, and their behavioral response to them is 
increased, enabling them to be drawn towards weaker or 
more distant sources of odor plumes [284], which repre-
sent potential food sources. At the same time, sensitivity 
to, and avoidance of, aversive odors�those that represent 
potential toxicity or danger�is decreased, allowing the ani-
mal to be attracted to riskier food sources. These processes 
are induced by hormonal signals that re�ect the nutritional 
status of the animal as well as other signals related to the 
internal and external state.

Olfaction is mediated by olfactory receptors (ORs) ste-
reotypically expressed in identi�able olfactory receptor neu-
rons (ORNs); the neuroanatomy and odor-responsiveness of 
this system has been very well mapped [285]. These recep-
tors and neurons are generally grouped into two behavioral 
classes: appetitive (attractive) and aversive (repellent). The 
appetitive ab1a ORNs, which express the fruit-ester-sensi-
tive OR42b, are required for olfactory-guided food-searching 
behavior [225]. These cells are directly made more active 
under low-nutrient conditions via the action of sNPF sign-
aling [225]. Starvation induces the expression of sNPF-R 
in the ab1a ORNs to increase their sensitivity to attractive 
odors [225]. When fed conditions return, nutritional intake 
induces DILP release, which downregulates sNPF-R expres-
sion in the ab1a ORNs via InR signaling, reducing these sen-
sory neurons� excitability [225]. About a quarter of ORNs 
express sNPF-R [226];�given the ability of this receptor 
to either activate or inhibit neurons [224], many odorant 
responses may be up- or down-regulated by this mecha-
nism. Thus, low nutrition upregulates appetitive responses 
to increase food-seeking success, and once a food source is 
found and the internal nutritional state returns to normal, 
sensitivity is downregulated again, to prevent unneeded 
attraction to odors.

Another class of adult appetitive ORNs, the ab3A neu-
rons that express the ester-detecting odorant receptor 22a, 
express NPFR and are thus regulated by NPF https ://pubme 
d.ncbi.nlm.nih.gov/28476 120/. In fed conditions, the brain 
produces the satiety signal Unpaired-1 (Upd1), which inhib-
its the NPF-releasing cells of the brain [286]. In poor condi-
tions, these cells are derepressed, leading to the release of 
NPF [286]. Among the many feeding-promoting e�ects of 
NPF is the increase in sensitivity of the ab3A neurons. While 
heightening the animal�s sensitivity to appetitive odors, fast-
ing simultaneously reduces the �y�s sensitivity to aversive 
odors, allowing fasted �ies to be attracted to sites they might 
normally avoid. Tk and one of its receptors, TkR99D, act 
in sensory neurons expressing the aversive receptor OR85a 
to inhibit them under starvation [207]. Through this and 
similar neuromodulators, animals� sensitivity to noxious 
odors, which represent toxicity or danger and tend to repel 
�ies, is reduced, which allows them to be drawn to risky 

food sources. In addition to these characterized pathways 
by which hunger modulates adult olfactory sensitivity, the 
satiety peptide Dsk appears to reduce larval olfactory sensi-
tivity to attractive odors [154]. This means that multiple hor-
monal systems act on sensory neurons to increase animals� 
attraction to appetitive stimuli and simultaneously function 
to reduce the aversive e�ects of noxious odors, broadening 
the range of odor concentrations that the �y will be drawn to. 
This allows the starved animal to �nd less-nutritious food, 
which it otherwise would not �nd attractive.

Modulation of�gustation by�nutritional status

Like olfaction, which allows an animal to find a dis-
tant food source, gustation is an integral part of feeding 
behavior. When �ies are in a non-starved state, they will 
consume only foods they perceive to be highly nutritious 
(e.g., sweet or protein-rich�foods) with low concentrations 
of toxic compounds, which are perceived as aversive. As 
hemolymph sugar drops, �ies become more likely to con-
sume foods of poor quality, balancing the risk of death by 
starvation against the risk of being poisoned by low-qual-
ity or toxic food. This change is brought about by modu-
lating the �ies� gustatory sensitivity both to nutritional 
compounds and to potential toxins.

Flies carry gustatory receptor neurons (GRNs) on vari-
ous external surfaces; among these are the tarsi (�feet�) 
and legs, allowing them to taste the surfaces they walk 
on, while GRNs on�the proboscis allow tasting of food 
at consumption. GRNs express gustatory receptors (GRs) 
tuned to a variety of chemical classes, including sugars, 
salts, and potentially toxic bitter compounds. Like ORs 
and ORNs, GRs and GRNs have either appetitive or aver-
sive valence, and like those olfactory components, the 
gustatory system is also subject to sensitivity-adjusting 
neuromodulation in response to nutritional su�ciency or 
de�ciency (Fig.�2). In low-sugar states, Akh is released 
into the hemolymph from the APCs, and among its func-
tions is the modulation of gustatory sensitivity. Adult 
sweet-sensing  (Gr5a+, appetitive) GRNs express AkhR, 
and Akh signaling under fasting conditions increases the 
excitability of these neurons, thus inducing �ies to feed 
on foods that o�er low levels of nutrition that would be 
ignored under better nutritional conditions [162]. Starva-
tion also lifts Upd1�s inhibition of NPF signaling, which 
leads to NPFR-induced excitation of dopaminergic neu-
rons contacting the  Gr5a+ GRNs, and increased dopamine 
signaling further enhances the animal�s sugar sensitivity 
[287]. Through these actions, the �y becomes increasingly 
likely to be triggered to feed by low levels of sugar in the 
food source. In parallel, aversive GRNs are inhibited under 
fasting conditions by sNPF and Akh [287] and NPF [288]. 
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This indicates that starvation increases the perceived pal-
atability of food by several routes. Dsk released from the 
IPCs in the fed state is also required for the inhibition 
of consumption of unpalatable food [131], although the 
hierarchical level at which it acts�through regulation of 
gustation, higher-level gustatory processing and integra-
tion, or feeding motivation, for example�is unknown.

Concluding remarks

The developmental and metabolic demands placed on 
Drosophila, and their responses to these, are complex and 
dynamic, as illustrated above. Larvae optimize development 
to produce the most reproductively successful adults that 
conditions will allow. To do this, they adjust their growth 
rate and growth duration by regulating intracellular and 
systemic growth factors such as TOR, insulin, PTTH, and 
ecdysone. We propose that the IPCs, PTTHn, and the PG are 
signaling hubs that integrate environmental cues to coordi-
nate growth rate and duration to adjust �nal size in response 
to given conditions. Because of the strong conservation 
between mammalian and insect hormonal systems such as 
insulin-like signaling, growth- and steroid-hormone path-
ways, and peptide neuromodulation, studies of these aspects 
of Drosophila can provide important frameworks for under-
standing the link between environmental factors and disor-
ders including diabetes and obesity. The mechanistic bases 
of how animals assess the critical-weight checkpoint is unre-
solved and is a key direction for future research. In Dros-
ophila and mammals, including humans, �critical weight� 
may correspond to a certain amount of adiposity. Insights 
from Drosophila into nutrition-dependent developmental 
checkpoints have the potential to illuminate mammalian size 
regulation, including the molecular mechanisms underlying 
the link between childhood obesity and early puberty.

Drosophila also regulates its metabolism accord-
ing to prevailing conditions, and this includes behavioral 
responses, such as feeding decisions. Central to both these 
metabolic and behavioral changes are the insulin and Akh 
systems, which regulate numerous downstream systems to 
modify metabolic pathways and feeding decisions. Inter-
twined with these and other hormonal systems, gustatory 
and olfactory systems also play important roles in regulating 
the interface between the organism and the environment. 
The inter-organ signaling networks that function upstream of 
insulin and Akh need to be explored systematically to further 
understand how organisms adapt metabolism to environmen-
tal conditions. While much is known about insulin regula-
tion, the mechanisms underlying Akh regulation and energy 
mobilization from adipose tissue are important but largely 
unresolved questions. Regulation imposed by the counter-
regulatory actions of insulin and Akh are key to maintaining 

metabolic homeostasis in variable environments. Studies in 
Drosophila will undoubtedly continue to reveal new mecha-
nistic insights into animal metabolic regulation.
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