The strategy of professional forecasting

Ottaviani, Marco; Sørensen, Peter Norman

Published in:
Journal of Financial Economics

DOI:
10.1016/j.jfineco.2005.08.002

Publication date:
2006

Document version
Early version, also known as pre-print

Citation for published version (APA):
Abstract

We develop and compare two theories of professional forecasters’ strategic behavior. The first theory, reputational cheap talk, posits that forecasters aim at convincing the market that they are well informed. The market evaluates their forecasting talent on the basis of the forecasts and the realized state. If the market expects the forecasters to report their posterior expectations honestly, then forecasts are shaded toward the prior mean. With correct market expectations, equilibrium forecasts are imprecise but not shaded. In the second theory, forecasters compete in a forecasting contest with prespecified rules. In a winner-take-all contest, equilibrium forecasts are excessively differentiated.

Keywords: Forecasting; Reputation; Cheap talk; Contest; Exaggeration

JEL Classification: D82; G20

∗We thank Dean Croushore for essential feedback in the early stages of this project; Owen Lamont for generously giving us part of the the data used for Figure 1 along with very useful suggestions; Marco Battaglini for excellent discussion of the paper; Eric Zitzewitz for extremely helpful feedback; an anonymous referee for many constructive suggestions; Andrew Chesher, Christian Dustmann, Douglas Gale, Peter R. Hansen, Harrison Hong, Boyan Jovanovic, Jon Levin, John Morgan, Kent Osband, Mike Peters, Rafael Repullo, Ilya Segal, Daniel Seidmann, Shiva Shivakumar, Hyun Shin, Raman Uppal, Pietro Veronesi, Gianluca Violiante, Xavier Vives, and Jeffrey Zwiebel for useful input; and seminar audiences at Aarhus, American Economic Association (New Orleans), Bank of Italy, Bergen, Berlin, Bonn, Brussels, CEMFI (Madrid), Cambridge, Copenhagen, Danish Economic Society 2000, European Economic Association (Stockholm), ENTER 2001 (Mannheim), Erice Conference on Stochastic Methods in Decision and Game Theory with Applications, ESRC-PIPPS (Bristol), ESSET 2000 (Gerzensee), European Central Bank, EUI (Florence), Helsinki, INSEAD, Koç University, LBS, LSE, Munich, NYU Stern School, Paris (Roy Seminaire), Pompeu Fabra, Princeton, Royal Holloway, Southampton, Stanford, Surrey, UCL, and Western Ontario for comments.

†Economics Subject Area, London Business School, Sussex Place, Regent’s Park, London NW1 4SA, England. Phone: +44-20-7706-6987. Fax: +44-20-7402-0718. E-mail: mottaviani@london.edu. Web: http://faculty.london.edu/mottaviani.

‡Department of Economics, University of Copenhagen, Studiestræde 6, DK—1455 Copenhagen K, Denmark. Phone: +45-3532-3056. Fax: +45-3532-3000. E-mail: peter.sorensen@econ.ku.dk. Web: http://www.econ.ku.dk/sorensen.
1 Introduction

Professional forecasts guide market participants and inform their expectations about future economic conditions. Given the importance of this role and the potential rewards of accurate forecasting, we might expect that professional forecasters maximize their accuracy by truthfully releasing all their information. As reported by Keane and Runkle (1998), “since financial analysts’ livelihoods depend on the accuracy of their forecasts . . . , we can safely argue that these numbers accurately measure the analysts’ expectations.”

However, many commentators argue that forecasters might strategically misreport their information, even when they are not interested in manipulating the investment decisions of their target audience. As suggested for example by Croushore (1997), “some [survey] participants might shade their forecasts more toward the consensus (to avoid unfavorable publicity when wrong), while others might make unusually bold forecasts, hoping to stand out from the crowd.” The importance of microeconomic incentives of forecasters and analysts is stressed by a number of recent empirical studies, such as Ehrbeck and Waldmann (1996), Graham (1999), Hong et al. (2000), Lamont (2002), Welch (2000), and Zitzewitz (2001a).

In this paper we develop a theoretical framework for analyzing the strategic behavior of professional forecasters. In the context of a simple model, we address how reputation and competition affect the reporting incentives of forecasters. Because professional forecasts are often used to proxy the unobservable expectations of market participants, our results have implications for empirical tests of theories of investment behavior. In particular, we study the reaction of market prices to the release of forecasts.

The basic ingredients of our model are best introduced by Figure 1, which depicts yearly GNP growth forecasts and realizations for the period 1972–2004 from the Business Week Investment Outlook. The forecasts data is taken from a survey of professional forecasters run at the end of each year by the magazine Business Week. Because there is substantial dispersion in the individual forecasts, our model assumes that forecasters are privately informed. In addition, there is substantial variation in the forecast dispersion across years. Hence, as parameters in our model we use the quality of private information and the precision of the prior belief. The figure also shows the realized GNP growth rates released by the Bureau of Economic Analysis. The market uses these realizations to evaluate the quality of information of the individual forecasters.¹

¹A perennial problem in evaluating forecasts is that data on the realized values are revised over time. Figure 1 uses the latest revisions available from the Bureau of Economic Analysis. See Section 7.1 for more on this.
Figure 1. The triangles represent individual forecasts of annual real GNP growth rate from the Business Week Investment Outlook survey for the period 1972–2004. The connected circles represent the realized values obtained from the Bureau of Economic Analysis.

We formulate two theories of strategic forecasting and contrast them with the benchmark case of nonstrategic forecasting. To facilitate the comparison, we adopt a unified, tractable statistical model. The state has a normal prior distribution and the signals of the forecasters are normally distributed around the state. After the forecasters simultaneously release their forecasts, the state is publicly observed. To isolate the effect of the professional objectives of forecasters who predict the future evolution of economic or financial variables, we assume that these forecasters cannot affect the distribution of the state variable and do not care about the investment decisions taken on the basis of their forecasts.

We consider the benchmark case of a forecaster rewarded according to the absolute accuracy of her prediction. A nonstrategic forecaster reports honestly the posterior expectation of the state, which is a weighted average of the signal and the mean of the prior distribution. When the state turns out to be above the prior mean, the honest forecast tends to be lower than the realized state.\(^2\) The correlation between forecasts and their errors is zero for “rational” forecasts in Muth’s (1961) sense, because they are equal to

\(^2\)The popular press often takes this empirically documented negative correlation of the forecast errors with the realized state as evidence of herd behavior. The academic empirical literature avoids this misconception and focuses instead on the correlation between forecasts and their errors.
conditional expectations. The two theories of strategic forecasting that we develop here have different implications for this correlation.

First, according to our theory of *reputational cheap talk*, forecasters wish to foster their reputation for being well informed. In this first theory, the market uses forecasts and the realized state to evaluate forecasting talent. In the baseline model, we further assume that forecasters do not have private information about their own talent prior to receiving their private signals.³ Contrary to naive intuition, we show that honest forecasting cannot occur in equilibrium. If the market naively expects honest forecasting, the forecaster has an incentive to bias the forecast toward the prior mean in order to be perceived to be better informed. This finding accords with the intuitive implication of career concerns suggested by recent empirical work. More generally, we show that if the market can invert from forecasts to signals, the best *reputational deviation* for the forecaster is to pretend to have received a signal equal to the posterior expectation of the state.

Concern for reputation drives forecasters to herd on the prior belief, but this incentive is self defeating. In equilibrium, the market must have rational expectations about the forecasters’ behavior. Then, equilibrium forecasts cannot be perfectly inverted, i.e., there is no fully revealing equilibrium. We conclude that *reputational equilibrium* forecasts are not shaded, but are systematically less precise than if forecasters were not strategic. Paradoxically, the analysts’ desire to be perceived as good forecasters turns them into poor forecasters.⁴

Our second theory of strategic behavior posits that forecasters compete in a *forecasting contest* with pre-specified rules. Forecasters are often ranked by their relative accuracy, in competitions such as the semi-annual *Wall Street Journal Forecasting Survey* (macroeconomic variables), *WSJ All Star Analysts* (earnings), and *WSJ Best on the Street* (stock picking). We find that reporting the best predictor of the state (the posterior expectation conditional on the signal observed) is not an equilibrium in the tournament. With an infinite number of forecasters, the equilibrium strikes a balance between two contrasting forces. First, an individual forecaster has an incentive to report the honest forecast, which is most likely to be on the mark. Second, a forecaster gains from moving away from the prior mean, because the farther the state is from the prior mean, the lower the number of forecasters correctly guessing the state. In equilibrium, forecasters differentiate their predictions from those of competitors by putting greater weight on their private signals than they would in an honest report of the posterior expectations. Yet, in principle ra-

³The importance of this assumption is discussed in Section 4.4.
tional market participants can invert the equilibrium strategy to recover the forecasters’ information and so construct accurate expectations about the state.

The presence of strategic behavior raises questions about the interpretation and use of professional forecasts to test the predictions of theories on how agents’ decisions depend on expectations. In empirical studies, professional forecasts are often used as proxies for unobservable market expectations. Strategic forecasts do not reflect these expectations, if they are taken at face value.

The two theories have implications for the dispersion of the forecasts and for the correlation between forecasts and forecast errors. In the symmetric equilibrium of our forecasting contest, the forecast error is positively correlated with the forecast, but the correlation is negative in the reputational deviation. The reputational equilibrium forecast is uncorrelated with its error, but is not efficient. According to recent empirical work (Zitzewitz, 2001a, and Bernhardt et al., 2004), forecast errors exhibit a strong positive correlation with forecasts, consistent with our contest theory.

The paper is organized as follows. Section 2 sets up the baseline model. Section 3 discusses the benchmark case of honest forecasting. Section 4 introduces the reputational cheap talk theory. Section 5 develops the forecasting contest theory. Section 6 compares the empirical implications of the different theories. Section 7 extends the baseline model in two directions relevant for empirical work. Section 8 derives implications about the stock price reaction to the arrival of a forecast. Section 9 concludes.

2 Model

Our baseline model considers \(n \) forecasters who simultaneously issue forecasts on an uncertain state of the world. We assume that it is common prior belief that the state \(x \) is normally distributed with mean \(\mu \) and precision \(\nu \), i.e., \(x \sim N(\mu, 1/\nu) \). Each forecaster \(i \) observes the private signal \(s_i = x + \varepsilon_i \). Conditional on state \(x \), signals \(s_i \) are independently normally distributed with mean \(x \) and precisions \(\tau_i \), i.e., \(s_i|x \sim N(x, 1/\tau_i) \). Forecaster \(i \)’s observation of signal \(s_i \) leads to a normal posterior belief on the state with mean \(E(x|s_i) = (\tau_i s_i + \nu \mu) / (\tau_i + \nu) \) and precision \(\tau_i + \nu \) (cf. DeGroot, 1970). We denote the density of this posterior distribution by \(q_i(x|s_i) \).

We allow forecasters to have private information about the state, because their actual forecasts are typically dispersed. If they honestly report their expectations, forecasters who share a common prior belief and are given the same (public) information without private information should make identical forecasts.\(^5\) To avoid introducing a bias against

\(^5\)Forecast dispersion could also be due to heterogenous prior beliefs or different models. According
honest forecasting, we posit that forecasters are endowed with some private information about the state. Indeed, the presence of heterogeneous private information provides a rationale to the market for rewarding the forecasters’ accuracy.

This model abstracts from the strategic incentives relevant to partisan forecasters, whose payoff instead depends on the investment decisions made on the basis of their forecasts. Our baseline model can be applied to situations in which the state cannot be affected by the forecasts and yet can be meaningfully forecasted and later observed. In Section 8.2, we extend the model to consider the additional strategic incentives that are present when forecasters are concerned with the effect of their forecasts on the state.

3 Honest forecasting

Forecasters are presumed honest, unless proven strategic. As argued by Keane and Runkle (1990), “professional forecasters . . . have an economic incentive to be accurate. Because these professionals report to the survey the same forecasts that they sell on the market, their survey responses provide a reasonably accurate measure of their expectations.”

Our benchmark forecast is the honest report of the Bayesian posterior expectation,

\[h_i(s_i) = E(x|s_i) = \left(\frac{\tau_i}{\tau_i + \nu} \right) s_i + \left(\frac{\nu}{\tau_i + \nu} \right) \mu, \]

as assumed by most empirical investigations. In the normal model, this posterior expectation minimizes the mean of any symmetric function of the forecast error, such as the mean squared error (cf. Bhattacharya and Pfleiderer, 1985).

The honest forecast can offer some explanations for the data. First, forecast dispersion is a consequence of private information.

Second, as also illustrated by Figure 1, forecasts tend to be less volatile than realizations. This fact does not indicate the presence of herd behavior. The realization to industry participants, forecasters seem to have access to the same pool of public data, but interpret it differently depending on their model. Indeed, Kandel and Pearson (1995) and Kandel and Zilberfarb (1999) have found empirical support for heterogeneous processing of public information. Note that the private information of the forecasters could be due to their private knowledge of the model they use to process the available public information.

6 In their classic study on the rationality of forecasts using data from the NBER-ASA survey of professional forecasters (later to be called the Survey of Professional Forecasters), Keane and Runkle (1990) found that differences in individual forecasts cannot be explained by publicly available information. They inferred that differences in forecasts are due to asymmetric information, but this conclusion rests on the maintained assumption of honest forecasting. The observed forecast dispersion might also be the outcome of strategic behavior.

7 For empirical evidence of partisan bias of equity analysts we refer to Michaely and Womack (1999), Hong and Kubik (2003), and references therein. For theoretical investigations we refer to Crawford and Sobel (1982) and Morgan and Stocken (2003).
\[x = h_i + (x - h_i) \] is necessarily more volatile than the honest forecast \(h_i \) when the forecasters’ information is noisy, \(V(x) = V(h_i) + V(x - h_i) > V(h_i) \). Equivalently, the realization \(x \) is negatively correlated with the forecast error \(h_i - x = \nu (\mu - x) / (\tau_i + \nu) + \tau_i \varepsilon_i / (\tau_i + \nu) \).

The shock \(h_i - \mathbb{E}(h_i|x) = \tau_i \varepsilon_i / (\tau_i + \nu) \), is instead uncorrelated with \(x \) and with the shocks of other forecasters. The expected forecast \(\mathbb{E}(h_i|x) \) is commonly estimated by the consensus forecast, equal to the unweighted average of forecasts \(\bar{f} = \sum_{i=1}^{n} f_i / n \) across all forecasters.

Third, forecasts are more dispersed and less accurate in years with relatively little public information. This observation is consistent with a finding reported by Zarnowitz and Lambros (1987) on the ASA-NBER survey of professional forecasters. In addition to point forecasts, that survey initially asked forecasters to report probability distributions. Zarnowitz and Lambros document that forecast dispersion is positively correlated with a measure of forecast uncertainty. Likewise, in the data of our Figure 1, when regressing the standard deviation of the forecasts on the absolute error of the consensus forecast, we find a coefficient of .105 with standard error .058. There is a negative correlation between accuracy and dispersion.

Finally, the honest forecast \(h_i(s_i) \) has the key statistical property of being uncorrelated with its forecast error \(h_i(s_i) - x \), since

\[
E \{ E(x|s_i) \{ E(x|s_i) - x \} \} = E \{ E(x|s_i) E[E(x|s_i) - x|s_i] \} = 0. \tag{2}
\]

According to this orthogonality property, the honest forecast does not carry information about its forecast error. Orthogonality may seem a necessary property of rational forecasts, but such is not the case. Asymmetric scoring rules generally result in forecasts violating the property, as noted by Granger (1969) and Zellner (1986). Instead, in our model we maintain symmetry and examine whether strategic factors lead rational players to make non-orthogonal forecasts.

While we use a Bayesian framework, we briefly consider the benchmark case of classical forecasting. Forecaster \(i \)’s maximum likelihood estimator (MLE), maximizing \(g_i(s_i|x_i) \) over \(x_i \), is \(s_i \). The maximum likelihood forecast violates the orthogonality property, since \(E[s_i(s_i - x)] = E[(x + \varepsilon_i) \varepsilon_i] = 1/\tau_i > 0 \). The MLE can also be seen as resulting from Bayesian updating when the prior distribution on the state is the improper uniform distribution on the real line. However, forecasters typically share some pre-existing information about the variable to be predicted, as confirmed by a number of empirical studies (e.g., Welch, 2000). The presence of prior information drives the results of our two theories.

\[\text{[Footnote]} \] Granger (1999) defines generalized forecast errors for any given loss function and notes that these errors satisfy orthogonality.
4 Reputational cheap talk

Forecasters are subject to the informal (or subjective) evaluation of financial and labor markets. Forecasters who appear to have access to better information can command higher compensation and have improved career prospects. The theory we develop in this section captures the fact that the market uses all the publicly available information to evaluate the forecasters’ talents. This information typically includes the forecasts and the ex-post realization of the state. In turn, the forecasters want the market to believe that they are highly talented.

Reputational forecasting is a game of cheap talk (Crawford and Sobel, 1982), since a forecaster’s payoff depends on the forecast released only indirectly, through the evaluation performed by the market. Our reputational cheap talk game builds on elements first introduced by Holmström (1999) and Scharfstein and Stein (1990). Scharfstein and Stein consider a dynamic game in which better informed forecasters have conditionally more correlated signals, but here we focus on the static game with conditionally independent signals. Our model (further developed by Ottaviani and Sørensen, 2005) offers a new theory of herd behavior, which does not rely on the presence of multiple forecasters. In the context of the normal model analyzed here, we are able to obtain a sharp characterization of the deviation incentives and discuss the distributional properties of the equilibrium forecasts.

4.1 Model

We extend the information structure of Section 2 by introducing a parameter $t_i > 0$ to represent the unknown talent of forecaster i. All talents t_i and the state x are statistically independent. The market and the forecasters share the common prior on the state, $x \sim N(\mu, 1/\nu)$, and the non-degenerate prior belief $p_i(t_i)$ on the talent. Conditional on x and t_i, signal s_i is generated by a symmetric location experiment with scale parameter t_i. The signal’s density is $\tilde{g} (s_i|x, t_i) = t_i \hat{g} (t_i|s_i - x) / 2$, in which \hat{g} is a density on $[0, \infty)$. We retain the assumption that $s_i|x \sim N(x, 1/\tau)$, so the primitives \hat{g} and p are restricted to satisfy $g_i(s_i|x) = \int_0^\infty \hat{g} (s_i|x, t_i) p_i(t_i) \, dt_i$. A greater talent is associated with smaller signal errors, i.e., the likelihood ratio $\tilde{g} (s_i|x, t_i) / \tilde{g} (s_i|x, t'_i)$ is increasing in $|s_i - x|$ when $t_i < t'_i$.

We simplify the game by eliminating all payoff interaction among the forecasters. First, the private signals s_i are independent conditional on x and t_1, \ldots, t_n, so that forecaster

\[As noted by Lehmann (1955, Example 3.3), this property is equivalent to the log-concavity in a of \(\hat{g} (e^a) \). Equivalently, the elasticity $\varepsilon \hat{g}' (\varepsilon) / \hat{g} (\varepsilon)$ is decreasing in ε. The example $\hat{g} (\varepsilon) = K_1 \exp (-\varepsilon^4/12)$ and $p_i(t_i) = K_2 \tau_i^{-3/2} t_i^{-4} \exp (-3 \tau_i^2 t_i^{-4}/4)$ satisfies all our assumptions. In this example, $s_i|x, t_i$ has an exponential power distribution (Box and Tiao, 1973, page 517).

\]
i cannot signal anything to the market about \(t_j \) for \(j \neq i \). Second, forecaster \(i \)'s payoff function does not depend on the posterior beliefs about \(t_j \) for \(j \neq i \). Hence, we can focus on a single forecaster’s problem in isolation and remove the subscript \(i \).

The reputational cheap talk game proceeds as follows. First, the forecaster observes the private signal \(s \) and issues the forecast (or message) \(m \). Second, the market observes the true state \(x \) and uses \((m, x) \) to update the belief \(p(t) \) about the forecaster’s talent.

To update the beliefs about the forecaster’s talent, the market formulates a conjecture about the forecaster’s strategy mapping \(s \) into \(m \) and derives the message distribution denoted by \(\varphi(m|x) \). The market uses Bayes’ rule to calculate the posterior reputation

\[
 p(t|m, x) = \frac{\varphi(m|x)p(t)}{\varphi(m)|x} = \frac{\int_0^\infty \varphi(m|t, x)p(t) dt}{\int_0^\infty \varphi(m|x)p(t) dt}.
\]

We assume that the forecaster’s payoff from reputation \(p(t|m, x) \) is given by the expected value expression

\[
 W(m|x) = \int_{-\infty}^\infty u(t)p(t|m, x) dt.
\]

Since an expert with greater talent \(t \) receives more accurate signals, we assume that \(u(t) \) is strictly increasing. When reporting the message \(m \), the forecaster does not yet know the state \(x \), but believes it to be distributed according to \(q(x|s) \). The forecaster then chooses the message \(m \) that maximizes the expected value

\[
 U(m|s) = \int_{-\infty}^\infty W(m|x)q(x|s) dx.
\]

4.2 Deviation

We first show that truthtelling cannot be an equilibrium. Consider what happens when the market conjectures that the forecaster reports the honest \(m = h(s) \). As represented in Figure 2, a forecaster with signal \(s > \mu \) believes that the state is normally distributed with mean \(E(x|s) \), a weighted average of the prior mean \(\mu \) and the signal \(s \). If the forecaster were to honestly report \(h(s) = E(x|s) \), the market would invert this strategy and infer the true signal \(s = h^{-1}(h(s)) > E(x|s) \). Below, we show formally that a signal \(s \) closer to the state \(x \) is better news about the talent \(t \) and so results in a higher forecaster payoff. To minimize the average distance between the signal inferred by the market and the best predictor of the state, the forecaster then wishes to be perceived as having signal \(\hat{s} = E(x|s) \). We conclude that if the market believes that the forecast reflects truthfully the forecaster’s posterior expectation, then the forecaster deviates by reporting

\[
 d(s) = h(h(s)) = E[x|\hat{s} = E(x|s)].
\]

In this deviation, forecasters are biased towards the prior mean.

Proposition 1 If the market conjectures honest forecasting \(h(s) \), the forecaster shades the forecast towards the prior mean by reporting

\[
 d(s) = h(h(s)) = \left(\frac{\tau}{\tau + \nu} \right)^2 s + \left[1 - \left(\frac{\tau}{\tau + \nu} \right)^2 \right] \mu. \tag{3}
\]
Figure 2. Optimal deviation in the reputational cheap talk model.

Another interpretation of the conservative deviation is based on the following logic. A forecaster who receives a signal s above the prior mean μ, concludes that the average forecast error $E(\varepsilon|s) = \nu(s - \mu)/(\tau + \nu)$ is positive. The forecaster then optimally deviates by removing this expected error from the true signal and so pretending to have signal $\hat{s} = s - E(\varepsilon|s) = E(x|s)$.

The incentive to deviate relies on the simultaneous presence of private and public information. Indeed, if the signal is perfectly informative (i.e., in the limit as $\tau \to \infty$), the posterior expectation puts zero weight on the prior belief, $E(x|s) = s$, and $x = s$ with probability one. Similarly, in the absence of prior information (i.e., in the limit as $\nu \to 0$), the posterior expectation is again equal to the signal. In these two extreme cases, there is no incentive to deviate, $d(s) = s$, so that truthtelling is an equilibrium.

According to Proposition 1, sophisticated forecasters who are taken at face value report conservative forecasts, in order to fool the market into believing that they have more accurate signals. This characterization of the deviation incentive is relevant for several reasons. Understanding the pressure on forecasters to deviate from honesty shows us why truthtelling is impossible and sheds light on out-of-equilibrium forces. If the forecaster has mixed incentives, caring about both her reputation and forecast accuracy, the incentive to deviate from honesty can induce a conservative bias in equilibrium. Finally, deviation incentives persist when the market is not fully rational.
4.3 Equilibrium

According to Proposition 1, honest forecasting is incompatible with equilibrium. As in any cheap talk game, ruling out truthtelling implies that there is no fully-separating equilibrium. By definition, in a fully separating equilibrium, the strategy that maps signals into forecasts can be inverted. As before, the market then infers the signal, so that the forecaster with signal s wishes to deviate to the forecast corresponding to signal $s' = E(x|s)$, which is different from s whenever $s \neq \mu$.

There exists an equilibrium with complete pooling, as is common in cheap talk games. In such a “babbling” equilibrium, the forecaster issues the same message m regardless of the signal received. Any message the market receives is then interpreted as carrying no information about the signal. More generally, in equilibrium only part of the forecaster’s information is conveyed to the market. Equilibrium forecasting must necessarily involve some degree of pooling of signals into messages.

Due to the cheap talk nature of the game, the actual language used to send equilibrium messages is indeterminate. But the market can easily translate message m into the best estimate of the state that incorporates the information contained in that message, namely $E(x|m)$. In this natural language, the forecaster is effectively communicating $E(x|m)$ to the market. Since it is a conditional expectation of x, this forecast is uncorrelated with its error. In this sense, the reputational equilibrium forecast satisfies the orthogonality property. We conclude:

Proposition 2 (Coarseness in Reputational Equilibrium) There is no reputational cheap talk equilibrium in which information is fully revealed. Any equilibrium can be defined with a language such that the forecast has the orthogonality property.

We now show by example that there exists a partially informative equilibrium. It involves a binary forecasting strategy, in which the forecaster reports a “high” message m_H whenever the signal s weakly exceeds a threshold and a “low” message m_L otherwise. In fact, our binary equilibrium strategy is symmetric, because the threshold signal equals the average signal μ:

Proposition 3 (Binary Reputational Equilibrium) There exists a symmetric binary reputational cheap talk equilibrium. This equilibrium is the unique equilibrium in binary strategies. If the forecasters use the natural language, we have $m_L = \mu - \sqrt{2\tau/\pi\nu (\nu + \tau)}$ and $m_H = \mu + \sqrt{2\tau/\pi\nu (\nu + \tau)}$.

10
4.4 Discussion

The theory of reputational cheap talk relies on the fact that the market rationally uses all the information available ex post to evaluate the forecaster. Suppose that instead the market commits ex ante to evaluate the forecaster by comparing the forecast m with the realization x, according to the magnitude of the error, $|m − x|$. In this case, the forecaster’s optimal strategy is to honestly report $m = E(x|s)$. This outcome is essentially the default case of honest forecasting as explained in Section 2. This outcome also results if the market (incorrectly) believes the forecaster’s message to be equal to her signal, $m = s$.

We now relate our results to previous work in the agency literature. Brandenburger and Polak (1996) consider a privately informed agent who makes an investment decision with the aim of obtaining the most favorable assessment by the stock market. In their model the market assesses the profitability of the exogenously coarse (in fact, binary) decision already before the true state is realized. Despite the model differences, in both models agents have an incentive to deviate conservatively.

At a superficial level, the deviation result obtained in Proposition 1 is reminiscent of Prendergast’s (1993) “yes-men” effect, but is driven by different forces and essentially goes in the opposite direction. While in Prendergast’s model the agent does not sufficiently move away from her information about the principal’s signal, in our model the agent does not move away from the prior mean. By identifying the principal’s signal with the ex-post (noisy) realization of the state, it is seen that Prendergast’s deviation report is biased toward the state, rather than the prior. In both models, in equilibrium the agent cannot transmit all her information.

Our result on the direction of the deviation incentives relies on the assumption that forecasters do not have superior information about their forecasting talent compared to the market. This assumption is questionable in a dynamic setting since dishonest forecasters would learn faster about their precision than the market. If the forecaster has private information about their forecasting talent, the model becomes one of two-dimensional signaling (cf. Trueman, 1994, for a first analysis). The addition of this second dimension of private information, introduces a new signalling incentive. Intuitively, since forecasters of higher talent t have posterior expectations $E(x|s,t)$ more variable around the prior mean, the attempt to signal talent generates an incentive to exaggerate.\(^{10}\)

This exaggeration tendency is isolated in Prendergast and Stole’s (1996) managerial reputational signaling model without ex-post information about the state. When evalu-

\(^{10}\)As argued by Lim (2002), a forecaster who knows her own ability has also an incentive to underreact to new public information.
ating forecasters, in our model the market has instead access to additional information about the state, such as its ex-post realization or the contemporaneous forecasts of others. The addition of such ex-post information introduces the new conservatism effect isolated in Proposition 1. Overall, concerns for absolute accuracy drive forecasters to be conservative if they do not know their ability, but to exaggerate if they do know it well enough.

Rather than performing direct tests of reputational cheap talk, most of the existing empirical literature provides indirect evidence of reputational concerns based on heterogeneity across forecasters. Lamont (2002) finds that older forecasters tend to deviate more from the consensus. Chevalier and Ellison (1999) find that older mutual fund managers have bolder investment strategies. Hong et al. (2000) conclude that the lower accuracy of older stock analysts is due to the fact that they move earlier. In Section 6 we return to alternative methodologies for detecting strategic behavior in forecasts.

5 Forecasting contest

Our first theory posited that the market optimally evaluates ex post the forecasting talent based on all the information available. In many instances however, there are different mechanisms in place for rewarding successful forecasts. For example, forecasters often participate in contests with prizes allocated to the best performers. Even in the absence of monetary prizes, the publicity effect for the winner can be large. In the much publicized Wall Street Journal semi-annual forecasting contest, the most accurate forecaster over the previous six months is typically rewarded with a write-up.

Note that a rational observer should take into account not just whether a forecaster has won a tournament, but also the absolute size of the forecast error. If the processing power of the observing public were unlimited, the business media could simply publish a list of forecasts and realized outcomes, instead of creating rankings and contests. However, the rank-order information is particularly salient for the problem of evaluating the quality of

11 For an example of reputational signaling with bounded rationality, see Zitzewitz’s (2001b) model where the market evaluates forecast quality using a simple econometric technique. In his model, forecasters have information on their own ability, introducing an incentive to exaggerate.

12 As also suggested by Avery and Chevalier (1999), young managers with little private information about their own ability should be conservative; older managers would instead exaggerate. This contrasts with Prendergast and Stole’s (1996) prediction of impetuous youngsters and jaded old-timers when the same manager makes repeated observable decisions with an unobserved but constant state.

13 See Stekler (1987) for an early study of the relative accuracy of forecasts. A number of rankings are available on line. For example, Validea (www.validea.com), BigTipper.com (www.bigtipper.com) and BulldogResearch.com (www.bulldogresearch.com) track stock recommendations made by Wall Street professionals and then rank the analysts based on the performance of their selections. Forecasting contests are run also for non-economic variables (see e.g., the National Collegiate Weather Forecasting Contest).
forecasts. This salience may stem from the behavioral notion (e.g., Kahneman, 1973) that the public pays limited attention to forecasters.14 It is easier for people to keep in mind who is an “all star” analyst, or who came first in a contest, than specific details about forecast accuracy. As a result, forecasters are concerned about their relative accuracy.

In this section, we consider a symmetric simultaneous winner-take-all contest with a large number of forecasters. In this forecasting contest, the participating forecasters simultaneously submit individual forecasts based on their private information. A prize is awarded to the forecaster whose forecast is closest to the realized state. As opposed to what happens in our reputational model, in a forecasting contest the market commits ex ante to a particular reward scheme.

There is remarkably little previous work on forecasters’ behavior in contests. Steele and Zidek (1980) are the first to study a sequential forecasting contest among two privately informed forecasters. They assume away game-theoretic considerations by supposing truthful reporting by the first forecaster. After observing the first forecast, the second guesser faces a simple decision problem and has a clear advantage. Indeed, Bernhardt and Kutsoati (2004) confirm empirically that financial analysts who release late earnings forecasts tend to overshoot the consensus forecast in the direction of their private information. Laster et al. (1999) study a winner-take-all simultaneous forecasting contest in which all forecasters share the same (public) information. We instead allow forecasters to have private information on the state.15 In a forecasting contest, a forecaster’s payoff is the probability that the realized state is closer to her forecast than to any other forecast. This probability is equivalent to the market share or fraction of votes to be maximized in Hotelling’s (1929) pure location game.16

5.1 Model

The forecasting contest proceeds as follows. First, forecasters observe their private signals s_i of common precision τ and simultaneously submit their forecasts c_i. Once the true state x is publicly observed, the forecaster whose forecast c_i turns out to be closest to x wins a prize proportional to the total number of forecasters participating in the contest. We

14For a broader discussion of limited attention and its implications for finance, see e.g., Hirshleifer and Teoh (2003).

15There is no clear reason to reward accurate forecasters in the absence of heterogeneous private information.

16An extensive literature in economics and political science studies versions of this game without private information. As it is well known (cf. Osborne and Pitchik, 1986), equilibria in this classic game crucially depend on the number of players and often involve mixed strategies. A forecasting contest is a version of Hotelling’s simultaneous location game in which the forecasters (firms or politicians) have private information on the distribution of the state (location of consumers or voters).
consider the limit game as the number of forecasters tends to infinity.

The expected payoff of forecaster i with signal s_i when reporting forecast c_i is

$$U(c_i|s_i) = \frac{q(c_i|s_i)}{\gamma(c_i|c_i)},$$

where $\gamma(c|x)$ is the density of the forecasts released by all forecasters conditional on state x, with full support on the real line. Issuing forecast c_i, forecaster i wins only if $x = c_i$, which occurs with chance $q(c_i|s_i)$. Conditional on being on the mark, the prize is divided among all the winning forecasters, and their density computed at $x = c_i$ is equal to $\gamma(c_i|c_i)$.

![Figure 3. Optimal deviation in the forecasting contest model.](image)

5.2 Deviation

We now show that honest forecasting is not an equilibrium. Let us consider a single forecaster with signal s competing against forecasters who are all reporting their honest forecasts. Without loss of generality, we focus on $s > \mu$ as depicted in Figure 3. What is the best reply for such a forecaster?

According to (4), the best forecast maximizes the ratio between the probability of winning the first prize and the number of forecasters with whom this prize is shared. First, the probability of winning conditional on signal s is equal to the posterior belief on the state $x|s$, the normal distribution centered at $E(x|s)$ and depicted on the right in Figure 3. Second, the curve on the left in Figure 3 depicts $\gamma(x|x)$, the denominator of the ratio maximized by the forecaster. This represents how the mass of forecasters with correct forecasts changes as a function of the state x. The shape of $\gamma(x|x)$ depends on the weight assigned by the other forecasters to their signal. Since the other forecasters put a
positive weight on the prior mean, $\gamma(x|\mu)$ is bell shaped around μ.\(^{17}\)

Figure 3 illustrates that the probability of winning is flat at the honest $E(x|s)$, while the frequency of correct forecasts is decreasing in the distance $|x - \mu|$. At the honest $E(x|s)$, it is then optimal for the forecaster to move away from the prior mean μ toward the private signal s, because the second-order loss resulting from lower probability of winning is more than compensated by the first-order gain due to reduced competition.

Proposition 4 (Exaggeration in Contest Deviation) If all other forecasters use the honest strategy $h(s)$, the best response in the contest for forecaster i is to exaggerate.

The optimal deviation forecast is a weighted average of s_i and μ, but the weight on μ is lower than in the honest forecast. The contest deviation forecast is then positively correlated with its error: when x is above μ the forecast is too high on average.

5.3 Equilibrium

Having established that honest forecasting is incompatible with equilibrium, we now turn to characterize the symmetric Bayes-Nash equilibrium. At such an equilibrium, each forecaster for every signal s_i best replies to her conjecture about the opponents’ distribution $\gamma(c|x)$, and this conjecture is correctly derived from the opponents’ strategies.

Proposition 5 (Exaggeration in Contest Equilibrium) For any values of $\nu > 0$ and $\tau > 0$ the contest has a unique symmetric linear equilibrium with strategy $c(s) = Cs + (1 - C)\mu$ with $C \in (0, 1)$. Forecasters put more weight on their private information than according to the honest conditional expectation: $C = (\sqrt{\tau^2 + 4\nu \tau} - \tau) / 2\nu > \tau / (\nu + \tau)$.

Forecasters differentiate themselves from their competitors by putting excessive weight on their signals. As in the honest forecast, the weight on the signal is increasing in τ and decreasing in ν. This weight is larger than in the honest forecast, so the contest gives an incentive to move away from μ.\(^{18}\) The symmetric equilibrium strikes a balance: opponents disperse themselves to such an extent that forecaster i is happy to reply precisely with the same dispersion. The equilibrium forecast is positively correlated with its error.

\(^{17}\)When the other forecasters put zero weight on the prior (e.g., because they are perfectly informed), $\gamma(x|x)$ is constantly equal to 1. More generally, $\gamma(x|x)$ is not a probability density function of x.

\(^{18}\)Even though a best reply to honesty does not exist for all parameter values, the equilibrium in linear strategies exists for all parameter values. Intuitively, with increased weight on their signal, the opponents are less concentrated around μ, mitigating the incentive to move away from μ.

15
5.4 Discussion

In the absence of private information ($\tau = 0$), the only symmetric equilibrium is in mixed strategies as in Laster et al. (1999) and Osborne and Pitchik (1986), who find that with infinitely many symmetrically informed players the distribution of equilibrium locations replicates the common prior distribution about x. The addition of private information has the desirable effect of inducing a symmetric location equilibrium in pure rather than mixed strategies.

The contest equilibrium satisfies $C < 1$, so the forecast is not as extreme as the maximum likelihood estimate (MLE). However, the MLE results in the contest when the prior on the state x is improper, i.e., uniform on the real line. If the opponents forecast $c = s$, their forecasts are normally distributed around x, and the term $\gamma (c|c)$ is constant in c. Forecaster i's best reply will then be $c_i = s_i$, since the constant term $\gamma (c|c)$ does not distort the forecaster’s problem. Truth-telling by all forecasters is then an equilibrium in the absence of public information. Thus, the contest distortion depends on the presence of prior information that anchors the forecasts of the opponents around μ. The tendency of opponents to cluster around the prior mean drives forecasters away from it.

6 Empirical testing

We now turn to discuss how to empirically test our theories. In Section 6.1 we revisit the orthogonality test presented in equation (2) and discuss the implications of recent empirical work in light of our theories. In Section 6.2 we consider the effect of the strategic incentives on distributional properties of the forecasts.\footnote{To directly test for the implications of strategic behavior, we could compare non-anonymous with anonymous forecasting data. In anonymous surveys the authorship of individual forecasts is not disclosed. The mere existence of anonymous surveys (starting in 1946 with the Livingston Survey) presupposes a belief that anonymous forecasts are more honest. As reported by Croushore (1993): “This anonymity is designed to encourage people to provide their best forecasts, without fearing the consequences of making forecasts errors. In this way, an economist can feel comfortable in forecasting what she really believes will happen.” Yet, Stark’s (1993) empirical analysis of the anonymous Survey of Professional Forecasters confirms that forecasters in anonymous surveys face similar incentives as in non-anonymous surveys.}

6.1 Orthogonality

Except for the reputational equilibrium forecasts, we have found linear forecasting rules of the form $f_i(s_i) = F_i s_i + (1 - F_i) \mu$ for some constant weight F_i between 0 and 1. The conditional distribution of the linear forecast is then

$$f_i| x \sim N \left(F_i x + (1 - F_i) \mu, F_i^2 / \tau_i \right).$$
We have already noted that under honesty the forecast is uncorrelated with its error $f_i - x$ when $F_i = \tau_i / (\nu + \tau_i)$. If forecasters report honestly, their error cannot be predicted from the forecast. The contest and reputational deviation forecasts fail instead to inherit this property, so that once a forecast has been released the sign of its error can be predicted.

Proposition 6 For the linear forecasting rules of the form (5) the correlation of the forecast and its error has the same sign as $F_i - \tau_i / (\tau_i + \nu)$. The correlation is positive in the contest and negative in the reputational deviation. The reputational equilibrium forecast satisfies orthogonality, but is not efficient.

A typical empirical test for the hypothesis that the forecasts are conditional expectations ($E(x|I_i)$ for some information set I_i) is based on regressing the realized forecast error on the forecasts. Most studies report a positive correlation of the forecast and its error, consistent with the prediction of our contest theory. For example, Batchelor and Dua (1992) find that forecasters put too little weight on the forecasts previously released by other forecasters (or, equivalently in our model, on the prior mean). However, Keane and Runkle (1990 and 1998) question the statistical significance of any bias, as they note that the tests are not as powerful as is usually assumed once the correlation between forecast errors across forecasters is properly taken into account (see also Section 7.1 below).

When deriving the correlation of the forecast and its error, we have treated the prior mean μ as a parameter. Empirical work, instead, must control for the prior mean. Recently, Zitzewitz (2001a) and Bernhardt et al. (2004) perfect the orthogonality methodology to fully account for the presence of prior information and correlation of forecast errors. They rewrite $f_i = F_i s_i + (1 - F_i) \mu$ as $f_i - \mu = F_i (s_i - \mu) = (F_i / H_i) (h_i - \mu)$ where h_i is the honest forecast and $H_i = \tau_i / (\tau_i + \nu)$ is the honest weight on the signal, and condition on all publicly available information at the moment of forecasting.

These findings point clearly toward the presence of exaggeration rather than herding in the earning forecasts released by I/B/E/S analysts. Exaggeration is in line with the equilibrium of our forecasting contest, but is inconsistent with the deviation or the equilibrium of our reputational cheap talk model. As argued by Zitzewitz (2001b), the observed exaggeration is also consistent with an alternative version of the reputational signaling model in which forecasters are privately informed about their own ability (as in Trueman’s, 1994, model) and are evaluated according to an econometric technique.

6.2 Forecast variability

We now turn to the statistical properties of an individual’s forecast f_i. We derive the conditional variance of the forecast under the different theories.
The linear forecasts’ weights F on the signal implied by the theories all depend on τ only through the relative signal precision $\rho \equiv \tau/\nu$, the precision of private information relative to the prior precision. Apart from a common scaling factor equal to the variance of the prior distribution, $1/\nu$, all variances below can be written as a function of ρ.

Proposition 7 The conditional variances are: $V(h|x) = (1/\nu)\rho/(1 + \rho)^2$ for the honest forecast, $V(d|x) = (1/\nu)\rho^3/(1 + \rho)^4$ for the reputational deviation forecast, and $V(c|x) = (1/\nu) \left(2 + \rho - \sqrt{\rho^2 + 4\rho}\right)/2$ for the contest equilibrium forecast. The reputational binary equilibrium forecast satisfies $V(r|x) \leq (1/\nu)\rho/\pi (1 + \rho) = V(r|x = \mu)$.

![Figure 4](image.png)

Figure 4. Conditional forecast variances as functions of the relative precision ρ, fixing $\nu = 1$. The solid line shows honesty’s $V(h|x)$, the dotted line the reputational deviation’s $V(d|x)$, the line with dots and dashes the reputational equilibrium’s upper bound $V(r|x = \mu)$, and the dashed line the contest equilibrium’s $V(c|x)$.

As shown in Figure 4, the honest forecast has vanishing variance both when the forecasters are very poorly informed (and thus forecast near μ) and when they are very well informed (and thus forecast the realized x well). Similar properties hold for the reputational forecasts.20 In general, herding or exaggeration can be inferred from forecast

20 When the private signals become very informative, $\rho \to \infty$, then for any fixed $x > \mu$, the reputational forecast becomes concentrated near $\mu + \sqrt{2/\nu}$, and has vanishing variance. This fact is not evident from the upper bound $V(r|x = \mu)$ displayed in Figure 4. This upper bound corresponds to the variance conditional on the particular signal realization $s = \mu$.

18
dispersion only after controlling for the quality of the forecaster’s information. This point is also emphasized by Zitzewitz (2001a).

In the limit as the private signals become uninformative ($\rho \to 0$), the contest makes a markedly different prediction. In this limit, the distribution of equilibrium forecast locations converges to the common prior distribution about the state, with conditional variance equal to $1/\nu > 0$. This result is consistent with the findings of Osborne and Pitchik (1986) and Laster et al. (1999), obtained for the limit case of Hotelling’s location game with a large number of players. In cases with imprecise private signals, empirical tests among the theories could build on this finding.

7 Theoretical extensions

We now extend the baseline model in two directions relevant for empirical work. In Section 7.1 we allow for common errors in the signals and in Section 7.2 we consider simultaneous forecasting of multiple variables.

7.1 Common error

As stressed by Keane and Runkle (1998), the significant positive correlation among the residuals in the orthogonality regression indicates the presence of a common error in the forecasts. Since the forecasts are released well in advance, there are often unpredictable changes to the variables after the forecasts are submitted. In addition, often realizations are observed with noise. To check the robustness of our results, in this section we modify the model by allowing for the presence of common errors.

Suppose that the market does not observe x but only the imperfect signal $y = x + \varepsilon_0$ before evaluating the forecasters. Thus, the forecaster’s rewards are defined in terms of the new target variable y rather than x. Assume that $x, \varepsilon_0, \varepsilon_1, \ldots, \varepsilon_n$ are independent normal variables, and let τ_0 denote the precision of ε_0. The signal is $s_i = x + \varepsilon_i = y + \varepsilon_i - \varepsilon_0$.

Conditional on y, the relevant signal errors $\varepsilon_1 - \varepsilon_0, \ldots, \varepsilon_n - \varepsilon_0$ are now correlated as suggested by Keane and Runkle. Yet, the honest forecast of y is the same as the honest forecast of x, i.e., $E(y|s_i) = E(x + \varepsilon_0|s_i) = E(x|s_i)$.

Proposition 8 Propositions 1–4 continue to hold with common error, with suitable modification of the closed form expressions. If the noise in the common error is sufficiently small (i.e., τ_0/ν is large compared to τ/ν), there is a linear equilibrium with exaggeration in the forecasting contest.
7.2 Multiple dimensions

In some applications, forecasters are evaluated on the basis of several contemporaneous forecasts or their entire record of past forecasts. To simplify the presentation, in our baseline model we have focused on the one-dimensional case, in which forecasters are evaluated on the basis of a single forecast of one variable. We now extend our normal learning model to multi-variate settings in which the evaluation is made on the basis of a number of different variables.

We extend the model by letting \(\tilde{g}(s|x,t) = t\hat{g}(t||x - s||)/2 \), in which the state \(x \) and the signal \(s \) are multivariate and the talent \(t \) is univariate. The property that signals closer to the state are better news about the talent is retained, so that Proposition 1 and 3 continue to hold. In addition, \(\gamma(x|x) \) is a multivariate, bell-shaped function centered on \(\mu \) and the posterior \(q(x|s) \) is a multivariate, bell-shaped density around \(E(x|s) \). Proposition 4 then continues to hold. In conclusion, the strategic distortions identified here hold more generally for multi-dimensional states, signals, and forecasts.

8 Impact of forecasts

In this section, we discuss the impact of forecasts on market expectations and prices in a financial setting. Our theories are general with respect to the interpretation of the forecasted state variable \(x \). For concreteness, we apply the model to forecasting stock prices, but the results are also valid for forecasts of exchange rates (e.g., Frankel and Froot, 1987) and other macroeconomic variables (e.g., Romer and Romer, 2000).

We first extend our baseline model to represent the pricing of an asset with fundamental value \(V \), which is partly explained by the forecasted state \(x = V + \varepsilon_x \). The value has prior mean \(\mu \) and precision \(\nu_V \). The timing is as follows. First, as in our baseline model, the forecasters simultaneously report the forecasts \(f_1, f_2, \ldots, f_n \) based on their private signals \(s_1, s_2, \ldots, s_n \), with \(s_i = x + \varepsilon_i \). Second, the market observes the realization of the public signal \(y = V + \varepsilon_y \) and determines the asset’s price as the conditional expectation, \(P = E(V|y, f_1, \ldots, f_n) \). Third, the state is realized, \(x = V + \varepsilon_x \). We assume that \(V, \varepsilon_y, \varepsilon_x, \varepsilon_1, \ldots, \varepsilon_n \) are independent normal variables, that all of the error terms have mean zero, and that \(\varepsilon_i \) has precision \(\tau_i \). The precision of \(x \) then satisfies \(1/\nu = 1/\nu_V + 1/\tau_x \).

We address two issues. First, we study how market prices react to the release of forecasts (Section 8.1). Second, we analyze strategic forecasting in a modified version of the model in which the forecasters target the market price \(P \) (Section 8.2).
8.1 Price reaction

A perfectly rational market should adjust for the biases induced by strategic forecasting. In all of the linear forecasts, there is a one-to-one mapping between the forecasts and the private signals, so the market can fully recover the forecasters’ private signals. Since all variables are normally distributed, P is then a weighted average of $E(V|y)$ and $E(x|f_1,\ldots,f_n)$. Likewise, $E(x|f_1,\ldots,f_n)$ is a weighted average of the honest forecasts $E(x|f_1),\ldots,E(x|f_n)$.

If rational, the market correctly adjusts for the strategic distortions present in the forecasts. If the forecast function is invertible, a rational market is able to recover the signal and form the correct posterior expectation. Hence, the predictions for asset price reactions are identical regardless of the particular forecast function used, provided that the forecast is invertible. Only the reputational equilibrium forecast is not invertible, and its different statistical properties are given in Proposition 3.

Consider an outside observer (such as an empiricist) who analyzes the price reaction to a forecast by incorrectly assuming that this forecast is honest rather than strategic. Such an observer would wrongly conclude that the market overreacts to conservative reputational deviation forecasts, and underreact to exaggerated contest forecasts.\(^{21}\)

8.2 Forecasting prices

We now turn to a variant of the model relevant to the study of financial analysts. Suppose that the target variable of the forecasts is not x but rather the asset price P, and that the forecasters are evaluated on the basis of their ability to predict P. Thus, P plays the role of x in the payoff functions of the forecasters. For simplicity, we make again the symmetry assumption that all forecasters have equally precise signals, i.e., $\tau_i = \tau$ for all $i = 1,\ldots,n$.

In this setting, honest forecasting of P is more complicated because the forecasts directly influence the distribution of P. As long as the forecasters’ strategies are fully invertible, the symmetry assumption implies that $P = \alpha_y y + \alpha_s \bar{s} + \alpha_\mu \mu$ where \bar{s} is the average forecasters’ signal, which the market extracts by inverting the forecast strategy. The parameters $\alpha_y, \alpha_s, \alpha_\mu \in (0,1)$ sum to one, and are determined by the precisions of the public signal y and the private signal summary statistic \bar{s} relative to the precision of the prior belief about V.

\(^{21}\)We refer to Gleason and Lee (2003) for a recent empirical analysis of price reactions to forecast revisions.
Proposition 9 There exists a rational expectations equilibrium for honest forecasting of \(P \) in linear strategies, \(h(s) = Hs + (1 - H)\mu \), in which

\[
H = (\alpha_y + \alpha_s) \frac{\tau}{\tau + \nu} + \frac{\alpha_s}{n} \left(\frac{\nu}{\tau + \nu} \right) \in (0, 1). \tag{6}
\]

Relative to this benchmark, the reputational and limit contest theories have similar properties to those reported in Proposition 8.

The equilibrium in honest strategies is identical to the one in equation (1) when \(\alpha_s = 0 \) and \(\alpha_y = 1 \). Otherwise, two effects pull the forecast away from the honest forecast of \(x \). First, \(P \) depends positively on the forecasts of the opponents. This yields a beauty contest effect which encourages forecasters to attach greater weight to their private signal about \(x \). Second, the estimate \(P \) is systematically closer to the prior mean \(\mu \) than the signal \(x \) which the forecasters have information about, and therefore there is an incentive to attach less weight to the private signal. The same effects influence our two strategic theories, but relative to the honest benchmark the properties are the same as before.

9 Conclusion

In this paper we have formulated and contrasted two distinct theories of strategic forecasting within the normal model. In the process we have advanced our understanding of the forces that might drive informed agents to deviate from honest reporting of their conditional expectations. Misreporting results from the effect on individuals’ payoff of the subtle interaction of the private information available to each individual with the public prior information available to the market and commonly shared by all agents.

Our first theory posits that the market has all the information contained in the forecasts and the realization of the state and uses it to \textit{ex post optimally} evaluate the forecasters. We have assumed that better informed forecasters observe signals on average closer to the state and that forecasters who are reputed to be better informed have a higher payoff. We have shown that forecasters wish to appear to have received a signal equal to the posterior expectation of the state conditional on the signal actually received. In the presence of public information, the observed signal is necessarily different from the posterior expectation. If the market naively believes that forecasters are honest, forecasters then shade their forecasts toward the prior mean. If the market is fully aware of the forecasters’ strategic incentives, equilibrium forecasts are imprecise but not shaded.\(^{22}\)

\(^{22}\)In reality, competition among forecasters combines elements of both theories. For example, \textit{Institutional Investors} ranks analysts based on the opinions of large institutional investors. See Ottaviani and Sørensen (2005) for results on relative reputational concerns.
Our second theory posits that competition for best accuracy takes place with \textit{prespecified rules}. The evaluation in a forecasting contest is ex post optimal when the market can only observe the accuracy ranking, possibly due to limited attention. Since the forecasters share the same public information, competition is highest when the state turns out to be equal to the prior mean. At the posterior expectation, a small deviation away from the prior mean results in a first-order gain due to reduced competition and a second-order loss due to lower probability of winning. Equilibrium forecasts in a winner-take-all contest are then excessively differentiated relative to the corresponding conditional expectations.

In both the reputational and the contest theory the incentive to deviate from honesty is driven by the property that private signals are unimodally centered around the state and the fact that public information is available at the moment of forecasting. In the absence of public information, honest forecasting is an equilibrium in both models. In reality, public information is pervasive, and its presence as well as the correlation across forecasts have posed major challenges for empirical work. Having dealt with these issues, recent empirical studies have found a significant and strong exaggeration in the forecasts. These findings are in line with the equilibrium of our forecasting contest.
Appendix

Proof of Proposition 1. By observing \(m = h(s) \) and \(x \), the market infers the realized signal \(\hat{s} = h^{-1}(m) \) and error \(\hat{\varepsilon} = \hat{s} - x \). The updated reputation is then \(p(t|m, x) = \tilde{g}(\hat{s}|x, t) p(t) / \tilde{g}(\hat{s}|x) \). This posterior reputation inherits intuitive properties from the assumptions imposed on \(\tilde{g} \). First, the posterior reputation depends on \(m \) and \(x \) only through the absolute size of the error \(|\hat{\varepsilon}| \). Second, a small realized absolute error is good news about the forecaster’s talent: for any \(t < t^0 \), the likelihood ratio

\[
\frac{p(t|m, x)}{p(t'|m, x)} = \frac{\tilde{g}(\hat{s}|x, t)}{\tilde{g}(\hat{s}|x, t')} \frac{p(t)}{p(t')}
\]

is increasing in \(|\hat{\varepsilon}| \). This second property and the fact that \(v \) is strictly increasing imply (see Milgrom, 1981) that \(W(m|x) \) is a strictly decreasing function of the inferred absolute error \(|\hat{\varepsilon}| \).

We now consider the best response of a forecaster with signal \(s \). The posterior distribution on \(x \) is normal with mean \(h(s) \) and variance \(1/(\nu + \tau) \). The inferred forecast error \(\hat{\varepsilon} = h^{-1}(m) - x \) is then normally distributed with mean \(h^{-1}(m) - h(s) \) and variance \(1/(\nu + \tau) \). The best reply maximizes the expected value of \(W \), or equivalently, minimizes a symmetric loss function of the error \(h^{-1}(m) - x \). The forecaster then chooses \(m \) such that the error has mean zero, by setting \(h^{-1}(m) = h(s) \).

\[\Box\]

Lemma 1

If a density \(\tilde{g}(\cdot) \) satisfies the property

\[
\tilde{g}(t'\varepsilon) \tilde{g}(t\varepsilon') < \tilde{g}(t\varepsilon) \tilde{g}(t'\varepsilon') \text{ for } \varepsilon' > \varepsilon \geq 0 \text{ and } t' > t,
\]

its counter-cumulative distribution satisfies it as well:

\[
\left[1 - \tilde{G}(t'\varepsilon)\right] \left[1 - \tilde{G}(t\varepsilon')\right] < \left[1 - \tilde{G}(t\varepsilon)\right] \left[1 - \tilde{G}(t'\varepsilon')\right] \text{ for } \varepsilon' > \varepsilon \geq 0 \text{ and } t' > t. \tag{9}
\]

Proof. Integrating (8) for \(\varepsilon'' > \varepsilon' \), we obtain

\[
t'\tilde{g}(t'\varepsilon) \left[1 - \tilde{G}(t\varepsilon')\right] < t\tilde{g}(t\varepsilon) \left[1 - \tilde{G}(t'\varepsilon')\right]
\]

for \(\varepsilon' > \varepsilon \). The left-hand side and the right-hand side of (9) are equal for \(\varepsilon' = \varepsilon \). By (10) we know that the derivative of the left-hand side is larger than the derivative of the right-hand side of (9). We conclude that (9) holds.

\[\Box\]

Proof of Proposition 3. To support this equilibrium, we also need to specify the market’s beliefs following out-of-equilibrium messages. When a message different from \(m_L \) and \(m_H \) is received, the market assumes that the forecaster possesses a signal below the
threshold, which results in the same posterior reputation as message m_L. These beliefs satisfy the requirements of a perfect Bayesian equilibrium.

We assume that the market conjectures a binary strategy with threshold signal \hat{s}. We find $\varphi(m_H|x,t) = \int_{\hat{s}}^\infty \hat{g}(s|x,t)\,ds = \int_{\hat{s}}^\infty t\hat{g}(t|s-x)\,ds$. This equation reduces to $[1-\hat{G}(t|\hat{s} - x)]/2$ when $\hat{s} > x$ and $[1+\hat{G}(t|\hat{s} - x)]/2$ when $\hat{s} < x$, where \hat{G} is the distribution function corresponding to the density \hat{g}. Therefore, we have $\varphi(m_H|x,t) = 1-\varphi(m_H|2\hat{s} - x,t) = \varphi(m_L|2\hat{s} - x,t)$, which implies the symmetry property $W(m_H|x) = W(m_H|x) = W(m_L|x) = W(m_L|x) = W(m_L|x) = W(m_L|x) = W(m_L|x)$.

When $\hat{s} > x$, it follows from Lemma 1 that message m_H is worse news about the talent than the observation that $s \geq x$. Thus, we have $W(m_H|x) < W(m_H|\tilde{s})$ for all $x < \tilde{s}$. Symmetrically, we have $W(m_H|x) > W(m_H|\tilde{s})$ for all $x > \tilde{s}$. These inequalities and symmetry imply that $W(m_H|x) > W(m_H|x)$ when $x > \tilde{s}$.

We now show that when $\tilde{s} = \mu$, the forecaster does not wish to deviate from the putative equilibrium strategy. By symmetry, it suffices to assume that $s \geq \mu$ and check that $U(m_H|s) \geq U(m_L|s)$. Using the symmetry of W, $U(m_H|s) = U(m_L|s)$ is

$$
\int_{-\infty}^{\infty} [W(m_H|x) - W(m_L|x)] q(x|s)\,dx = \int_{-\infty}^{\infty} [W(m_H|x) - W(m_L|x)] q(x|s) - q(2\mu - x|s)\,dx. \tag{11}
$$

Since $q(x|s)$ is the density of the symmetric normal distribution with a mean weakly above μ, we have $q(x|s) \geq q(2\mu - x|s)$ when $x \geq \mu$. We have already shown that $W(m_H|x) > W(m_L|x)$ when $x > \mu$, so the integrand of the last integral in (11) is everywhere non-negative, implying that (11) is non-negative, so that $U(m_H|s) \geq U(m_L|s)$ as desired.

To establish uniqueness of this equilibrium when binary strategies are used, we now show that when $\tilde{s} \neq \mu$, the forecaster wishes to deviate from the binary strategy. Without loss of generality, we focus on the case $\hat{s} > \mu$. We show that there exists a signal $s > \hat{s}$ such that $U(m_H|s) < U(m_L|s)$. As above, we have $U(m_H|s) - U(m_L|s) = \int_{\hat{s}}^{\infty} [W(m_H|x) - W(m_L|x)] q(x|s) - q(2\hat{s} - x|s)\,dx$. Also, we have again $W(m_H|x) > W(m_H|x)$ for $x > \hat{s}$ and $q(x|s) = q(2\hat{s} - x|s)$ at $x = \hat{s}$. By properties of the normal distribution, we obtain $q(x|s) < q(2\hat{s} - x|s)$ for $x > \hat{s}$ provided $E(x|s) = (\tau s + \nu \mu) / (\tau + \nu) < \hat{s}$, which is certainly true for s slightly greater than \hat{s}.

We derive the analytical expressions for the equilibrium messages resulting with the natural language. By applying the result that $E(y|y > 0) = \sigma \sqrt{2/\pi}$ for a normal variable $y \sim N(0, \sigma^2)$ (cf. Johnson and Kotz, 1970), we obtain that $m_H = E(x|s \geq \mu)$ is equal to $E[E(x|s)|s \geq \mu] = E(r_s + \mu_s|s \geq \mu) = \mu + \frac{\tau}{\tau + \nu} E(s - \mu|s > \mu) = \mu + \sqrt{2/\pi} / (\pi \nu (\tau + \nu))$. By symmetry, we have $m_L = \mu - \sqrt{2/\pi} / (\pi \nu (\tau + \nu))$. \hfill \Box

Proof of Proposition 4. As derived in the text, $x|s_i$ is normally distributed with
mean \((\tau s_i + \nu \mu)/(\tau + \nu)\) and precision \(\tau + \nu\). Let us suppose that all opponents use the linear strategy \(c(s) = As + (1 - A) \mu\), with \(A \in (0, 1]\). Then \(c|x\) is normal with \(E(c|x) = A\tau + (1 - A) \mu\) and \(V(c|x) = A^2/\tau\). Disregarding an irrelevant constant term and using the density of the normal distribution, we find

\[
\log \gamma(c|c) = -\tau \left\{c - [Ac + (1 - A) \mu]\right\}^2 = -\frac{\tau (1 - A)^2 (c - \mu)^2}{2A^2}.
\]

This is a quadratic and concave function of \(c\) with its peak at \(\mu\). The forecaster maximizes \(\log q_i(c_i|s_i) - \log \gamma(c_i|c_i)\), the difference of two quadratic and concave functions. The objective function is concave when the first concave term prevails, i.e., for \(\tau + \nu \geq \tau (1 - A)^2 / A^2\).

When \(\tau + \nu > \tau (1 - A)^2 / A^2\), the forecaster has a unique best reply \(c_i = Bs_i + \nu \tau\), with \(B = \tau/ [\tau + \nu - \tau (1 - A)^2 / A^2] \in [\tau/ (\tau + \nu), +\infty)\). When instead \(\tau + \nu < \tau (1 - A)^2 / A^2\), there is no best response, because the incentive to move away from \(\mu\) is so strong that forecaster \(i\) wishes to go to the extremes \(\pm\infty\). In the knife-edge case \(\tau + \nu = \tau (1 - A)^2 / A^2\) the objective function is linear — whenever \(s_i \neq \mu\), there is again no best reply, as the forecaster wishes to go to one of the extremes.

In particular, in the honest case, \(A = \tau/ (\tau + \nu)\), it is optimal to reply with \(B = \tau^2 / (\tau^2 + \tau \nu - \nu^2)\), provided that \(\nu/\tau < (1 + \sqrt{5}) / 2\). We conclude that the best reply is to exaggerate against truthtelling opponents.

Proof of Proposition 5. \(C = 0\) is not compatible with a symmetric equilibrium, since in this case the opponents’ forecasts are all equal to \(c = \mu\), so that all replies other than \(\mu\) yield forecaster \(i\) a higher payoff. We assume then that the forecasters use linear strategies of the form \(c(s) = Cs + (1 - C) \mu\) with \(C \in (0, 1]\). As shown in the proof of Proposition 4, forecaster \(i\)'s best reply is linear with weight \(\tau/ [\tau + \nu - \tau (1 - C)^2 / C^2]\) on the signal, provided that \(\tau + \nu > \tau (1 - C)^2 / C^2\).

The fixed-point condition for a symmetric Nash equilibrium is that this linear strategy be equal to the one posited, i.e., \((1 - C) \tau = C^2 \nu\). Inserting the values \(C = 0, \tau/ (\tau + \nu), 1\) in this quadratic equation, we conclude that there is only one positive solution, and that this solution belongs to the interval \((\tau/ (\tau + \nu), 1)\). The second-order condition for the forecaster’s optimization requires \(\tau + \nu > \tau (1 - C)^2 / C^2\). Using \((1 - C) \tau = C^2 \nu\), this condition reduces to \(\tau > -\nu C\), which is satisfied by the positive solution for \(C\). The solution of the quadratic equation is \(C = (\sqrt{\nu^2 + 4\nu \tau} - \tau) / 2\nu\).

Proof of Proposition 6. For the linear forecasting rules of the form (5) the correlation of the forecast and its error is

\[
E [(f_i - x)f_i] = E \{[F_i \epsilon_i + (1 - F_i) (\mu - x)] [F_i (x + \epsilon_i) + (1 - F_i) \mu]\} = F_i \left(\frac{F_i}{\tau_i} - \frac{1 - F_i}{\nu} \right),
\]

(13)
and so has the same sign as \(F_i - \tau_i / (\tau_i + \nu) \).

\[\square \]

Proof of Proposition 7. The linear forecasts \(f_i = F_i(x + \varepsilon_i) + (1 - F_i) \mu \) have conditional variance \(F_i^2 / \tau \). Substituting the respective expressions for \(F_i \) yields the results.

The reputational equilibrium forecast \(r_i \) is binomially distributed. Given \(x \), the chance of \(r_i = m_H \) is \(1 - \Phi(\sqrt{\tau_i}(\mu - x)) \) where \(\Phi \) is the distribution function of the standard normal distribution. Then \(r_i \) has mean \(E(r_i|x) = \mu + [1 - 2\Phi(\sqrt{\tau_i}(\mu - x))] \sqrt{2\tau_i/\pi \nu (\tau_i + \nu)} \) and variance \(V(r_i|x) = 4[1 - \Phi(\sqrt{\tau_i}(\mu - x))] \Phi(\sqrt{\tau_i}(\mu - x)) 2\tau_i/\pi \nu (\tau_i + \nu). \) Since \(\Phi(\sqrt{\tau_i}(\mu - x)) \in [0, 1] \) for any \(x \), we have \(4[1 - \Phi(\sqrt{\tau_i}(\mu - x))] \Phi(\sqrt{\tau_i}(\mu - x)) \leq 1, \) where the bound is tight, being achieved for \(x = \mu \). We conclude that \(V(r_i|x) \leq 2\tau_i/[\pi \nu (\tau_i + \nu)] = (1/\nu) 2\rho_i/[\pi (1 + \rho_i)]. \)

\[\square \]

Proof of Proposition 8. We consider first reputational cheap talk. For the deviation analysis, suppose that all opponents \(j \neq i \) use a fully separating strategy. Besides the forecast of forecaster \(i \), the evaluator observes \(n \) independent signals about \(x \), namely every \(s_j \) where \(j \neq i \) and \(y \). From the well-known updating of beliefs on a normal state, this is equivalent to the observation of just one more precise signal about \(x \). So, without loss of generality, we can imagine that \(y \) itself contains all the evaluator’s external information on \(x \). Since \(y = x + \varepsilon_0 \) where \(\varepsilon_0 \) is independent of \(\varepsilon_i \) and \(t_i \), \(x \) is a sufficient statistic for \(y \) when predicting \(t_i \), so the law of iterated expectations gives \(p_i(t_i|m_i,y) = E[p_i(t_i|m_i,x)|y]. \) Then \(U_i(m_i|s_i) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} u(t)p_i(t_i|m_i,y)dt \right] q_i(y|s_i)dy \) is

\[
\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} u(t) \int p_i(t_i|m_i,x)q(x|y)dxdt \right] q_i(y|s_i)dy = \int_{-\infty}^{\infty} \left[\int u(t)p_i(t_i|m_i,x)dt \right] \int q(x|y)q_i(y|s_i)dy \right] dx.
\]

(14)

This resembles the original expression for \(U_i(m_i|s_i) \), except that \(q_i(x|s_i) \) has been replaced by the average \(\int_{-\infty}^{\infty} q(x|y)q_i(y|s_i) \) \(dx \) of the evaluator’s beliefs. Both \(q(x|y) \) and \(q_i(y|s_i) \) are normal densities, and their product can be rewritten as \(A_0 \exp\{-A_1 [y - A_2 (x, s_i)]^2 - A_3 [x - A_4 (s_i)]^2 \} \) where \(A_0, A_1, A_3 \) are constants not depending on \(x, y, s_i \), the constant \(A_2 \) depends on \(x, s_i \) only, and \(A_4 (s_i) = [\tau_0 \tau_i + (\nu + \tau_0 + \tau_i) \mu]/[\tau_0 \tau_i + (\nu + \tau_0 + \tau_i) \nu]. \) We then find \(\int_{-\infty}^{\infty} q(x|y)q_i(y|s_i) \) \(dy \) = \(A_5 \exp\{-A_3 [x - A_4 (s_i)]^2 \} \) where \(A_5 \) is independent of \(x, s_i. \) The forecaster’s objective function (14) is of the same form as previously, where \(\int_{-\infty}^{\infty} q(x|y)q_i(y|s_i) \) \(dx \) is a normal density with mean \(A_4 (s_i) \) strictly between \(\mu \) and \(s_i. \) As in Proposition 1, forecaster \(i \) will deviate from any fully separating strategy \(m_i \) by issuing the conservative \(m_i (A_4 (s_i)) \neq m_i (s_i) \) for any \(s_i \neq \mu. \)

For the binary reputational equilibrium, suppose that all opponents apply the binary strategy with threshold \(\mu. \) Again, (14) gives \(U_i(m_i|s_i) = E\{W_i(m_i|x) E[q(x|y, m_{-i})|s_i]\} \), where \(W_i(m_i|x) \) is precisely the same as in the proof of Proposition 3. That proof carries
over to this new situation, since $E [g(x|y,m_{-i})|s_{i}] \geq E [g(2\mu - x|y,m_{-i})|s_{i}]$ when $x \geq \mu$ and $s_{i} \geq \mu$. The latter fact follows from the fact that when $s_{i} \geq \mu$, all opponents are more likely to issue messages m_{-i} favorable to x.

Second, we turn to the forecasting contest. Suppose that all opponents use the linear strategy $\hat{m}(s) = Cs + (1 - C)\mu$ where $C \in (0,1]$. The hypothetical observation of $y = c_{i}$ and of signal s_{i} gives two independent sources of information about x. Then $x|c_{i}, s_{i} \sim N((\nu + \tau_{0}c_{i} + \tau s_{i})/((\nu + \tau_{0} + \tau)), 1/((\nu + \tau_{0} + \tau)))$. Conditionally on $y = c_{i}$ and s_{i}, the message $\hat{m}(s_{j}) = Cx + C\varepsilon_{j} + (1 - C)\mu$ is normally distributed with mean $C(\nu + \tau_{0}c_{i} + \tau s_{i})/((\nu + \tau_{0} + \tau) + (1 - C)\mu$ and variance $C^{2}((\nu + \tau_{0} + 2\tau)/[(\nu + \tau_{0} + \tau)\tau]$. Gathering terms, (16) can be rewritten as

$$
\gamma(c_{i}|c_{i}, s_{i}) = \sqrt{\frac{\nu + (1 - C)\tau_{0} + \tau}{\nu + (1 - C)\tau_{0} + 2\tau}} \exp \left[- \frac{[\nu + (1 - C)\tau_{0} + \tau]^{2}}{2[\nu + (1 - C)\tau_{0} + 2\tau](\nu + \tau_{0} + \tau)\tau} \left(c_{i} - \frac{\nu + (1 - C)\tau_{0} + \tau}{\nu + (1 - C)\tau_{0} + \tau} \right) \right],
$$

(15)

which is centered between μ and s_{i}. Nevertheless, when $C < 1$ this center remains closer to μ than the honest estimate $h(s_{i})$ since the weight on s_{i} is smaller: $C\tau/((\nu + (1 - C)\tau_{0} + \tau) < \tau/\tau + \nu$. Provided there exists a best response, this response is therefore biased away from μ, by the same logic as before.

Recall that $y|s_{i} \sim N((\nu + \tau_{0} + \tau s_{i})/((\nu + \tau_{0} + \tau)), (\nu + \tau_{0} + \tau)/((\nu + \tau_{0} + \tau)\tau_{0}))$. The objective function $\log U_{i}(c_{i}|s_{i}) = \log q_{i}(c_{i}|s_{i}) - \log \gamma(c_{i}|c_{i}, s_{i})$ is quadratic in the choice variable c_{i}. The first order condition characterizing the unique maximizer is

$$
\frac{[\nu + (1 - C)\tau_{0} + \tau]^{2}}{\nu + (1 - C)\tau_{0} + 2\tau} \left(c_{i} - \frac{\nu + (1 - C)\tau_{0} + \tau}{\nu + (1 - C)\tau_{0} + \tau} \right) = \tau_{0}(\nu + \tau) \left(c_{i} - \frac{\nu + \tau_{0} + \tau s_{i}}{\nu + \tau_{0} + \tau} \right).
$$

(16)

Gathering terms, (16) can be rewritten as $c_{i} = Ks_{i} + (1 - K)\mu$. The equilibrium fixed-point condition requires that the weight on s_{i} be equal to C, i.e.,

$$
\frac{2}{\nu + \tau_{0} + 2\tau} (\nu + \tau_{0} + 2\tau) C^{2} - [\nu + (1 - C)\tau_{0} + \tau]^{2} = \tau_{0}(\nu + \tau_{0} + 2\tau) C - (\nu + (1 - C)\tau_{0} + \tau) \tau.
$$

(17)

The total coefficient on C^{2} on the left hand side (LHS) is positive. At $C = 0$, the right hand side (RHS) exceeds the LHS. At $C = 1$ the opposite is true. The unique solution $C \in (0,1)$ defines an equilibrium, if it satisfies the second order condition. The second order condition requires that the LHS is positive, or equivalently the RHS is positive, i.e., $C > \tau(\nu + \tau_{0} + \tau)/[\tau_{0}(\nu + \tau_{0} + 3\tau)]$. This condition can be checked by inserting $\tau(\nu + \tau_{0} + \tau)/[\tau_{0}(\nu + \tau_{0} + 3\tau)]$ for C in equation (17) and verifying that the RHS exceeds the LHS. This criterion for equilibrium existence is then

$$
\frac{[\nu + \tau_{0} + 2\tau]\tau(\nu + \tau_{0} + 2\tau)^{2}}{\tau_{0}(\nu + \tau_{0} + 3\tau)^{2}} - \left(\frac{\nu + \tau_{0} + 2\tau^{2}}{[\nu + \tau_{0} + 3\tau]} \right)^{2} < \frac{(\nu + \tau_{0} + 2\tau)(\nu + \tau_{0} + \tau)}{\nu + \tau_{0} + 3\tau} - \frac{(\nu + \tau_{0} + 2\tau)(\nu + \tau_{0} + 2\tau)}{\nu + \tau_{0} + 3\tau}.
$$

(18)

For small τ_{0} this condition fails since $(\nu + \tau)^{3}(\nu + 2\tau)^{2}/(\nu + 3\tau)^{2} > 0$. For large τ_{0}, this condition holds since the coefficient on τ_{0}^{2} is $-1 < 0$. □
Proof of Proposition 9. First, we consider honesty. Supposing that all \(n\) forecasters use a linear rule \(f = Hs + (1 - H)\mu\) with \(H \in (0, 1)\), inversion gives \(s = \mu + (f - \mu)/H\). Note that \(y = V + \varepsilon_y = x + \varepsilon_y - \varepsilon_x\). Then \(P - \alpha_s s_i/n\) is equal to

\[
\alpha_y (x + \varepsilon_y - \varepsilon_x) + \frac{\alpha_s}{n} \sum_{k \neq i} (x + \varepsilon_k) + \alpha_y \mu = \frac{\alpha_y n + \alpha_s (n - 1)}{n} x + \frac{\alpha_y n (\varepsilon_y - \varepsilon_x) + \alpha_s \sum k \neq i \varepsilon_k}{n} + \alpha_y \mu. \tag{19}
\]

Given signal \(s_i\) and forecast \(f_i\), then \(P\) is normally distributed with mean

\[
\frac{\alpha_s}{n} \left[\mu + \frac{1}{H} (f_i - \mu) \right] + \frac{\alpha_y n + \alpha_s (n - 1)}{n} E(x|s_i) + \alpha_y \mu. \tag{20}
\]

Honest forecasting implies that this mean equals \(f_i\), i.e.,

\[
f_i = \frac{\alpha_y n + \alpha_s (n - 1)}{n - \alpha_s / H} E(x|s_i) + \frac{\alpha_s (1 - 1/H) + \alpha_y n}{n - \alpha_s / H} \mu. \tag{21}
\]

The condition for a symmetric equilibrium requires

\[
H = \frac{\alpha_y n + \alpha_s (n - 1)}{n - \alpha_s / H} \frac{\tau}{\tau + \nu}, \tag{22}
\]

which is solved by the expression given in equation (6).

For the reputational cheap talk theory, the market now observes \((y, f_1, \ldots, f_n)\). The analysis is identical to the one given in Proposition 8. The closed-form solutions for the natural language in predicting \(P\) are modified in a style similar to the above modification of the honest strategy.

In the forecasting contest, suppose that all forecasters use a linear strategy \(f = Cs + (1 - C)\mu\). With an infinite number of forecasters, their average signal is at the mean, so that \(P = \alpha_y y + \alpha_s x + \alpha_y \mu = (\alpha_y + \alpha_s) x + \alpha_y (\varepsilon_y - \varepsilon_x) + \alpha_y \mu\). Note here that \(\alpha_s < 1\) corresponds to the relative precision of \(x\) versus \(y\) and the prior on \(V\). Now, we have \(x = [P - \alpha_y (\varepsilon_y - \varepsilon_x) - \alpha_y \mu] / (\alpha_y + \alpha_s)\). Given \(P\), the forecasts are normally distributed with mean \(C (P - \alpha_y \mu) / (\alpha_y + \alpha_s) + (1 - C) \mu\) and variance \(C^2 [\alpha_y^2 (1/\tau_y + 1/\tau_x) + 1/\tau]\). This defines the density \(\gamma\) of opponents’ forecasts. Similarly, given signal \(s_i\), \(P\) is normally distributed with mean \((\alpha_y + \alpha_s) E(x|s_i) + \alpha_y \mu\) and variance \((\alpha_y + \alpha_s)^2 / (\tau + \nu) + \alpha_y^2 (1/\tau_y + 1/\tau_x)\). This defines the posterior belief density \(q\). To find the best response, each forecaster maximizes \(U(f_i|s_i) = q(f_i|s_i)/\gamma(f_i|f_i)\). The remaining analysis of the game is along the lines of Proposition 8. \(\square\)
References

