Controlled dc Monitoring of a Superconducting Qubit

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.124.056801

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Controlled dc Monitoring of a Superconducting Qubit

A. Kringhoj,1 T. W. Larsen,1 B. van Heck,2,3 D. Sabonis,1 O. Erlandsson,1 I. Petkovic,1 D. I. Pikulin,2 P. Krogstrup,1,4 K. D. Petersson,1 and C. M. Marcus1

1Microsoft Quantum Lab Copenhagen and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
2Microsoft Quantum, Station Q, University of California, Santa Barbara, California 93106-6105, USA
3Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, Netherlands
4Microsoft Quantum Materials Lab Copenhagen, Kanalvej 7, 2800 Lyngby, Denmark

(Received 17 October 2019; accepted 23 December 2019; published 5 February 2020)

Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor. Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the field-effect transistor to the monitoring circuit allows the influence of weak-to-strong dc monitoring of a “live” qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.

DOI: 10.1103/PhysRevLett.124.056801

Josephson junctions (JJs) serve as key elements in a wide range of quantum systems of interest for fundamental explorations and technological applications. JJs, which provide the nonlinearity essential for superconducting qubits [1], are typically fabricated using insulating tunnel junctions between superconducting metals [2]. Alternative realizations using atomic contacts [3] or superconductor-semiconductor-superconductor (S-Sm-S) junctions [4–6] are receiving growing attention. Hybrid S-Sm-S JJs host a rich spectrum of new phenomena, including a modified current-phase relation (CPR) [7,8] different from the sinusoidal CPR of metal-insulator-metal tunnel junctions. Other electrostatically tunable parameters include the subgap density of states (DOS), shunt resistance [9], spin-orbit coupling [10], and critical current [11].

Recent work on S-Sm-S JJs in various platforms relies on either dc (direct current) transport [8,12] or cQED (circuit quantum electrodynamics) qubit measurements [13–16]. Common to these experiments is that valuable device information is only accessible in one of the two measurement techniques. For instance, measurements estimating individual transmission eigenvalues [17] or measurements probing the local DOS are directly accessible with dc transport but not with cQED. The prospect of combining these techniques potentially allows a deeper understanding of JJ-based quantum systems.

In this Letter, we investigate a modified S-Sm-S JJ design of a gateon qubit that combines dc transport and coherent cQED qubit measurements. The device is realized in an InAs nanowire with a fully surrounding epitaxial Al shell by removing the Al layer in a second region (besides the JJ itself) allowing that region to function as a field-effect transistor (FET). By switching the FET between being conductive (“on”) or depleted (“off”) using a gate voltage, we are able to implement a controlled transition between the transport and cQED measurement configurations. We demonstrate that the additional tunability does not compromise the quality of the qubit in the cQED configuration, where the FET is off. We further demonstrate control of the qubit relaxation as the FET is turned on, continuously increasing the coupling of the junction to the environment, in agreement with a simple circuit model. Finally, we demonstrate strong correlation between cQED and transport data by comparing the measured qubit frequency spectrum with the switching current directly measured in situ.

Devices were fabricated on a high resistivity silicon substrate covered with a 20 nm NbTiN film. The nanowire region, qubit-capacitor island, electrostatic gates, on-chip gate filters, readout resonator, and transmission line were patterned by electron-beam lithography and defined by reactive-ion etching techniques; see Fig. 1(a). The full-shell InAs/Al epitaxial hybrid nanowire is placed at the bottom of the qubit island; see Fig. 1(b) [18]. Two gateable regions are formed by selective wet etching of the Al in two ~150 nm segments defined by electron-beam lithography, aligned with two independent bottom gates, which are separated from the nanowire by a 15-nm-thick HfO2 dielectric. The three superconducting segments—ground, qubit island with capacitance C_G, and dc bias V_J—are then contacted with ~200 nm sputtered NbTiN; see Fig. 1(b). In this circuit, when the FET is on, dc current or voltage...
measurements are available [blue box in Fig. 1(c)]. Depleting the FET allows the device to operate as a qubit, where measurements of the heterodyne demodulated transmission V_H allow qubit state determination and V_Q allows tuning the qubit frequency f_{01} over several gigahertz [red box in Fig. 1(c)].

Setting the voltage on the FET gate to $V_{FET} = +4 \text{ V}$, which turned the FET fully conducting, and the voltage on the qubit JJ to $V_Q = -2.9 \text{ V}$ makes the voltage drop predominantly across the qubit JJ. In this configuration, the differential conductance dI_B/dV_B probes the convolution of the DOS on each side of the JJ; see Fig. 1(d). Keeping in mind a simple model of JJ spectroscopy [9], we interpret the distance between the two peaks in dI_B/dV_B as $4\Delta/e = 4 \times 190 \text{ } \mu\text{V}$, where Δ is the induced superconducting gap. In the cQED configuration, with $V_{FET} = -3 \text{ V}$ and $V_Q = -2.5 \text{ V}$, coherent Rabi oscillations are observed by varying the duration τ of the qubit drive tone at the qubit frequency $f_{01} = 4.6 \text{ GHz}$. Following the drive tone, a second tone was applied at the readout resonator frequency, $f_R \approx 5.3 \text{ GHz}$, to perform dispersive readout where V_H is measured; see Fig. 1(e). These experiments are carried out in a dilution refrigerator with a base temperature of $\sim 10 \text{ mK}$ using standard lock-in and dc techniques for the transport measurements and using heterodyne readout and demodulation techniques for the cQED measurements [19].

Having demonstrated the ability to probe the qubit JJ with both transport and cQED techniques, we next compare performance to a nominally identical gatemon without the FET and extra dc lead. Scanning electron micrographs of the two devices are shown in Figs. 2(a) and 2(b). The measured relaxation times T_1 are shown for a range of qubit frequencies f_{01} controlled by V_Q in Fig. 2(c). Relaxation times T_1 were measured by applying a π pulse, calibrated by a Rabi experiment at f_{01}, followed by a variable wait time τ before readout; see Fig. 2(c), inset. $T_1(V_Q)$ were then extracted by fitting $V_H(\tau)$ to a decaying exponential. We observe no systematic difference in T_1 between the devices, demonstrating that the addition of a transport lead does not compromise the performance in the cQED configuration.

We next monitored dI_B/dV_B, followed by V_{FET} as V_{FET} was varied from off (cQED regime) to on (transport regime). Measurements of dI_B/dV_B [Fig. 3(a)] illustrate how the FET was turned conducting as V_{FET} was increased. Qubit frequency f_{01} was measured by two-tone spectroscopy, where a drive tone with varying frequency f_d was applied for $2 \mu\text{s}$, followed by a readout tone at f_R. A Lorentzian fit is used for each V_{FET} to extract f_{01}; see Fig. 3(b), insets. We attribute the weak dependence of f_{01} on V_{FET} to cross talk between the two gates.

Following each spectroscopy measurement, a T_1 measurement was immediately carried out, see Fig. 3(c), yielding a nearly gate independent $T_1 \sim 6 \mu\text{s}$ for $V_{FET} < -2 \text{ V}$. At $V_{FET} \sim -2 \text{ V}$, we observe a sudden drop in T_1, followed by a short revival at $V_{FET} \sim -1.8 \text{ V}$. We associate the revival in T_1 with the corresponding drop in dI_B/dV_B observed in

![FIG. 1. (a) Optical micrograph of the modified gatemon qubit device showing the bottom of the readout resonator capacitively coupled to the qubit island. The island is contacted to a nanowire placed in the highlighted green square. (b) Scanning electron micrograph (SEM) of the nanowire in the green rectangle in (a). Two removed segments of the Al shell form the qubit JJ (125 nm) and the FET (175 nm), controlled by gates V_Q and V_{FET}. The bias voltage across the nanowire is indicated V_j. (c) Device circuit diagram. (d) Differential conductance dI_B/dV_B as a function of bias voltage V_B shows the superconducting gap Δ of the qubit JJ, with $V_{FET} = +4 \text{ V}$ and $V_Q = -2.9 \text{ V}$. (e) Rabi oscillations of the qubit seen in resonator output V_H as a function of drive time τ at $V_{FET} = -3 \text{ V}$ and $V_Q = -2.5 \text{ V}$, with exponentially damped sinusoid (orange).](image)

![FIG. 2. (a) Scanning electron micrograph of a gatemon without transport lead. C_Q is the capacitance of the qubit island. (b) Same as (a) for gatemon with transport lead, with voltage bias V_j. (c) Qubit relaxation times T_1 of the gatemons as a function of qubit frequency f_{01}. Both leaded (black circle) and nonleaded (red square) devices show similar T_1 times between 3–8 μs, with comparable mean and standard deviation values. Inset: Relaxation time T_1 (black points) at $f_{01} = 4.6 \text{ GHz}$ for the leaded device as a function of wait time τ, with exponential fit (orange curve) yielding $T_1 = 6 \mu\text{s}$. Error bars are estimated from fit uncertainties.](image)
Fig. 3(a). We attribute this nonmonotonicity to the formation of quantum dots in the FET, which is commonly observed in nanowire JJs near the pinch-off values [20]. For $V_{\text{FET}} > -1.5$ V, f_{01} and T_1 can no longer be resolved, consistent with increasing dI_B/dV_B. We note that the dI_B/dV_B curve in Fig. 3(a) was shifted horizontally by a small amount (0.1 V) to align features in dI_B/dV_B with corresponding features in T_1. This was done to account for gate drift, as the cQED and transport measurements were performed sequentially over the course of several days.

We develop a circuit model of qubit relaxation in the ledged device. Within the model, the qubit circuit is coupled through the FET to a series resistance R_F and a parallel capacitance C_F representing an on-chip filter on the lead [21]. The coupling to the environment via the (superconducting) FET junction is modeled as a gate tunable Josephson inductance L_{FET}, giving a total environment impedance $Z_{\text{env}} = i\omega L_{\text{FET}} + (1/R_F + i\omega C_F)^{-1}$. This impedance can be viewed as a single dissipative element.

$$R_{\text{env}} = 1/Re[Y_{\text{env}}] = L_{\text{FET}}^2 (R_F^2 C_F^2 \omega^4 + \omega^2)/R_F + R_F(1 - 2L_{\text{FET}}C_F \omega^2),$$

(1)

with admittance $Y_{\text{env}} = 1/Z_{\text{env}}$ [22]. The relaxation rate associated with the lead is given by $\gamma_{\text{lead}} = 1/R_{\text{env}} C_Q$, yielding a total decay rate $\gamma_{\text{tot}} = \gamma_{\text{nonled}} + \gamma_{\text{lead}}$, where γ_{nonled} is the decay rate associated with relaxation unrelated to the lead.

We estimate $L_{\text{FET}} = \hbar/2eI_{c,\text{FET}}$ [23], where $I_{c,\text{FET}}$ is the critical current of the FET, which we in turn relate to the normal-state resistance $R_{n,\text{FET}}$ via the relation $I_{c,\text{FET}} R_{n,\text{FET}} = \pi \Delta/2e$ [24], yielding

$$L_{\text{FET}} = \hbar R_{n,\text{FET}}/\pi \Delta.$$

(2)

$R_{n,\text{FET}}$ can be found from dI_B/dV_B in Fig. 3(a) by subtracting the voltage drop across the line resistance, $R_{\text{line}} = 57$ kΩ, and assuming no voltage drop across the qubit JJ, justified by $I_{c,\text{FET}} < I_c$, where I_c is the critical current of the qubit JJ. From electrostatic simulations we estimate $C_Q = 38$ fF [25]. We take $\omega = 2\pi f_{01}$, where $f_{01} = 4.6$ GHz is the average f_{01} in Fig. 3(b), and $\Delta = 190$ μeV from Fig. 1(d). Combining Eqs. (1) and (2) with the measured 1/T_1 yields the γ_{lead} in Fig. 4 using $R_F = R_{\text{line}}$ and $C_F = 0.1$ pF as the best fit parameter. We note that electrostatic simulations give $C_F \sim 0.5$ pF, forming a reasonable agreement with the best fit value.

We define $\gamma_{\text{nonled}} = 1/T_1^{\text{mean}}$, where $T_1^{\text{mean}} = 5.8$ μs is the mean value of the T_1 at $V_{\text{FET}} < -2$ V. Using this estimate for γ_{nonled}, we calculate the total relaxation time based on the transport data (orange line in Fig. 4), showing excellent agreement with the measured values. The T_1 limit based on the contribution of the lead saturates at $T_1^{\text{lead}} \sim 1$ ms, indicating that leaded gatemon devices can accommodate large improvements in gatemon relaxation times. We mainly attribute the current level of relaxation times to dielectric losses. This is based on measurements of test resonators from the same substrates yielding quality factors of $Q \sim 10^5$, with $T_1 \sim Q/(2\pi f_{01})$ being roughly consistent with the observed T_1. Although optimizing the qubit

FIG. 4. Relaxation rate $\gamma = 1/T_1$ (black circles) as a function of FET voltage V_{FET}, by inverting the experimental data from Fig. 3(c). Model relaxation rates γ_{lead} due only to the transport lead (blue) and γ_{tot} (orange) including lead and nonlead contributions (see text). The circuit model is sketched in the inset where the qubit is coupled to the environment by an effective impedance, $Z_{\text{env}} = i\omega L_{\text{FET}} + (1/R_F + i\omega C_F)^{-1}$. The dashed rectangle indicates the environment circuit.

We attribute this nonmonotonicity to the formation of quantum dots in the FET, which is commonly observed in nanowire JJs near the pinch-off values [20]. For $V_{\text{FET}} > -1.5$ V, f_{01} and T_1 can no longer be resolved, consistent with increasing dI_B/dV_B. We note that the dI_B/dV_B curve in Fig. 3(a) was shifted horizontally by a small amount (0.1 V) to align features in dI_B/dV_B with corresponding features in T_1. This was done to account for gate drift, as the cQED and transport measurements were performed sequentially over the course of several days.

We develop a circuit model of qubit relaxation in the ledged device. Within the model, the qubit circuit is coupled through the FET to a series resistance R_F and a parallel capacitance C_F representing an on-chip filter on the lead [21]. The coupling to the environment via the (superconducting) FET junction is modeled as a gate tunable Josephson inductance L_{FET}, giving a total environment impedance $Z_{\text{env}} = i\omega L_{\text{FET}} + (1/R_F + i\omega C_F)^{-1}$. This impedance can be viewed as a single dissipative element.

$$R_{\text{env}} = 1/Re[Y_{\text{env}}] = L_{\text{FET}}^2 (R_F^2 C_F^2 \omega^4 + \omega^2)/R_F + R_F(1 - 2L_{\text{FET}}C_F \omega^2),$$

(1)

with admittance $Y_{\text{env}} = 1/Z_{\text{env}}$ [22]. The relaxation rate associated with the lead is given by $\gamma_{\text{lead}} = 1/R_{\text{env}} C_Q$, yielding a total decay rate $\gamma_{\text{tot}} = \gamma_{\text{nonled}} + \gamma_{\text{lead}}$, where γ_{nonled} is the decay rate associated with relaxation unrelated to the lead.

We estimate $L_{\text{FET}} = \hbar/2eI_{c,\text{FET}}$ [23], where $I_{c,\text{FET}}$ is the critical current of the FET, which we in turn relate to the normal-state resistance $R_{n,\text{FET}}$ via the relation $I_{c,\text{FET}} R_{n,\text{FET}} = \pi \Delta/2e$ [24], yielding

$$L_{\text{FET}} = \hbar R_{n,\text{FET}}/\pi \Delta.$$

(2)

$R_{n,\text{FET}}$ can be found from dI_B/dV_B in Fig. 3(a) by subtracting the voltage drop across the line resistance, $R_{\text{line}} = 57$ kΩ, and assuming no voltage drop across the qubit JJ, justified by $I_{c,\text{FET}} < I_c$, where I_c is the critical current of the qubit JJ. From electrostatic simulations we estimate $C_Q = 38$ fF [25]. We take $\omega = 2\pi f_{01}$, where $f_{01} = 4.6$ GHz is the average f_{01} in Fig. 3(b), and $\Delta = 190$ μeV from Fig. 1(d). Combining Eqs. (1) and (2) with the measured 1/T_1 yields the γ_{lead} in Fig. 4 using $R_F = R_{\text{line}}$ and $C_F = 0.1$ pF as the best fit parameter. We note that electrostatic simulations give $C_F \sim 0.5$ pF, forming a reasonable agreement with the best fit value.

We define $\gamma_{\text{nonled}} = 1/T_1^{\text{mean}}$, where $T_1^{\text{mean}} = 5.8$ μs is the mean value of the T_1 at $V_{\text{FET}} < -2$ V. Using this estimate for γ_{nonled}, we calculate the total relaxation time based on the transport data (orange line in Fig. 4), showing excellent agreement with the measured values. The T_1 limit based on the contribution of the lead saturates at $T_1^{\text{lead}} \sim 1$ ms, indicating that leaded gatemon devices can accommodate large improvements in gatemon relaxation times. We mainly attribute the current level of relaxation times to dielectric losses. This is based on measurements of test resonators from the same substrates yielding quality factors of $Q \sim 10^5$, with $T_1 \sim Q/(2\pi f_{01})$ being roughly consistent with the observed T_1. Although optimizing the qubit...
for the correlation between critical current I_c and switching current I_s, which is extracted from recent experiments of similar devices reaching across the qubit junction, $I_c < I_s$; there is no voltage drop across the FET junction, since $I_c < I_{c,FET}$. The qubit resonance f_01 is measured over the range using two-tone spectroscopy; see Fig. 5(b). In doing this, we assume that there is no voltage drop across the FET junction, since $I_c < I_{c,FET}$. The qubit resonance f_01 is measured over the same V_Q range using two-tone spectroscopy; see Fig. 5(b). We note that the two-photon transition to the next harmonic is also observed for some V_Q, visible at a slightly lower frequency than f_{01}, given by the anharmonicity.

The relation between the two measurements is shown in Fig. 5(c). In order to estimate $I_{c}(V_Q)$, we first extract the switching current $I_{s}(V_Q)$ from the data, taken as the I_B at which dV_Q/dI_B is maximal, while sweeping I_B from negative to positive values [blue dots in Fig. 5(a)]. Bright features at high bias ($I_B > I_s$) are likely associated with multiple Andreev reflection [28]. To extract I_c from the measured I_s, we model the qubit as an underdamped RCSJ (resistively and capacitively shunted junction) Josephson junction with a sinusoidal current-phase relation $I = I_c \sin \phi$. Furthermore, we note the small difference between the return current I_r (same definition as I_s at negative I_B) is slightly smaller than I_s [19]. In this case, I_s corresponds to the current of equal stability between the resistive and nonresistive state [29]. Under this condition, and for large quality factors $Q \gg 1$, the ratio I_s/I_c depends on quality factor $Q = R\sqrt{2eI_cC_Q}/\hbar$ as

$$I_s/I_c = (2 + 4/\pi)Q^{-1} + (2 + \pi)Q^{-2},$$

where $R = (1/R_J + 1/R_{line})^{-1}$ and R_J is the shunt resistance [29]. In RCSJ theory R_J is proportional to the normal-state resistance of the junction R_N [9] with the proportionality depending on both the DOS inside the proximitized superconducting gap and temperature. As these parameters are not simultaneously accessible in our setup, we take the proportionality as a fit parameter. By doing so, we find R_J to be equal to R_N. We then apply the Ambegaokar-Baratoff relation $I_c R_J = \pi \Delta / 2e$ [24], which allows us to extract I_c by inverting Eq. (3) numerically [30]. The extracted I_c in turn, yield values for Q in the range 10–20, consistent with our initial assumptions. For these values of Q, the RCSJ model takes the electron temperature to be >50 mK to account for the weak asymmetry in I_s and I_c [19]. Finally, we relate I_c to f_{01} by using the numerical solution of the standard transmon Hamiltonian, $H = 4E_C(n - n_g)^2 - E_J \cos(\phi)$ [31], with $E_J = hI_c/2e$ and $E_C/\hbar = 512$ MHz, at the charge degeneracy point with offset charge $n_g = 0.5$.

A comparison of the measured and estimated f_{01} is shown in Fig. 5(c). The model (RCSJ) curve is shifted horizontally by 0.05 V to align the features at ~ -2.5 V and can be attributed to cross talk between the two gates as V_{FET} is varied from the dc to the cQED configuration, consistent with independent calibration measurements. A clear correlation is observed between the two measurement techniques, especially evident from the matching of local minima and maxima of both spectra and the overall agreement of the absolute values. We attribute the residual quantitative discrepancy to the simplifying assumptions used to determine the shunt resistance of the RCSJ model, which likely do not capture the possible gate dependence of the subgap DOS of the qubit JJ. In addition, the assumption of sinusoidal CPR will break down as the qubit JJ is opened due to increasing mode transmission in the semiconductor junction, leading to small overshoots of the model as perhaps seen around $V_Q \sim 0$ V.

In summary, we have demonstrated the compatibility of dc transport and cQED measurement techniques in gate-mon qubits. This method may extend to other material platforms such as two-dimensional electron gases [15] or graphene [16,27,32]. Furthermore, we achieve a controllable relaxation rate potentially relevant for a range of qubit applications such as tunable coupling schemes [33,34] and controlled qubit relaxation and reset protocols [35,36]. In addition, we have demonstrated clear correlation between dc transport and cQED measurements motivating future
extensions, such as studying CPRs [8] or probing channel transmissions by studying multiple Andreev reflections [12] combined with cQED experiments [10,13,14]. Combining well-established transport techniques in quantum dot physics with qubit geometries may also be an interesting research direction [37]. Potentially, this geometry is also a promising platform to coherently probe Majorana zero modes in cQED measurements [38], as transport signatures have been demonstrated, both in half-shell nanowires [39] and full-shell wires [40,41].

This work was supported by Microsoft and the Danish National Research Foundation. We acknowledge Robert McNeil, Marina Hesselberg, Agnieszka Telecka, Sachin Yadav, Karolis Parfeniukas, Karthik Jambunathan, and Shivendra Upadhyay for the device fabrication. We thank Lucas Casparis and Roman Lutchyn for useful discussions, as well as Ruben Grigoryan for input on the electronic setup. B. v. H. thanks the Center for Quantum Devices, Niels Bohr Institute for the hospitality during part of the time in which this study was carried out.

[30] Numerical code and data accompanying the analysis of Fig. 5(c) are found at https://github.com/anderskringhoej/de_qubit.
PHYSICAL REVIEW LETTERS 124, 056801 (2020)