CP Properties of Higgs Boson Interactions with Top Quarks in the (tt)over-barH and tH Processes Using H -> gamma gamma with the ATLAS Detector

Aad, G.; Abbott, B.; Abbott, DC; Abud, AA; Abeling, K.; Abhayasinghe, DK; Abidi, S.H.; AbouZeid, Ossama Sherif Alexander; Abraham, NL; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Alonso Diaz, Alejandro; hqz214, hqz214; Camplani, Alessandra; Dam, Mogens; Galster, Gorm Aske Gram Krohn; Hansen, Jørn Dines; Hansen, Peter Henrik; Hansen, Jørgen Beck; Ignazzi, Rosanna; Monk, James William; Petersen, Troels Christian; Wiglesworth, Graig; Stark, Simon Holm; Xella, Stefania; ATLAS Collaboration

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.125.061802

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
CP Properties of Higgs Boson Interactions with Top Quarks in the $t\bar{t}H$ and tH Processes Using $H \to \gamma\gamma$ with the ATLAS Detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 10 April 2020; accepted 15 June 2020; published 5 August 2020)

A study of the charge conjugation and parity (CP) properties of the interaction between the Higgs boson and top quarks is presented. Higgs bosons are identified via the diphoton decay channel ($H \to \gamma\gamma$), and their production in association with a top quark pair ($t\bar{t}H$) or single top quark (tH) is studied. The analysis uses 139 fb$^{-1}$ of proton–proton collision data recorded at a center-of-mass energy of $\sqrt{s} = 13$ TeV with the ATLAS detector at the Large Hadron Collider. Assuming a CP-even coupling, the $t\bar{t}H$ process is observed with a significance of 5.2 standard deviations. The measured cross section times $H \to \gamma\gamma$ branching ratio is $1.64^{+0.39}_{-0.36}(\text{stat})^{+0.17}_{-0.14}(\text{sys})$ pb, and the measured rate for tH is $(1.43^{+0.21}_{-0.15}(\text{stat})^{+0.31}_{-0.37}(\text{sys}))$ times the Standard Model expectation. The tH production process is not observed and an upper limit on its rate of 12 times the Standard Model expectation is set. A CP-mixing angle greater (less) than 43 (−43)$^\circ$ is excluded at 95% confidence level.

DOI: 10.1103/PhysRevLett.125.061802

The observation of Higgs boson production in association with top quarks at the LHC [1,2] provides an opportunity to probe the charge conjugation and parity (CP) properties of the Yukawa coupling of the Higgs boson to the top quark. The Standard Model (SM) of particle physics predicts the Higgs boson to be a scalar particle. This prediction is a result of the Yukawa coupling of the Higgs boson to the top quark. The presence of a CP-mixing angle greater (less) than 43 (−43)$^\circ$ is excluded at 95% confidence level.

The CP properties of the top Yukawa coupling can be probed directly using Higgs boson production in association with top quarks: $t\bar{t}H$ and tH processes. The couplings impact the production rates [11–14] and some kinematic distributions. The tH rate is particularly sensitive to deviations from SM couplings due to destructive interference in the SM between diagrams where the Higgs boson radiates from a top quark and from a W boson. The presence of CP-mixing in the top Yukawa coupling also modifies the gluon–gluon fusion (ggF) production rate and the $H \to \gamma\gamma$ decay rate.

This analysis is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton–proton (pp) collision data recorded from 2015 to 2018 with the ATLAS detector. The ATLAS detector [15–17] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle [18]. The trigger system consists of a hardware-based first-level trigger and a software-based high-level trigger [19]. Events used in this analysis were triggered by requiring two photons with a loose identification requirement [20] in the 2015–2016 data-taking period and transverse energies of at least 25 GeV and 35 GeV for the subleading and leading photons, respectively. Due to the greater instantaneous luminosity, the photon trigger identification requirement was tightened in the 2017–2018 data-taking period. The average trigger efficiency is over 98% for events passing the full diphoton event selection for this analysis.

The EFT definition used in this Letter is provided by the Higgs characterization model [21], which is implemented in the MadGraph5_AMC@NLO generator [22]. Within

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
this model, the term in the effective Lagrangian that describes the top Yukawa coupling is

\[\mathcal{L} = -\frac{m_t}{v} \left[\bar{t} \gamma_i \alpha \gamma^\dagger \gamma_i \right] \bar{H} \cos(\alpha) + \sin(\alpha) \gamma_i] \right] \]

where \(m_t \) is the top quark mass, \(v \) is the Higgs vacuum expectation value, \(\kappa_i \) (\(> 0 \)) is the top Yukawa coupling parameter, and \(\alpha \) is the CM-mixing angle. The SM corresponds to a CP-even coupling with \(\alpha = 0 \) and \(\kappa_i = 1 \), while a CP-odd coupling is realized when \(\alpha = 90^\circ \).

Simulated \(\tilde{t}H \) and \(tH \) samples were generated using MadGraph5_AMC@NLO 2.6.2 at next-to-leading order in QCD for different \(\alpha \) and \(\kappa_i \) (for \(tH \) values), with the NNPDF30NLO [23] parton distribution function (PDF) set used for the matrix element (ME) evaluation, and interfaced to PYTHIA 8 [24] using the NNPDF23LO [25] PDF set for parton showering (PS). The A14 parameter set [26], tuned to data, was used for both PS and underlying event (UE). From these samples, the yields for \(\tilde{t}H \) and \(tH \) are parametrized as functions of \(\alpha \) and \(\kappa_i \), which are used in the statistical interpretations. Samples for other Higgs boson production processes, \(ggF \) [27], vector-boson fusion (VBF) [28], and vector-boson associated production (VVH) [29,30] were produced with POWHEG-BOX v2 generator [31] using the PDF4LHC15 PDF set [32] for ME, with the AZNLO set of tuned parameters [33] and PYTHIA 8 for PS using the CTEQ6L1 [34] PDF set. Samples generated with Herwig 7 [35] are used for systematic uncertainty studies that involve modeling of the PS, hadronization and UE. The simulated Higgs boson samples are normalized to the SM cross sections (Refs. [36–54]) times the SM branching ratio (BR) to diphotons (Refs. [36,55–58]) with a Higgs boson mass of 125.09 GeV [59], and specifically for \(\tilde{t}H \), the SM predicted cross section times the \(H \rightarrow \gamma\gamma \) BR is \(\sigma_{\tilde{t}H} \times B_{\gamma\gamma} = 1.15^{+0.09}_{-0.12} \) fb.

Although this analysis relies on a data-driven approach for background estimations, a simulated background sample for the \(\tilde{t}t\gamma\gamma \) process was generated to optimize the event selection and develop the background model. This sample was generated using the MadGraph5_AMC@NLO generator, with the NNPDF23LO PDF set and showered with PYTHIA 8.

All generated Higgs boson events were passed through a full simulation of the ATLAS detector response [60] using GEANT 4 [61]. The \(\tilde{t}t\gamma\gamma \) events were processed with a fast simulation in which the full simulation of the calorimeter is replaced with a parameterization of the calorimeter response [62]. The effects of multiple \(pp \) interactions in the same or neighboring bunch crossings are included using events generated with PYTHIA 8. Events are weighted such that the distribution of the average number of interactions per bunch crossing matches that observed in data, which is typically around 30 to 40.

Events are selected by requiring two isolated photon candidates with transverse momenta \(p_T \) greater than 35 GeV and 25 GeV. Both photons must satisfy the tight identification requirement [20]. The identification is constructed from a jet-based selection using the electromagnetic shower shape variables. The leading (subleading) photon must have \(p_T / m_T > 0.35 (0.25) \), and the diphoton invariant mass \(m_{\gamma\gamma} \) is required to be in the range \(m_{\gamma\gamma} \in [105, 160] \) GeV. Jets are reconstructed using the anti-\(k_t \) algorithm [63] with a radius parameter of \(R = 0.4 \). Events are required to have at least one jet with \(p_T > 25 \) GeV containing a \(b \)-hadron (\(b \)-jet), identified using a \(b \)-tagging algorithm with an efficiency of 77% and a mistagging rate of 0.9% for light-flavor jets [64].

Selected events are sorted into two \(\tilde{t}H \)-enriched regions. The “Lep” region, targeting top quark decays in which at least one of the resulting \(W \) bosons decays leptonically, requires events to have at least one isolated lepton (muon or electron) candidate with \(p_T > 15 \) GeV passing medium identification requirements (Refs. [20,65]). The “Had” region targets hadronic top quark decays (as well as top quark decays to both hadronically decaying \(\tau \) leptons and unreconstructed leptons) and requires events to have at least two additional jets with \(p_T > 25 \) GeV and no selected lepton.

A boosted decision tree (BDT) used for the top quark reconstruction, denoted by “Top Reco BDT,” is trained with the \(\tilde{t}H \) sample by using the xgboost package [66] to extract the three-jet (triplet) combination best matching the hadronic decay products of a top quark. This BDT uses \(p_T, \eta, \phi, \) and the energy \(E \) of \(W \) boson and \(b \) jet (where the \(W \) boson candidate is formed by a pair of jets). Furthermore, this BDT uses the angular distance \(\Delta R_{Wb} \) between the \(W \) boson and \(b \) jet, \(\Delta R_{jj} \) between the two jets composing the \(W \) boson candidate, and \(b \)-tagging information about all three jets in the triplet and the invariant mass of the triplet. For events in the Had region, the triplet with the highest Top Reco BDT score is taken as the primary top quark candidate (\(t_1 \)). In the Lep region, for events containing only one lepton, a \(W \) boson candidate is first constructed from the lepton and missing transverse momentum \(E_T^{miss} \). Then \(t_1 \) is reconstructed from this leptonic \(W \) boson candidate and the jet giving the highest Top Reco BDT score. No top quark candidate is reconstructed for events containing more than one lepton. After \(t_1 \) is selected, if there are at least three additional jets, a second top quark candidate (\(t_2 \)) is reconstructed by selecting the triplet with the highest BDT score from the remaining jets; if there is only one or two additional jets, then \(t_2 \) is taken as the sum of the remaining jets; otherwise no \(t_2 \) is reconstructed.

To improve the analysis sensitivity, selected events are categorized using partitions of a two-dimensional BDT space. Two independent BDTs are trained using the xgboost algorithm: “Background Rejection BDT” and “CP BDT,” and each of them is trained separately in the Had and Lep regions. The Background Rejection BDT is trained to separate \(\tilde{t}H \)-like events from background that
are mainly nonresonant diphoton production processes, including $\gamma\gamma + \text{jets}$ and $t\bar{t}\gamma\gamma$. A detailed discussion of this methodology is given in Ref. [1]. The CP BDT is trained to separate CP-even from CP-odd couplings using $t\bar{t}H$ and tH processes. The CP BDT uses p_T and η of the diphoton system, p_T and η of t_1 and t_2, their azimuthal angles calculated relative to the diphoton system $\phi_{t_1t_2}$, $\phi_{t_2t_1}$ as well as their Top Reco BDT scores. It also uses differences in pseudorapidity and azimuthal angle $\Delta\eta_{t_1t_2}$ and $\Delta\phi_{t_1t_2}$ between the two top quark candidates, the invariant mass of the diphoton and primary top quark system $m_{t_1t_2}$, the invariant mass of the two top quark candidates $m_{t_1t_2}$, the scalar p_T sum of jets H_T, the E_T^{miss} divided by $\sqrt{H_T}$, the number of jets and b-tagged jets, and the minimum and second smallest angular differences ΔR_{ij} between a photon and a jet.

Figure 1 shows the BDT discriminant distributions in the data as well as those expected from CP-even and CP-odd Higgs boson signals in the Had region. The discriminating power can be seen by comparing the CP-even, CP-odd, and data shapes. Events with low values of the Background Rejection BDT response are removed, and the remaining events are categorized. The number of categories and the boundary locations are chosen to optimize the $t\bar{t}H$ significance and the discriminating power between the CP-even and CP-odd cases. There are 20 categories in total: 12 in the Had region and 8 in the Lep region.

The results are impacted by three distinct types of uncertainties: the statistical uncertainty associated with the data, theoretical modeling systematic uncertainties, and experimental systematic uncertainties. The first dominates. Theoretical uncertainties for $t\bar{t}H$ and tH rates in the various categories are assessed. The following effects are considered: the value of the strong coupling constant; alternative generator for the PS, hadronization, and UE; and PDF uncertainty. In the three (two) most CP-even sensitive Had (Lep) categories, each of these uncertainties is less than 10%. The background from ggF is less than 0.25 events in each of the most sensitive categories; conservative uncertainties, including a 100% theoretical uncertainty in the modeling of the radiation of additional heavy-flavor jets, are assigned to it in the Had region. The same heavy-flavor uncertainty is also assigned to the VBF and VH processes.

Experimental uncertainties arise from identification and isolation criteria for photons, electrons, and muons and from their energy scale and resolution [20,65]. Jets have uncertainties from b tagging [64] and vertex identification [67] in addition to the energy scale and resolution [68]. Uncertainties in the measurement of E_T^{miss} [69], which is used in the leptonic categories, are also included. These experimental effects impact the expected event yield in each category and can cause events to migrate between the categories. The overall uncertainty is less than 20% in each category. In addition, uncertainties in the luminosity [70] obtained using the LUCID-2 detector [71] and trigger efficiency [19] are responsible for uncertainties in the overall event yield of 1.7% and 0.4%, respectively.

A simultaneous maximum-likelihood fit is performed to the $m_{\gamma\gamma}$ spectra in all the categories. Signal and background shapes are modeled by analytic functions using the strategy discussed in Ref. [6]. The chosen background function is

![FIG. 1. Left: two-dimensional BDT distribution in the selected data events ($m_{\gamma\gamma} \in [105, 160]$ GeV) from the Had region showing the Background Rejection BDT and CP BDT. The inner (outer) contours capture 25% (50%) of the $t\bar{t}H$ and tH signal events for CP-even (blue) and CP-odd (red) hypotheses. Right: projections onto the background rejection and CP BDT axes. Contributions from CP-even (blue) and CP-odd (red) $t\bar{t}H/tH$ processes and the data (black) are shown and normalized to unit area. The error bars on data are statistical.](061802-3)
based on the simulated $t\bar{t}\gamma\gamma$ events following the procedure in Ref. [1], which imposes stringent conditions on potential biases in the extracted signal yield to avoid losses in sensitivity. The parameters of the background model and background normalization in each category are left free in the fit. The profile likelihood ratio is used as the test statistic, and the asymptotic approximation [72] is used for statistical interpretations. Yields from $t\bar{t}H$ and tH are extracted after subtracting the very small contribution from other Higgs boson production modes using their SM expected values. Figure 2 shows the distributions of the reconstructed masses for the diphoton system and primary top quark. The events are weighted by $\ln(1 + S/B)$ with S and B being the fitted signal and background yields in the smallest $m_{\gamma\gamma}$ interval containing 90% of the signal in each category. The p value associated with the compatibility between the observed spectra and the fit model using the goodness-of-fit test method described in Ref. [73] is 35%. Assuming a CP-even coupling, the $\sigma_{t\bar{t}H} \times B_{\gamma\gamma}$ is derived by constraining all the non-$t\bar{t}H$ Higgs boson processes to their SM predictions and measured to be $1.64^{+0.38}_{-0.36} (\text{stat})^{+0.17}_{-0.14} (\text{sys})$ fb. The measured rate for $t\bar{t}H$ is $1.43^{+0.33}_{-0.31} (\text{stat})^{+0.21}_{-0.15} (\text{sys})$ times the SM expectation. The background-only hypothesis is rejected with an observed (expected) significance of 5.2σ (4.4σ). The rate for tH is derived by constraining all the non-$t\bar{t}H/tH$ Higgs boson processes to their SM prediction without prior constraint on the rate of $t\bar{t}H$. Using the CLs method [74], this yields a 95% confidence level (CL) upper limit of 12 times the SM prediction, the same as expected assuming the presence of SM tH signal. This is stricter than the previous best limit of 25 times the SM prediction on tH from the CMS analysis performed using 35.9 fb$^{-1}$ of data at $\sqrt{s} = 13$ TeV [75] with the $t\bar{t}H$ process constrained to the SM prediction.

Extraction of values for the top Yukawa coupling requires additional information. In particular, the BR of $H \rightarrow \gamma\gamma$ is needed to recover the total Higgs boson production rate, and the Higgs boson coupling to gluons is needed to account for the small ggF background. The corresponding Higgs boson coupling modifiers κ_{γ} and κ_{g} are measured in the Run 2 Higgs boson coupling combination [76]. This combination includes the first 80 fb$^{-1}$ of data used in this paper, and $t\bar{t}H$ and tH analyses from other decay channels. The combination analysis is repeated without the $t\bar{t}H$ and tH inputs, and this result is used to constrain κ_{γ} and κ_{g}. The impact on κ_{g} and κ_{γ} of removing input $t\bar{t}H$ and tH analyses from the combination is small. The correlation of the systematic uncertainties between the Higgs boson coupling combination and this analysis is neglected. The correlation has a small impact on α, and a similar effect on κ, as on signal strength reported in Ref. [76]. This analysis is insensitive to the potential modifications of ggF kinematics due to CP mixing, which is therefore neglected. The results of the fit for $\kappa_{\gamma} \cos(\alpha)$ and $\kappa_{\gamma} \sin(\alpha)$ are shown as contours in Fig. 3. A limit on α is set without prior constraint on κ_{γ} in the fit: $|\alpha| > 43^\circ$ is excluded at 95% CL. The expected exclusion is $|\alpha| > 63^\circ$ under the CP-even hypothesis. A value of $\alpha = 90(180)^\circ$ is excluded at $3.9\sigma (2.5\sigma)$. A comparable study from the CMS experiment excluded $\alpha = 90^\circ$ at 3.2σ [3]. If κ_{γ} and κ_{g} are parameterized using α and κ_{γ} [11], the observed (expected) exclusion is $|\alpha| > 43(56)^\circ$ without prior constraint on κ_{γ} in the fit. The impact of the systematic uncertainties is negligible.
In summary, the production rate of the Higgs boson in association with top quarks is measured, and the CP property of the top Yukawa coupling is studied. The no-tH hypothesis is rejected with a significance of 5.2σ, and the measured $\sigma_{tH} \times B_{tH}^\gamma$ is $1.64^{+0.38}_{-0.36} (\text{stat})^{-0.14}_{-0.17} (\text{sys})$ fb. The measured rate for tH is $1.43^{+0.33}_{-0.31} (\text{stat})^{-0.21}_{-0.16} (\text{sys})$ times the SM expectation. The tH process is not observed, and an upper limit of 12 times the SM expectation is set on its rate at 95% CL. All measurements are consistent with the SM expectations, and the possibility of CP-odd couplings between the Higgs boson and top quark is severely constrained. A pure CP-odd coupling is excluded at 3.9σ, and $|\alpha| > 43^{\circ}$ is excluded at 95% CL.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DFG and AvH Foundation, Germany; INFN-CNAF, Italy; INFN-CNR, Italy; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; and DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions, and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [77].

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Department of Physics, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
4cDivision of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12bIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12cDepartment of Physics, Bogazici University, Istanbul, Turkey
12dDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15aPhysics Department, Tsinghua University, Beijing, China
15bDepartment of Physics, Nanjing University, Nanjing, China
15cUniversity of Chinese Academy of Sciences (UCAS), Beijing, China
15dInstitute of Physics, University of Belgrade, Belgrade, Serbia
16Department for Physics and Technology, University of Bergen, Bergen, Norway
17Department for Physics and Technology, University of Bergen, Bergen, Norway
18Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
19Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
20University of Birmingham, Birmingham, United Kingdom
21School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia
22bDepartamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
23INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica, Italy
23aINFN Bologna, Italy
23bINFN Sezione di Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27Transilvania University of Brasov, Brasov, Romania
27bHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27cDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
27dNational Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
27eUniversity Politehnica Bucharest, Bucharest, Romania
27fWest University in Timisoara, Timisoara, Romania
28aFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31California State University, California, USA
32Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33bDepartment of Physics, University of Cape Town, Cape Town, South Africa
33thRhamphe Labs, Western Cape, South Africa
33c Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
33 University of South Africa, Department of Physics, Pretoria, South Africa
33 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
33 Department of Physics, Carleton University, Ottawa, Ontario, Canada
35a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
35b Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
35c Faculté des Sciences Semlalia, Université Mohamed Premier and LPTPM, Oujda, Morocco
35d Faculté des sciences, Université Mohammed V, Rabat, Morocco
35e CERN, Geneva, Switzerland
37 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
39 Nevis Laboratory, Columbia University, Irvington, New York, USA
40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 Dipartimento di Fisica, Università della Calabria, Rende, Italy
41b INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
42 Physics Department, Southern Methodist University, Dallas, Texas, USA
43 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
44 National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
45a Department of Physics, Stockholm University, Sweden
45b Oskar Klein Centre, Stockholm, Sweden
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
49 Department of Physics, Duke University, Durham, North Carolina, USA
50 SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
52 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
53 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
54 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
55a Dipartimento di Fisica, Università di Genova, Genova, Italy
55b INFN Sezione di Genova, Italy
56 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
57 SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
58b LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
60a Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, Science and Technology of China, Hefei, China
60b Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
60c School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
61a Tsung-Dao Lee Institute, Shanghai, China
61b Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
62c Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
63a Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
63b Department of Physics, University of Hong Kong, Hong Kong, China
64 Department of Physics, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
65 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
66 JICLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
67a INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
67b ICTP, Trieste, Italy
67c Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
68b Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
69a INFN Sezione di Milano, Italy
69b Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy

INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy

INFN Sezione di Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

INFN Sezione di Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

INFN-TIFPA, Italy
Universit`a degli Studi di Trento, Trento, Italy

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, Dubna, Russia

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJJ), Juiz de Fora, Brazil
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil
Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
Graduate School of Science, Kobe University, Kobe, Japan

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
Marián Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Egham, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston, Louisiana, USA
Fysikà¨s institutionen, Lunds universitet, Lund, Sweden

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
Department of Physics, McGill University, Montreal, Quebec, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia

Department of Physics, New York University, New York, New York, USA

Ohio State University, Columbus, Ohio, USA

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic

Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Lisboa, Portugal

Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade de Coimbra, Coimbra, Portugal

Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade do Minho, Braga, Portugal

Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain

Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Charles Technical University in Prague, Prague, Czech Republic

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

Universidad Andres Bello, Department of Physics, Santiago, Chile

Instituto de Alta Investigación, Universidad de Tarapacá, Chile

Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Department of Physics, University of Washington, Seattle, Washington, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Department Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada

SLAC National Accelerator Laboratory, Stanford, California, USA

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Department of Physics, New York University, New York, New York, USA
165 Tomsk State University, Tomsk, Russia
166 Department of Physics, University of Toronto, Toronto, Ontario, Canada
167a TRIUMF, Vancouver, British Columbia, Canada
167b Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
168 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
169 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
170 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
171 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
172 Department of Physics, University of Illinois, Urbana, Illinois, USA
173 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
174 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
175 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
176 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
177 Department of Physics, University of Warwick, Coventry, United Kingdom
178 Waseda University, Tokyo, Japan
179 Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
180 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
181 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

a Deceased.
b Also at Department of Physics, King’s College London, London, United Kingdom.
c Also at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.
d Also at TRIUMF, Vancouver, British Columbia, Canada.
e Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
f Also at Physics Department, An-Najah National University, Nablus, Palestine.
g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
h Also at Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain.
i Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
j Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
k Also at Universita di Napoli Parthenope, Naples, Italy.
l Also at Institute of Particle Physics (IPF), Vancouver, Canada.
m Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy.
 Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
 Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
 Also at Department of Physics, California State University, Fresno, USA.
 Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
i Also at Centro Studi e Ricerche Enrico Fermi, Italy.
 Also at Department of Physics, California State University, East Bay, USA.
 Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
 Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.
 Also at Graduate School of Science, Osaka University, Osaka, Japan.
 Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
 Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
 Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
 Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
a Also at CERN, Geneva, Switzerland.
b Also at Joint Institute for Nuclear Research, Dubna, Russia.
c Also at Hellenic Open University, Patras, Greece.
d Also at The City College of New York, New York, New York, USA.
e Also at Department of Physics, California State University, Sacramento, USA.
f Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
g Also at Louisiana Tech University, Ruston, Louisiana, USA.
h Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
i Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
j Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
k Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
l Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.