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ABSTRACT

Context. Persistent tension between low-redshift observations and the cosmic microwave background radiation (CMB), in terms of
two fundamental distance scales set by the sound horizon rd and the Hubble constant H0, suggests new physics beyond the Standard
Model, departures from concordance cosmology, or residual systematics.
Aims. The role of different probe combinations must be assessed, as well as of different physical models that can alter the expansion
history of the Universe and the inferred cosmological parameters.
Methods. We examined recently updated distance calibrations from Cepheids, gravitational lensing time-delay observations, and the
tip of the red giant branch. Calibrating the baryon acoustic oscillations and type Ia supernovae with combinations of the distance
indicators, we obtained a joint and self-consistent measurement of H0 and rd at low redshift, independent of cosmological models
and CMB inference. In an attempt to alleviate the tension between late-time and CMB-based measurements, we considered four
extensions of the standard ΛCDM model.
Results. The sound horizon from our different measurements is rd = (137 ± 3stat. ± 2syst.) Mpc based on absolute distance calibration
from gravitational lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the combined tension in H0
and rd ranges between 2.3 and 5.1 σ, and it is independent of changes to the low-redshift expansion history. We find that modifications
of ΛCDM that change the physics after recombination fail to provide a solution to the problem, for the reason that they only resolve
the tension in H0, while the tension in rd remains unchanged. Pre-recombination extensions (with early dark energy or the effective
number of neutrinos Neff = 3.24 ± 0.16) are allowed by the data, unless the calibration from Cepheids is included.
Conclusions. Results from time-delay lenses are consistent with those from distance-ladder calibrations and point to a discrepancy
between absolute distance scales measured from the CMB (assuming the standard cosmological model) and late-time observations.
New proposals to resolve this tension should be examined with respect to reconciling not only the Hubble constant but also the sound
horizon derived from the CMB and other cosmological probes.

Key words. gravitational lensing: strong – cosmological parameters – distance scale – early Universe

1. Introduction

At the onset of matter-radiation decoupling after the Big Bang,
photon-baryon fluid underwent oscillations whose characteristic
physical scale is described by the so-called sound horizon, rs.
This leaves a characteristic imprint on large-scale distribution of
baryons, with its characteristic size fixed in the comoving coor-
dinates and equal to the sound horizon at the drag epoch, zd,

given by

rd ≡ rs(zd) =

∫ ∞

zd

csdz
H(z)

, (1)

where cs is the sound speed in the primordial plasma, and H(z)
is the Hubble parameter.

The sound horizon rd is robustly determined from the
cosmic microwave background measurements (CMB), if the
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Standard Model of particle physics as well as the standard cos-
mological model in the pre-recombination Universe are adopted
(Planck Collaboration VI 2020). Alternatively, it can be mea-
sured at later times, from the baryon acoustic oscillation (BAO)
peak in the two-point spatial correlation function of galaxies and
quasars. The latter is an angular measurement, which can be
converted into a physical rd measurement through independent
distance calibrations (see e.g. Heavens et al. 2014; Bernal et al.
2016; Verde et al. 2017; Arendse et al. 2019; Aylor et al. 2019).
The parameter rd is intimately linked to the current expansion
rate of the Universe, the Hubble constant H0, since BAO mea-
surements constrain the product of H0 and rd.

Accurate distance measurements from CMB-independent
observations can be used to determine rd and H0 in a way that
is truly independent of early-Universe physics. Therefore, these
measurements can test our understanding of the concordance
cosmology and the Standard Model of particle physics, through
low-redshift measurements only. Type Ia supernovae, calibrated
by Cepheids with three independent distance anchors (parallaxes
in the Milky Way, detached eclipsing binaries in the LMC and
maser galaxy NGC 4258), provide the most precise distance cal-
ibration to date, as performed by the Supernovae and H0 for the
Equation of State of dark energy project (SH0ES; Riess et al.
2019). Another powerful way of obtaining absolute distances is
by using strongly lensed quasar systems, which extend to higher
redshifts than the Cepheids. The H0 Lenses in COSMOGRAIL’s
Wellspring collaboration (H0LiCOW, Suyu et al. 2017) has pro-
vided few-percent-level precision constraints on H0 from time-
delay cosmology. Over the whole sample, the effect of known
systematics is at a .1% level, which is currently negligible
with respect to the statistical uncertainties (Millon et al. 2020).
The latest results from SH0ES and H0LiCOW indicate a strong
tension in the Hubble constant H0 between late-time obser-
vations (CMB-independent probes including primarily type Ia
SNe, lensing and BAO) and CMB-based measurements, within
a flat ΛCDM model. Previous results based on four lenses alone
(Arendse et al. 2019; Taubenberger et al. 2019) resulted in a 2σ
discrepancy, while a six-lens analysis (Wong et al. 2020) gave
a 3σ tension. When combined with the distance-ladder results
from SH0ES, the tension increases to a 5σ level, still adopting
a flat ΛCDM cosmological model. It is worth noting that the
tension between the late-time and CMB-based measurements of
H0 is mildly lowered by the recent measurement making use of
precise distance calibration from the tip of the red giant branch
(TRGB), as measured by the Carnegie-Chicago Hubble Project
(herafter CCHP, Freedman et al. 2019). These measurements fall
between those from SH0ES and the CMB, at 1.7σ and 1.2σ dif-
ferences, respectively. For the sake of completeness, it is also
worth mentioning that the Planck value of the Hubble constant
is recovered in a CMB-independent but model-dependent anal-
ysis of BAO observations with the prior on the baryon density
from the standard Big-Bang nucleosynthesis (Cuceu et al. 2019;
Addison et al. 2018).

In this work, we revisit the claimed tension between late-time
observations and the CMB in terms of the sound horizon and
the Hubble constant, by making use of recent updated distance
calibrations from gravitational time-delay lenses (H0LiCOW),
Cepheids (SH0ES), and TRGB (CCHP). Through our meth-
ods (summarised in Sect. 2.2), we obtain measurements of rd
for different combinations of late-time distance calibrations in a
manner that is almost completely independent of any cosmolog-
ical model. Moreover, we investigate selected extensions to the
standard ΛCDM model that were recently proposed as possi-
ble solutions to the Hubble tension. Such new models attempt to

reconcile the tension by modifying the expansion history of the
Standard Model either before or after recombination, hereafter
early-time and late-time modifications, and thus increasing the
Hubble constant derived from the CMB. We demonstrate that
the late-time extensions fail to provide a solution to the problem,
for the reason that they only succeed in alleviating the tension
in H0, while the tension in rd remains unchanged. Our analy-
sis emphasises the importance of comparing at least H0 and rd
derived from late-time observations and the CMB when testing
new models devised to mitigate the Hubble constant tension.

This paper is structured as follows. Section 2 describes the
late-time measurements of rd and H0, including the different data
sets, models and inference methods that are used. In Sect. 3,
we outline how the late-time measurements are compared with
CMB inference and extensions of the concordance scenario. Our
results are described in Sect. 4, and our conclusions feature in
Sect. 5.

2. Late-time measurements: data and methods

The values of rd and H0 can be constrained by employing several
CMB-independent probes at 0 < z < 2, in this paper referred to
as late-time measurements. In Sect. 2.1, we provide an overview
of the data sets that we use in our analysis. Section 2.2 introduces
the models we chose to fit the Hubble diagram and interpolate
up to redshift zero. By choosing models that are independent
of cosmology, we minimise the systematic uncertainty associ-
ated with cosmological model choices. Details about the infer-
ence are discussed in Sect. 2.3, and functional tests are shown in
Appendix B.

2.1. Data sets

The shape of the late-time expansion of the Universe has been
mapped precisely with type Ia supernovae (SNe). In this work,
we used relative distance moduli from the Pantheon sample
(Scolnic et al. 2018).

Information about rd was introduced by adding BAO mea-
surements, which constrain the product of H0 and rd. Our
main results are obtained for the Hubble parameters H(z) and
the transverse comoving distances DM(z) determined from the
Baryon Oscillation Spectroscopic Survey (BOSS; Alam et al.
2017). Additionally, we looked into the effect of adding
BAO constraints from the correlation of Lyα forest absorption
and quasars in the extended Baryon Oscillation Spectroscopic
Survey (eBOSS; de Sainte Agathe et al. 2019; Blomqvist et al.
2019) and several isotropic BAO measurements. The isotropic
measurements do not contain sufficient statistics to measure H(z)
and DM(z) separately, but combine them in the volume-averaged
distance DV =

(
czD2

M(z)H−1(z)
)1/3

. We included two measure-
ments from the reconstructed six-degree Field Galaxy Survey
(Carter et al. 2018), two from eBOSS by Bautista et al. (2018),
Ata et al. (2018), and three from the WiggleZ Dark Energy Sur-
vey (Kazin et al. 2014).

Both SNe and BAO measurements provide only relative dis-
tances, thus their distance scale needs to be calibrated with abso-
lute distance measurements. Time-delay and angular-diameter
distances to strongly lensed quasars, obtained by the H0LiCOW
collaboration, provide such an absolute calibration of cosmo-
logical distances (see e.g. Suyu et al. 2017, and references
therein). Results from a fifth and a sixth lensed quasar sys-
tem were recently obtained (Chen et al. 2019; Rusu et al. 2019;
Bonvin et al. 2019; Sluse et al. 2019), including new distance
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measurements on previous lensed quasar systems using new data
and analyses (Chen et al. 2019; Jee et al. 2019). In this work, we
used complete constraints on distances from observations of the
six lensed quasar systems, as summarised in Wong et al. (2020).
The information from the lensed quasars has been modelled self
consistently, together with the relative distance indicators (SNe,
BAO).

Keeping the lensing data as our primary calibration of the
absolute distance scale in all fits, we also included two optional
priors given by recent local determinations of the Hubble con-
stant. The first is the latest SH0ES measurement yielding H0 =
74.03 ± 1.42 km s−1 Mpc−1 (Riess et al. 2019). The second is
based on calibrating distances with the tip of the red giant branch
(TRGB), a standard candle alternative to Cepheids. Here, analy-
ses carried out by two separate groups have resulted in different
values for H0: Yuan et al. (2019) found 72.4± 2.0 km s−1 Mpc−1,
while CCHP obtained 69.6± 2.0 km s−1 Mpc−1 (Freedman et al.
2019, 2020). In order to include both the highest and lowest late-
time measurements of H0, we chose to use the CCHP results
for the TRGB and SH0ES results for Cepheids in our analysis.
Since there is a partial overlap in the galaxy samples considered
for the TRGB and Cepheid measurements, the two calibrations
have only been applied separately.

Finally, quasars were optionally used as secondary standard
candles at high redshifts, by means of a relation between their
UV and X-ray luminosities (Risaliti & Lusso 2019). We did this
in one of our inference runs in Table 4, as an independent check.

Our constraints on the late-time expansion are largely based
on data sets and models that we explored in a previous work
(Arendse et al. 2019). The difference with previous data sets
is the inclusion of two additional quasar-lens measurements
(Chen et al. 2019; Rusu et al. 2019), Lyα BAO measurements at
z = 2.34 and 2.35, several volume-averaged BAO measurements
(DV BAO), and the combination with the Cepheid distance lad-
der or the TRGB calibration.

2.2. Models

Measuring rd and H0 from the observations described above
requires adopting a model of the expansion history. This is usu-
ally done by means of employing the standard ΛCDM model,
but any tension among different rd and H0 measurements in the
ΛCDM framework may mean that the ΛCDM expansion his-
tory is not necessarily an adequate model choice. Instead of
employing different extensions to ΛCDM to overcome this issue,
we used three different models of polynomial parametrisations,
which are completely agnostic about the underlying expansion
history. This allows us to make an inference of rd and H0 that
is based solely on observational data, and that does not rely on
cosmology.

The specifications of the three polynomial parametrisations
(hereafter referred to as model 1, 2 and 3) are listed in Table 1.
Model 1 adopts a polynomial expansion of H(z) (Weinberg
1972; Visser 2004), model 2 expands the luminosity distance
DL

1 as a polynomial in log(1 + z) (Risaliti & Lusso 2019), and
model 3 describes transverse comoving distances DM by poly-
nomials in z/(1 + z) (Cattoën & Visser 2007; Li et al. 2020). For
model 1, comoving distances were obtained from H(z) through
direct numerical integration of

dc(z) =

∫ z

0

c
H(z)

dz, (2)

1 Where the distance measures are related to each other according to
DL = (1 + z)DM = (1 + z)2DA.

Table 1. Three polynomial parametrisations (models 1, 2, and 3)
adopted in this study to place cosmology-independent constraints on
rd and H0.

Model Formula

1 H(z) = H0

(
1 + b1z + b2z2

)
2 DL(z) =

c ln(10)
H0

(
log(1 + z) + c2[log(1 + z)]2

+ c3[log(1 + z)]3 + c4[log(1 + z)]4
)

3 DM(z) = c
H0

(
z

1+z + d2

[
z

1+z

]2
+ d3

[
z

1+z

]3
+ d4

[
z

1+z

]4
)

4 H(z) = H0
√

ΩM (1 + z)3 + ΩΛ + Ωk (1 + z)2

Notes. The fourth case is a ΛCDM cosmological model.

and for models 2 and 3, H(z) is obtained through

H(z,Ωk) =
c

∂DM(z)/∂z

√
1 +

H2
0Ωk

c2 DM(z)2 (3)

(Weinberg 1972).
We truncated all polynomials at the lowest expansion order

required by the condition that models 1, 2, and 3 recover dis-
tances in a ΛCDM model, if their free coefficients are fixed at
values found by Taylor expanding the corresponding functions in
the fiducial ΛCDM model (see more in Appendix B). This guar-
antees that expansion histories derived from the employed mod-
els converge to ΛCDM once observations become consistent
exclusively with the standard model. Distances in ΛCDM are
recovered with a minimum accuracy of two percent at z < 1.8,
where the accuracy limit is set by the current precision of the
Hubble constant measurements and the upper limit of redshift
is given by the most distant lensed quasar. Including higher
order terms is disfavoured by the Bayesian information criterion
(BIC). In Appendix B, we also show that this convergence cri-
terion ensures that biases in H0 are at a sub-percent level, and
biases in q0 at a few-percent level.

Finally, in order to compare models 1–3 with the most com-
monly adopted cosmological model, the fourth family (model 4)
adopts a ΛCDM parametrisation. In all cases, both flatness and
departures from it are considered.

2.3. Inference

We fitted four models listed in Table 1 to observational data
of type Ia supernovae, BAO, and lensed quasars. Constrained
model parameters include rd, H0 and all remaining free poly-
nomial coefficients (or density parameters in the case of a
ΛCDM model). The posterior distributions of the parameters
were obtained using affine-invariant Monte Carlo Markov chains
(MCMC; Goodman & Weare 2010), and in particular the python
module emcee (Foreman-Mackey et al. 2013). For the sake of
completeness, we also derived constraints on the deceleration
parameter q0 using the MCMC samples. Appendix B outlines
the relations between polynomial coefficients, which are primary
parameters in our fits, and q0.

The likelihoods of the distances measured from lensed
quasars were either given as a skewed log-normal distribu-
tion2 (for B1608) or as samples of points from the H0LiCOW
model posteriors (for RXJ1131, HE0435, PG1115, J1206, and

2 Full names and coordinates of each lens are given in the
H0LiCOW XIII paper (Wong et al. 2020).
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WFI2033). The probability density was obtained by construct-
ing a Gaussian kernel density estimator (KDE). For the lens
systems HE0435 and WFI2033, only a robust measurement of
their time-delay distance3 was provided, which is the only robust
distance currently derived from time-delay lensing in the pres-
ence of significant perturbers at lower redshift. For the remaining
four lenses (B1608, RXJ1131, PG1115, J1206), information on
both their time-delay distances and their angular diameter dis-
tances was available. For the remaining observables (BAO, SNe,
quasars, and SH0ES or CCHP), the general form of the likeli-
hood for each data set is given by

L = p(data|model) ∝ e−χ
2/2 ,

χ2 = r†C−1r, (4)

where C is the covariance matrix of the data, and r corresponds
to the difference between the predicted and the observed values.
The final likelihood is a product of the separate likelihoods cor-
responding to each data set.

A uniform prior was used for the parameters, for ease of
comparison with previous works. In particular, the value of rd
was kept between 0 and 200 Mpc and, if applicable, Ωk between
−1 and 1 and Ωm between 0.05 and 0.5, to ensure consistency
with the priors on Ωm by H0LiCOW. These priors do not skew
the inference, at least with the current uncertainties. The upper
and lower boundaries of rd do not influence any of the results.
For the coefficients of the expansion (bi, ci, and di in Table 1),
we used a uniform prior without limits. In all cases, best fit val-
ues are given by the posterior mean and errors provide 68.3 per-
cent confidence intervals. The code to generate the results in this
paper is publicly available on Github4.

3. Comparison with the CMB: data and models

The sound horizon and the Hubble constant are indepen-
dently measured from the CMB. For the standard flat
ΛCDM cosmological model, the Planck observations yield
rd = 147.2 ± 0.3 Mpc and H0 = 67.4 ± 0.5 km s−1 Mpc−1

(Planck Collaboration VI 2020). As we demonstrate, both
parameters are strongly discrepant with their counterparts deter-
mined from late-time observations. In the following sub-
sections, we describe how we quantified this tension, and we
outline a few popular extensions of the standard cosmological
model devised to reduce the discrepancy.

3.1. Quantifying the tension

In order to check whether or not our results for rd and H0 are
in agreement with those obtained by Planck, the Gaussian odds
indicator τ is used (Verde et al. 2013; Bernal et al. 2016):

τ =

∫
PAPB dx∫
PAPB dx

· (5)

Here, PA and PB denote the posterior distributions of experi-
ments A and B, while PA and PB correspond to the same distri-
butions after a shift has been performed, such that the maxima of
PA and PB coincide. A high value for τ means that it is unlikely
that both experiments measure the same quantity. In an idealised

3 D∆t = (1+zl)DA,lDA,s/DA,ls, where DA,l, DA,s and DA,ls are the angular
distance to the lens galaxy, lensed quasar, and between the lens and the
quasar; zl is redshift of the lens galaxy.
4 https://github.com/Nikki1510/cosmic_dissonance

situation, when experiment A yields a measurement with infinite
precision (PA is given a δ function), the odds indicator equals
the ratio of probability PB evaluated at best fit values returned
by both experiments. Equation (5) generalises this interpretation
to cases where both measurements have non-zero uncertainties.

A more intuitive scale representing the discrepancy between
two measurements is a number-of-sigma tension, and it can be
directly derived from the odds ratios (see e.g. Bernal et al. 2016).
First, the odds indicator was used to calculate the probability
enclosed by a contour r, such that 1/τ = e−

1
2 r2

. The probability
was then converted to a number of sigma tension, using a one-
dimensional cumulant (the error function).

3.2. Extensions of the ΛCDM model

Any tension between late-time measurements and CMB-based
model-dependent inference may be caused by unknown sys-
tematics, or it can mean that our knowledge of the physics
underlying the expansion history is incomplete. The standard
flat ΛCDM model can be extended either by changing physics
in the early Universe (pre-recombination; this is referred to as
early-time modification) or at later epochs (post-recombination;
this is referred to as late-time modification). In the first case,
one can decrease the sound horizon inferred from the CMB
observations by adding an energy-momentum tensor beyond the
Standard Model, which effectively increases H(z) in the early
Universe. In order to keep the observed angular scales imprinted
in the CMB unchanged, this alteration automatically implies an
increase in the value of H0. Therefore, the overall effect of early-
time modifications is a shift of both rd and H0 towards the mea-
surements from late-time observations. In the second approach,
one may obtain higher values of H0 by decreasing the expansion
rate at intermediate redshifts. This can be done by modifying the
dark energy density such that it increases over time. Although
many late-time extensions of the Standard Model can quite eas-
ily increase H0 inferred from the CMB, rd cannot be modified
as appreciably as H0 – as it is primarily driven by physics in the
early Universe.

In order to explore different resolutions of the tension in H0
and rd on the grounds of new physics, we considered several
extensions of the standard ΛCDM model. Although the selected
models do not exhaust all possible proposals from the literature,
they are sufficiently representative in terms of covering most
possible model-dependent alterations of H0 and rd inferred from
the CMB. In what follows, the inference for early dark energy
and PEDE (described below) were obtained using a Planck com-
pressed likelihood, as detailed in Appendix A. For the remain-
ing models, we used publicly available MCMC chains (based
on Planck temperature and polarisation data) from the Planck
Legacy Archive5 (Planck Collaboration VI 2020).

3.2.1. Early-time (pre-recombination) extensions

Effective number of relativistic species (Neff). In this exten-
sion of ΛCDM, there are additional relativistic particles that
contribute to the radiation density of the early Universe, result-
ing in Neff > 3. An increased radiation density leads to
a later matter-radiation equality and to an increased expan-
sion rate in the early Universe, leaving an observational
imprint on the CMB (Eisenstein & White 2004; Hannestad
2003; Mörtsell & Dhawan 2018). This in turn reduces the value
of the sound horizon rd at recombination and increases H0
derived from the CMB, thereby relieving some of the tension

5 https://pla.esac.esa.int
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Table 2. Posterior mean and standard deviation for the sound horizon rd, H0rd and q0 inferred from late-time observations including H0LiCOW
lensing observations, Pantheon SN sample, and BAO measurements (BOSS).

Flat (Ωk = 0)
Parameter Model 1 Model 2 Model 3 Model 4 ( f ΛCDM)

rd (Mpc) 132.7 ± 4.2 132.9 ± 4.4 134.2 ± 4.4 136.9 ± 3.7
H0rd (km s−1) 10107 ± 147 10065 ± 150 10052 ± 152 10038 ± 136
q0 −0.7 ± 0.07 −0.5 ± 0.2 −0.4 ± 0.3 −0.55 ± 0.03
lnLm.a.p. −86.3 −86.1 −86.7 −87.7
BIC score 193 196 198 192
ln τ (Planck ΛCDM) 6.6 (3.2σ) 5.7 (2.9σ) 5.0 (2.7σ) 5.7 (2.9σ)
ln τ (Planck ΛCDM+Neff) 6.3 (3.1σ) 5.6 (2.9σ) 4.9 (2.7σ) 5.0 (2.7σ)
ln τ (Planck early DE) 5.1 (2.8σ) 4.4 (2.5σ) 3.7 (2.3σ) 3.7 (2.2σ)

Free Ωk

Parameter Model 1 Model 2 Model 3 Model 4 (ΛCDM)
rd (Mpc) 129.2 ± 5.7 130.6 ± 5.9 131.2 ± 6.1 137.2 ± 4.8
H0rd (km s−1) 10045 ± 155 10033 ± 157 10017 ± 160 10041 ± 156
Ωk 0.18 ± 0.2 0.13 ± 0.2 0.15 ± 0.2 −0.01 ± 0.2
q0 −0.6 ± 0.1 −0.4 ± 0.2 −0.4 ± 0.3 −0.56 ± 0.07
lnLm.a.p. −86.1 −85.9 −86.4 −87.7
BIC score 196 200 201 196
ln τ (Planck ΛCDM) 5.6 (2.9σ) 4.6 (2.6σ) 4.0 (2.4σ) 4.2 (2.4σ)
ln τ (Planck ΛCDM+Neff) 5.7 (2.9σ) 4.7 (2.6σ) 4.2 (2.4σ) 3.9 (2.3σ)
ln τ (Planck early DE) 4.5 (2.6σ) 3.6 (2.2σ) 3.1 (2.0σ) 2.6 (1.8σ)

Notes. The fit quality is summarised in terms of log-likelihood at the maximum posterior probability, lnLm.a.p., and the Bayesian information
criterion BIC = ln(N)k−2 ln(Lm.a.p.), where N is the number of data points and k is the number of free parameters. The odds indicator τ quantifies
the tension between rd and H0 measured from late-time observations and the Planck data (for the standard flat ΛCDM model and its two extensions
with a free effective number of neutrinos or early dark energy).

between late-time and CMB measurements (Carneiro et al.
2019; Gelmini et al. 2019).

Early dark energy. The expansion rate in the early Uni-
verse could also be increased by the presence of a more general
form of dark energy. This additional dark energy should have a
noticeable contribution to the energy budget at high redshifts, but
should dilute away faster than radiation to leave the evolution of
the Universe after recombination unchanged (Doran et al. 2007;
Linder & Robbers 2008). As a promising example of this class
of models, we considered early dark energy, which behaves nom-
inally as a scalar field φ with a potential V(φ) ∝ [1 − cos(φ/ f )]3

(Poulin et al. 2019). In the effective fluid description, the energy
density ρEDE evolves as

ρEDE(a) =
2ρEDE(ac)

1 + (a/ac)9/2 , (6)

with the scale factor a (Poulin et al. 2018). The early dark energy
equation of state approaches asymptotically −1 for a � ac and
1/2 for a � ac. When fitting the model to the CMB data,
we adopted the following flat priors in log10(ac) and fEDE =
Ωφ(ac)/Ωtot(ac): −4.0 < log10(ac) < −3.2 and 0.1 > fEDE > 0.

3.2.2. Late-time (post-recombination) extensions

Time-dependent dark energy (wCDM). The wCDM cos-
mology introduces the equation of state parameter w as a free
parameter (as opposed to the fixed ΛCDM value of w = −1),
so that the dark energy density ρDE can change as a function of
redshift as

ρDE(z) = ρDE,0(1 + z)3(1+w). (7)

Phenomenologically emergent dark energy (PEDE). In the
PEDE model, dark energy has no effective role in the early

Universe but emerges at later times (Li & Shafieloo 2019). The
redshift evolution of the dark energy density is described by

ρDE(z) = ρDE,0 × [1 − tanh(log10(1 + z))], (8)

giving it the same number of degrees of freedom as ΛCDM. We
emphasise that this parametrisation is mostly ad hoc.

4. Results and discussion

The values of the sound horizon and other parameters inferred
from the six lenses, Pantheon SN sample, and BAO mea-
surements (BOSS) using three models that employ polynomial
parametrisation or a ΛCDM model are listed in Table 2. The
tension with Planck flat ΛCDM and late-time extension models
is displayed in the last rows and ranges from 2σ to 3σ. When
combining the distance calibration from the lensed quasars with
that from SH0ES (the distance ladder with Cepheids), the con-
straints on rd are tighter and the tension with Planck increases
to 5σ, as can be seen in Table 3. The corresponding Bayesian
information criterion (BIC) values are the lowest for model 4
(ΛCDM). However, the differences in BIC scores do not exceed
six (substantial level on the Jeffreys scale), with a minimum dif-
ference of one for model 1 (barely worth mentioning level on
the Jeffreys scale). Figure 1 compares constraints on H0, rd and
Ωk from late-time observations including the prior from SH0ES
to the best fit parameters derived from Planck assuming a flat
ΛCDM model. For all models, the Planck parameters lie on the
5σ contour in the H0 − rd plane, demonstrating that the tension
is independent of the chosen expansion family.

In Table 4, some other combinations of data sets are
explored. This includes a calibration of lenses + CCHP instead
of SH0ES, inclusion of several volume-averaged and Ly-α BAO
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Table 3. Same as Table 2, but for fits based on the H0LiCOW lensing, Pantheon SN sample, BAO measurements (BOSS) and H0 from SH0ES.

Flat (Ωk = 0)
Parameter Model 1 Model 2 Model 3 Model 4 ( f ΛCDM)

rd (Mpc) 135.1 ± 2.8 135.0 ± 2.9 135.1 ± 2.9 136.1 ± 2.7
H0rd (km s−1) 10079 ± 143 10055 ± 148 10038 ± 153 10037 ± 136
q0 −0.6 ± 0.07 −0.4 ± 0.2 −0.4 ± 0.3 −0.55 ± 0.03
lnLm.a.p. −86.6 −86.4 −86.8 −87.7
BIC score 193 197 198 192
ln τ (Planck ΛCDM) 15.1 (5.1σ) 15.0 (5.1σ) 13.9 (4.9σ) 15.1 (5.1σ)
ln τ (Planck ΛCDM+Neff) 9.9 (4.1σ) 9.7 (4.0σ) 9.2 (3.9σ) 9.1 (3.9σ)
ln τ (Planck early DE) 9.4 (3.9σ) 9.2 (3.9σ) 8.6 (3.7σ) 8.7 (3.8σ)

Free Ωk

Parameter Model 1 Model 2 Model 3 Model 4 (ΛCDM)
rd (Mpc) 134.8 ± 3.2 134.7 ± 3.3 134.6 ± 3.3 136.1 ± 3.2
H0rd (km s−1) 10067 ± 156 10042 ± 161 10021 ± 161 10035 ± 152
Ωk 0.04 ± 0.2 0.03 ± 0.2 0.06 ± 0.2 0.003 ± 0.2
q0 −0.6 ± 0.09 −0.4 ± 0.2 −0.4 ± 0.3 −0.55 ± 0.07
lnLm.a.p. −86.7 −86.5 −86.8 −87.7
BIC score 198 201 202 196
ln τ (Planck ΛCDM) 13.3 (4.8σ) 13.2 (4.8σ) 12.7 (4.7σ) 12.8 (4.7 σ)
ln τ (Planck ΛCDM+Neff) 9.2 (3.9σ) 9.0 (3.9σ) 8.9 (3.8σ) 8.2 (3.6σ)
ln τ (Planck early DE) 8.3 (3.7σ) 8.2 (3.7σ) 8.0 (3.6σ) 7.3 (3.4σ)

and the addition of high redshift quasars as secondary standard
candles. Considering all results based on the main data sets
(H0LiCOW, SN, BAO/BOSS) with the cosmic distance ladder
(SH0ES or CCHP), we find rd = (137±3stat.±2syst.) Mpc, where
the systematic error accounts for differences between SH0ES
and CCHP distance calibration. In addition, we ran an infer-
ence free of any SN data, thus only using lensed quasars and
BAO measurements from BOSS, DV and Ly-αwith a flat ΛCDM
model6 This results in the following values for the cosmological
parameters: rd = 138.6 ± 3.8 Mpc, H0rd = 10166 ± 142 km s−1,
Ωm = 0.29 ± 0.02.

4.1. Early-time extensions

A possible solution for the tension is an extension to the early
Universe physics, such as an additional component of relativis-
tic species. Planck 2018 chains with free Neff (based on full
temperature and polarisation data) were used to investigate this
scenario. In Fig. 2, Planck + free Neff is compared to results from
model 3 using SN + BAO with only the H0LiCOW lenses as
calibrator (upper panel) and using a combination of H0LiCOW
lenses and either SH0ES or CCHP as calibrators (lower panel).
A higher value of Neff is shown to move the Planck value to
a lower rd and a higher H0, therefore alleviating the tension
to some extent. In this case, the combined analysis of Planck
and low-redshift data yields Neff = 3.24 ± 0.16. This effect is
only convincing when the late-time measurements are calibrated
with H0LiCOW and CCHP, since the alternative Cepheid cal-
ibration is still in tension with the Planck +Neff extension (see
Table 3).

4.2. Tension between the CMB and late-time observations

Figure 3 demonstrates the potential of the selected extensions
of the standard ΛCDM model outlined in Sect. 3.2 to resolve
6 For the flat ΛCDM model, we adopted a prior of ΩM = U[0.05, 0.5].

the tension between rd and H0 measured from the CMB and
late-time observations. The shaded grey contours show con-
straints from late-time observations using model 3 with Ωk = 0.
Thanks to a polynomial parametrisation, these measurements are
marginalised over a wide class of the expansion history and in
this sense they are independent of cosmological model. We show
results for distance calibrations based on the H0LiCOW lenses
combined with SH0ES or CCHP. The contours in colour show
constraints from Planck for the flat ΛCDM model (black con-
tours) and its four extensions.

As clearly seen from Fig. 3, none of the ΛCDM exten-
sions manage to convincingly unify the Planck measurements
with the late-time ones if the SH0ES calibration is used to
anchor the distance ladder. In particular, late-time extensions
involving different generalisations of the cosmological constant
can increase the H0 value inferred from the CMB, but they
leave rd unchanged. Although early-time extensions can poten-
tially match both H0 and rd from low-redshift probes and the
CMB, that this may happen by expanding the posterior proba-
bility contours rather than shifting the best fit values (see also
Bernal et al. 2016; Karwal & Kamionkowski 2016), as demon-
strated in Fig. 3. In this respect, both early dark energy models
and extensions with extra relativistic species are quite simi-
lar. The apparent difference between their probability contours
reflect differences in the priors. While a free effective number of
relativistic species can either decrease or increase the sound hori-
zon, early dark energy (with positive energy density) can only
increase the energy budget, and thus decrease the sound horizon.

Figure 4 summarises the tension in the H0−rd plane between
late-time measurements and Planck with different extensions of
ΛCDM. To ensure a fair comparison, the same ΛCDM exten-
sions are used in the late-time and CMB-based inference. There-
fore, the Planck PEDE-CDM results have been compared to
late-time results obtained with PEDE-CDM, and the Planck
wCDM results to late-time results using wCDM. For the early-
time extensions, this is not of great importance, since their effects
do not influence the low-redshift measurements.
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Fig. 1. Constraints on sound horizon rd, Hubble constant H0 and Ωk
from late-time observations including BAO (BOSS), type Ia supernovae
(Pantheon), gravitational lensing (H0LiCOW) and cosmic distance lad-
der calibrated with Cepheids (SH0ES). The panels show results for
three cosmology-independent models listed in Table 1 and a ΛCDM
cosmological model. The red lines indicate the best fit values obtained
from Planck for a flat ΛCDM cosmological model. The contours indi-
cate 1-, 2- and 5σ confidence regions of the posterior probability (the
latter obtained by Gaussian extrapolation). All panels demonstrate a 5σ
tension between rd and H0 measured from the CMB and the late-time
observations.

By adopting different models of polynomial parametrisations
(models 1, 2, and 3), we minimised the dependence on a cosmo-
logical model. Although our inference with these models does
not depend on ΛCDM, it does have a weak dependency on gen-
eral relativity (GR). The lensed quasars that are used to calibrate
the distance ladder need GR in order to calculate the angular
diameter distance, through the Ansatz that the lensing potential
(used in the time-delay inference) is exactly twice the gravi-
tational potential (used to obtain DA ∝ c3∆t/σ2 from stellar
kinematics). However, the role of this GR dependence is sub-
dominant with current DA uncertainties (10%−20%). On the
other hand, GR also enters the early-Universe expansion through
the “abundances” of different components (ΩmΩde,Neff).

4.3. One lens at a time

Since H0 and rd are constants, they must be independent of the
chosen indicators. If they are inferred from each indicator sep-
arately, any trend will signal residual systematics, either in the
indicators themselves or in the parametrisation that is chosen to
extrapolate H(z) down to H0.

The H0LiCOW collaboration has shown that if H0 is
obtained from lenses in a flat-ΛCDM model, there is a weak
trend in its inferred value versus redshift. Lenses of lower
(higher) redshift differ more (less) from the Planck measure-
ments (Wong et al. 2020). Even though this trend is currently
not significant (given current uncertainties), it may be indicative
of intrinsic systematics in the lensing inference, or in the way
that time-delay distances are converted into H0 values through a
flat-ΛCDM parametrisation.

Here, we repeat this test using more general models of the
expansion history, specifically flat model 3 and flat PEDE-CDM

model. Figure 5 shows the sound horizon rd measured from com-
bining BAO and SNe data with lensing constraints from each
lens separately. The results demonstrate that the distance cali-
bration from H0LiCOW lenses shows a similar trend with lens
redshift as the one shown by Wong et al. (2020) for a flat ΛCDM
cosmology. Based on the sample-wide analysis by Millon et al.
(2020), this weak trend cannot be explained simply on the basis
of known systematics in the lens models or kinematics of each
lens. We should emphasise, however, that this trend is not statis-
tically significant (1.6σ) yet.

Although the current weak trend of rd with redshift of grav-
itatonal lens is consistent with being a statistical fluke, it is
instructive to investigate if there any expansion models that can
re-absorb this (weak) trend. For example, a recent (z ≈ 0.4)
change in dark energy may produce this behaviour, if the data
are interpreted with expansion histories that are “too” smooth.
For this reason, we examined the same lens-by-lens determina-
tion within the PEDE model family. The results are shown as
dotted error-bars in Fig. 5. Even the PEDE model with acceler-
ated late-time expansion cannot eliminate the (weak) trend in
rd. The constraints set by the relative distance moduli of SN
enforce PEDE to closely resemble the ΛCDM case, but with a
higher matter content (Ωm ≈ 0.345) and smaller sound horizon
(rd ≈ 138 Mpc). Therefore, PEDE does not resolve the current
tension.

5. Conclusions and outlook

We combined the newest available low-redshift probes to obtain
an estimate of the sound horizon at the drag epoch, rd. In order
to minimise the dependence on a cosmological model, we used
a set of polynomial parametrisations that are almost entirely
independent of the underlying cosmology, as well as the stan-
dard ΛCDM model. In the H0 − rd plane, we found a tension
of 5σ between Planck results using flat ΛCDM and late-time
observations calibrated with H0LiCOW lenses and SH0ES. This
tension is reduced to 2.4σ if CCHP results are used as a distance-
ladder anchor instead of SH0ES. We investigated whether early-
or late-time extensions to the standard ΛCDM model can resolve
the tension, and we examined models with free Neff , early dark
energy, wCDM, and PEDE-CDM. None of these model exten-
sions provide a satisfying solution to the Hubble tension problem
(see also Aylor et al. 2019; Knox & Millea 2020), except for free
Neff or early dark energy in combination with low redshift data
calibrated by CCHP + H0LiCOW.

These findings may indicate that: (1) extensions of early-
time physics are necessary; and/or (2) that systematics from
different late-time probes are becoming comparable to the sta-
tistical uncertainties. Arguments based on local under-densities
or peculiar velocities cannot resolve the tension: the ≈3σ ten-
sion persists if the inverse-distance ladder is restricted to z ≥
0.03, where the role of peculiar velocities is .0.1% (see also
Wojtak & Agnello 2019). Multiple secondary sources of errors
in redshift measurements were studied by Davis et al. (2019),
but none of them seem to have any noticeable effect. Another
explanation may be that the standardisation of SNe Ia is not
properly understood yet (as a caveat, see Rigault et al. 2015, for
example, or Khetan et al. 2020), or that there is some (hitherto
undiscovered) source of systematics in one of the other used data
sets. If all astrophysical systematics are exhausted, one can also
consider proposals involving non-standard physics in the local
Universe such as screened fifth forces, which may bias H0 mea-
surements high via modulation of gravity-dependent pulsation
periods of Cepheids (for more details see Desmond et al. 2019).
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Table 4. Same as Table 2, but for various combinations of late-time observations including two local determinations of H0 (SH0ES or CCHP),
measurements of isotropic BAO (DV) and anisotropic BAO from the Lyman-α forest of quasars (Ly-α), and estimates of distance moduli from
high-redshift quasars.

Flat (Ωk = 0)
Parameter CCHP + H0LiCOW

+ SN + BAO (BOSS)
SH0ES + H0LiCOW
+ SN + BAO (BOSS
+ DV + Ly-α)

H0LiCOW + SN +

BAO (BOSS + DV +

Ly-α)

SH0ES + H0LiCOW
+ SN + BAO (BOSS)
+ high-z quasars

rd (Mpc) 139.5 ± 3.6 138.1 ± 2.7 138.6 ± 3.8 134.0 ± 2.8
H0rd (km s−1) 10019 ± 152 10197.1 ± 135 10191 ± 138 10011 ± 149
q0 −0.4 ± 0.4 −0.9 ± 0.3 −0.8 ± 0.3 −0.2 ± 0.3
ln τ (Planck ΛCDM) 3.8 (2.3σ) 12.8 (4.7σ) 4.4 (2.5σ) 17.1 (5.5σ)
ln τ (Planck ΛCDM+Neff) 3.4 (2.1σ) 8.0 (3.6σ) 4.2 (2.4σ) 11.0 (4.3σ)
ln τ (Planck early DE) 2.1 (1.5σ) 7.2 (3.4σ) 2.8 (1.9σ) 10.8 (4.3σ)

Notes. The parameters are determined using model 3 with Ωk = 0.

Fig. 2. Comparison between sound horizon rd and Hubble constant
H0 measured from Planck observations of the CMB (assuming a flat
ΛCDM) and late-time observations (using flat model 3) obtained by cal-
ibrating SN and BAO measurements with three different absolute dis-
tance calibrations from: gravitational lensing (H0LiCOW), the cosmic
distance ladder with Cepheids (SH0ES) or the TRGB (CCHP). For the
late-time data, the contours show 1-, 2- and 5σ confidence regions of
the posterior probability (the latter obtained by Gaussian extrapolation).
The Planck constraints (1- and 2σ confidence regions) are obtained for
the standard effective number of neutrinos (black solid line) and a model
with a free effective number of neutrinos (black dashed lines, colour
points).

For these reasons, we also provide a measurement that relies
only on lenses and BAO, without any additional constraint from
SNe, in Sect. 4.

Fig. 3. Effects of four different extensions of the flat ΛCDM model
on the sound horizon and the Hubble constant measured from the
Planck data. The models considered here are ΛCDM + free Neff , early
dark energy, wCDM, and PEDE. The CMB-based constraints are com-
pared to the measurements from late-time observations (SN + BAO +
H0LiCOW + SH0ES/CCHP) shown with the grey shaded contours. The
late-time measurements are obtained with model 3 (see Table 1) and
show the 2σ credibility regions.

The weak trend in Fig. 5 may indicate residual systemat-
ics in the lens models, or the need for different low-z expan-
sion models, or it may vanish entirely with larger lens samples.
In order to check the robustness of the trend, cosmography-
grade models of more lenses are needed, over the whole 0.3 .
z . 0.7 current redshift interval and beyond. Finally, the role of
systematics in the lens-mass models can be assessed once high-
S/N spatially resolved kinematics are available (Shajib et al.
2018; Yıldırım et al. 2020), which would enable more flexible
dynamical models than the ones used so far on aperture-averaged
velocity dispersions.

As a final remark, we emphasise that resolving the H0 ten-
sion alone is not sufficient, since different models that can shift
this value are still at tension with the inferred rd from BAO and
low-redshift indicators. Also, a direct combination of the infer-
ence from late-time and CMB-based measurements that may
be at >3σ tension, hence hardly compatible with one another,
should be justified. Therefore, any new proposal to resolve the
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Fig. 4. Tension between sound horizon and Hubble constant measured
from late-time observations and CMB for the following cosmological
models: ΛCDM, ΛCDM + Neff , early DE, wCDM, PEDE-CDM (flat-
ness assumed in all cases). Late-time observations include BAO, type Ia
supernovae, and three different absolute distance calibrations from grav-
itational lensing (H0LiCOW), the cosmic distance ladder with Cepheids
(SH0ES) or the TRGB (CCHP).

Fig. 5. Sound horizon rd measured from combining BAO and SNe data
with H0LiCOW lensing observations of each lens separately. Here, the
distance calibration is set solely by the lensing observations of each indi-
vidual lens. The measured sound horizon is shown as a function of lens
redshift for fits with a flat model 3 (solid error bars) and a flat PEDE-
CDM model (dashed error bars). For both models, the measurements
show a slight trend of rd increasing with lens redshift. The inference
from models 1 and 2 is fully consistent with the model 3 results. The
grey dashed line with shaded region shows Planck’s value of rd and its
(sub-percent) uncertainty obtained for the standard flat ΛCDM model.

discrepancy between CMB-based and late-time measurements
should consider both H0 and rd, and examine the separate infer-
ence upon late-time and CMB-based data.
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Appendix A: Planck compressed likelihood

Much of the constraining power of the CMB power spectrum
can be compressed in three parameters: the physical density of
baryons Ωbh2, which determines relative heights of the peaks
in the power spectrum, and two so-called shift parameters that
describe two fundamental and directly measured angular scales
related to the sound horizon and the Hubble horizon at the time
of decoupling. The shift parameters are defined by the following
equations:

R =
√

Ωm
DA(z∗)

H−1
0

, (A.1)

θ∗ =
rs(z∗)

DA(z∗)
, (A.2)

where z∗ is redshift of decoupling and DA is the comoving angu-
lar diameter distance, which for flat models considered in this
work is given by

DA = c
∫ z

0

dz
H(z)

(A.3)

H2(z) = H2
0[Ωm(1 + z)3 + ΩDE(z) + Ωγ(1 + z)4], (A.4)

where Ωγ denotes the density parameter of radiation, meaning
Ωγ = 2.47 × 10−5h−2.

The comoving sound horizon is given by

rs(z) =
c
√

3

∫ ∞

z

dz

H(z)
√

1 +
3Ωb
4Ωγ

(1 + z)−1
· (A.5)

Here, an additional contribution to the energy density driving the
expansion comes from relativistic neutrinos. The density param-
eter of relativistic neutrinos Ωn is given by

Ωn = Neff

7
8

( 4
11

)4/3
Ωγ, (A.6)

where Neff is the effective number of neutrinos, with Neff = 3.046
for the baseline model.

We computed redshift z∗ of decoupling employing the fol-
lowing fitting formula (Hu & Sugiyama 1996):

z∗ = 1047[1 + 0.00124(Ωbh2)−0.738][1 + g1(Ωmh2)g2 ] (A.7)

g1 = 0.0783(Ωbh2)−0.238[1 + 39.5(Ωbh2)0.763]−1 (A.8)

g2 = 0.56[1 + 21.1(Ωbh2)1.81]. (A.9)

The sound horizon imprinted in galaxy clustering and mea-
sured from BAO observations is fixed at the drag epoch, when
the baryons are released from the Compton drag of the photons.
The corresponding drag redshift zd can be calculated using the
following fitting function (Hu & Sugiyama 1996):

zd = 1345
(Ωmh2)0.251[1 + b1(Ωbh2)b2 )]

1 + 0.659(Ωmh2)0.828 (A.10)

b1 = 0.313(Ωmh2)−0.419[1 + 0.607(Ωmh2)0.674] (A.11)

b2 = 0.238(Ωmh2)0.223. (A.12)

The compressed CMB likelihood is given by a three-
dimensional Gaussian distribution in the three parameters men-
tioned above, meaning Ωnh2, R, and θ∗. We employed the
mean values and the covariance matrix determined from pub-
licly available MCMC models obtained for a flat ΛCDM

Fig. A.1. Comparison between constraints on rd and H0 from the full
Planck likelihood (dashed lines) and the compressed likelihood (for
post-recombination modifications of ΛCDM) or the extended com-
pressed likelihood (for pre-recombination modifications of ΛCDM)
used in this study (solid lines). The robustness test comprises two cases:
the standard flat ΛCDM model and its extension with a free number of
neutrinos.

model fitted to the Planck observations, including the temper-
ature, polarisation, and lensing data (Planck Collaboration VI
2020): (100Ωbh2, 100θ∗,R) = (2.237 ± 0.015, 1.0411 ±
0.00031, 1.74998±0.004) with the following correlation matrix:

 1.00 0.34 −0.63
0.34 1.00 −0.46
−0.63 −0.46 1.00

 . (A.13)

The compressed likelihood accurately recovers the actual
constraints obtained from the complete likelihood for a flat
ΛCDM model (see Fig. A.1). Only a fine adjustment of the red-
shift scales in both fitting formulae (δz/z ∼ 10−3, smaller relative
to the values adopted in Hu & Sugiyama 1996) was applied in
order to correct for a sub-percent bias in the mean values of rel-
evant parameters. In general, both approximations used to com-
pute z∗ and zdrag are accurate to within 1 per cent in a wide range
of the matter and baryon density parameters (Hu & Sugiyama
1996).

For early-time extensions of the standard ΛCDM cosmol-
ogy (such as a model with free Neff), the compressed likelihood
turns out to be insufficient, leading to a family of models with
a wide range of amplitudes of the first peak in the power spec-
trum. In order to circumvent this problem, we extended the com-
pressed likelihood described above by accounting for the height
of the first peak in the power spectrum as an additional con-
straint. Bearing in mind that the amplitude scales with Ωdmh2,
meaning the physical density of dark matter, a simple exten-
sion relies on adding Ωdmh2 as the fourth variable in the com-
pressed likelihood function. Using Planck results for a ΛCDM
model with a free effective number of neutrinos as a base early-
time extension (inferred from the full temperature and polari-
sation data), we determined the mean values and the covariance
matrix of the new four-parameter compressed likelihood, obtain-
ing (100Ωbh2, 100θ∗,R,Ωdmh2) = (2.225 ± 0.0223, 1.0414 ±
0.00054, 1.7529 ± 0.0056, 0.1184 ± 0.0029) and the following
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correlation matrix:
1.00 −0.50 −0.79 0.51
−0.50 1.00 0.30 −0.81
−0.79 0.30 1.00 −0.19
0.51 −0.81 −0.19 1.00

 . (A.14)

Figure A.1 demonstrates that the extended compressed like-
lihood accurately recovers the actual constraints on rd and H0
from Planck for a model with a free effective number of neutri-
nos.

Appendix B: Polynomial parametrisations

This section gives more detailed information about the polyno-
mial parametrisations used throughout this work.

B.1. Expansion formulae

Our first model is the simplest one and adopts a polynomial
expansion of H(z) in z;

H(z) = H0

[
1 + b1 z + b2 z2 + O(z3)

]
, (B.1)

where H0 is the Hubble constant, and the coefficient b1 is related
to the deceleration parameter q0 through

b1 = 1 + q0. (B.2)

In our second model, the luminosity distance DL is expanded as
a polynomial in log(1 + z)7;

x = log(1 + z),

DL(z) =
c ln(10)

H0

[
x + c2x2 + c3x3 + c4x4 + O(x5)

]
, (B.3)

where the coefficient c2 is related to the deceleration parameter
through the following relation:

c2 =
ln(10)

2
(2 − q0). (B.4)

This different parametrisation was chosen in order to avoid con-
vergence problems with the Taylor expansion around zero, when
employing data with redshifts z > 1. By introducing a new vari-
able x that satisfies x = 0 when z = 0, and x < 1 when z→ 2
(where the upper limit of 2 is based on the highest lensed quasar
redshift), the parametrisation is kept within the convergence
radius of the Taylor expansion.
Our third model describes transverse comoving distances DM by
polynomials in z/(1 + z);

y =
z

1 + z
,

DM(z) =
c

H0

[
y + d2y2 + d3y3 + d4y4 + O(y5)

]
, (B.5)

where the coefficient d2 is related to the deceleration parameter
through

d2 = 1
2 (1 − q0). (B.6)

This parametrisation was, similarly to the one in model 2, chosen
to overcome convergence problems.

Fig. B.1. Relative differences between distances in a fiducial flat
ΛCDM model and distances derived from models 1-3 with free param-
eters matched to the kinematical coefficients of the fiducial model,
∆DM/DM = (DM,expansion−DM,ΛCDM)/DM,ΛCDM. The solid lines show the
results satisfying the convergence criterion, which sets the truncation of
polynomials used in the adopted models in this study.

B.2. Truncation of the polynomials

An important thing to consider is at which order the Tay-
lor expansions should be truncated. Higher orders of expansions
can give better approximations to the shape of the data, but also
introduce more free parameters and therefore larger uncertain-
ties. In order to determine the truncation of the polynomials
as given in Eqs. (B.1), (B.3), and (B.5), we performed a con-
vergence test to check that the models can accurately recover
expansion history of a fiducial flat ΛCDM cosmological model
in a redshift range of observational data used in our study, for
instance, z < 1.8. The test relies on comparing distances from
models 1–3 to the actual distances in the fiducial model. Free
parameters of the models were determined by matching coef-
ficients of Taylor expanded Hubble parameter in models 1–3
and the fiducial model. The latter yields well-known kinemati-
cal coefficients (Weinberg 1972; Visser 2004):

q0 = 3
2 Ωm − 1,

j0 = 1,

s0 = 1 − 9
2 Ωm. (B.7)

7 Here, log(1 + z) refers to the log base 10, and not to the natural
logarithm.
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Fig. B.2. Best-fit values of flat ΛCDM and polynomial parametrisation models 1-3 to mock data. The mock data is generated by replacing the
Pantheon distance modulus points by their fiducial flat ΛCDM values. The red lines indicate the canonical ΛCDM values of Ωm, H0 and the
expansion coefficients bi, ci, and di.

Since the errors that we obtain by combining calibrations of
H0LiCOW and SH0ES are around 2% (see Table 3), we required
our models to be within a 2% accuracy of ΛCDM distances in
this test. The results can be seen in Fig. B.1 for Ωm = 0.3,
where the shaded region corresponds to this imposed limit. It
is sufficient to employ three free parameters (corresponding to
a second-order polynomial) for model 1 and four free param-
eters (corresponding to a fourth-order polynomial) for models
2 and 3 to satisfy the convergence condition. Since a further

increase of the number of free parameters is disfavoured by the
BIC obtained in fits with the actual late-time observations, these
polynomial truncations were adopted in our study (see Table 1).
The BIC score is calculated as

BIC = ln(N)k − 2 ln(Lm.a.p.), (B.8)

where N is the number of data points and k is the number of all
free parameters in the cosmological fits.
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B.3. Test with mock distance-modulus data

As a final test for our polynomial parametrisation models, we
investigated if any biases were introduced when we fitted mod-
els 1-3 to flat ΛCDM data. We transformed the Pantheon SN
data set to a mock data set by replacing their binned distance
modulus entries with the fiducial flat ΛCDM values (adopting
H0 = 74 km s−1 Mpc−1 and Ωm = 0.3) at the same redshifts. For
the errors associated with the distance moduli we keep the orig-
inal Pantheon ones. By construction, best fit ΛCDM parameters
are equal to their fiducial values, whereas relative shifts in best
fit parameters obtained for non-ΛCDM models measure the cor-
responding biases. This test is similar to the one performed by
Yang et al. (2019), in which they found that our model 2 intro-
duces an artificial bias. However, their mock data set is based
on Pantheon data as well as high-redshift quasar and GRB data
(with zmax = 6.7), while in our work we only used sources below
z = 1.8. Figure B.2 shows the best fit values for the coefficients
bi, ci, and di of models 1-3, obtained with MCMC, and their
true values in a flat ΛCDM cosmology. As can be seen, they are
in complete agreement with each other. In fact, the relative dif-
ference in H0 between the fiducial value and those of models

1-3 is 0.03%, 0.02%, and 0.02%, respectively. This bias is about
a hundred times smaller than the current precision achieved by
SH0ES and H0LiCOW data (which is around 2%). The bias in
q0 is larger: 2.0%, 1.2%, and 1.3% for models 1-3, but still neg-
ligible compared to our obtained errors in q0 (which are 10% at
best).

This test demonstrates that if the underlying cosmology is
flat ΛCDM, then our models will not introduce any significant
biases in the Pantheon redshift range. The convergence test in the
previous section also guarantees this. The bias that Yang et al.
(2019) found in their model was a consequence of it not pass-
ing the convergence test over the complete redshift range of
z = 0 − 7.

We repeated the test for the PEDE model and for a wCDM
cosmology with w = −1.2. In both cases, we assumed Ωm = 0.3.
We found only a sub-percent bias in the best fit H0 and a few-
percent bias in q0, where the actual values are given by;

q0,PEDE = 3
2 Ωm −

1 −Ωm

2 ln(10)
− 1,

q0,wCDM = 1
2 + 3

2 w(1 −Ωm). (B.9)
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