CP Properties of Higgs Boson Interactions with Top Quarks in the (tt)over-barH and tH Processes Using H -> gamma gamma with the ATLAS Detector

Aad, G.; Abbott, B.; Abbott, DC; Abud, AA; Abeling, K.; Abhayasinghe, DK; Abidi, S.H.; AbouZeid, Ossama Sherif Alexander; Abraham, NL; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Alonso Diaz, Alejandro; hqz214, hqz214; Camplani, Alessandra; Dam, Mogens; Galster, Gorm Aske Gram Krohn; Hansen, Jørn Dines; Hansen, Peter Henrik; Hansen, Jørgen Beck; Ignazzi, Rosanna; Monk, James William; Petersen, Troels Christian; Wiglesworth, Graig; Stark, Simon Holm; Xella, Stefania; ATLAS Collaboration

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.125.061802

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
The observation of Higgs boson production in association with top quarks at the LHC [1,2] provides an opportunity to probe the charge conjugation and parity (CP) properties of the Yukawa coupling of the Higgs boson to the top quark. The Standard Model (SM) of particle physics predicts the Higgs boson to be a scalar particle ($J^{CP} = 0^{++}$) with a prescribed coupling to the top quark. However, the presence of a $J^{CP} = 0^{-+}$ pseudoscalar admixture, which introduces a second coupling to the top quark, has not yet been excluded. Any measured CP-odd contribution would be a sign of physics beyond the SM and could account for the explanation of the observed baryon asymmetry of the universe. This Letter presents a search for CP violation in this coupling and measurements of the production rate of the Higgs boson, via its decay into two photons, in association with top quarks. Recently, the CMS Collaboration performed a similar study [3].

Studies of CP properties of the Higgs boson interactions with gauge bosons have been performed by the ATLAS and CMS experiments [4–9]; the results show no deviations from the SM predictions. However, these measurements probe the bosonic couplings in which CP-odd contributions enter only via higher-order operators that are suppressed by powers of $1/\Lambda^2$ [10], where Λ is the scale of the new physics in an effective field theory (EFT). In the case of the Yukawa couplings, the CP-odd contributions are not suppressed by powers of $1/\Lambda^2$.

The CP properties of the top Yukawa coupling can be probed directly using Higgs boson production in association with top quarks: $t\bar{t}H$ and tH processes. The couplings impact the production rates [11–14] and some kinematic distributions. The tH rate is particularly sensitive to deviations from SM couplings due to destructive interference in the SM between diagrams where the Higgs boson radiates from a top quark and from a W boson. The presence of CP-mixing in the top Yukawa coupling also modifies the gluon–gluon fusion (ggF) production rate and the $H \rightarrow \gamma \gamma$ decay rate.

This analysis is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton–proton (pp) collision data recorded from 2015 to 2018 with the ATLAS detector. The ATLAS detector [15–17] is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and near 4π coverage in solid angle [18]. The trigger system consists of a hardware-based first-level trigger and a software-based high-level trigger [19]. Events used in this analysis were triggered by requiring two photons with a loose identification requirement [20] in the 2015–2016 data-taking period and transverse energies of at least 25 GeV and 35 GeV for the subleading and leading photons, respectively. Due to the greater instantaneous luminosity, the photon trigger identification requirement was tightened in the 2017–2018 data-taking period. The average trigger efficiency is over 98% for events passing the full diphoton event selection for this analysis.

The EFT definition used in this Letter is provided by the Higgs characterization model [21], which is implemented in the MadGraph5_AMC@NLO generator [22]. Within
this model, the term in the effective Lagrangian that describes the top Yukawa coupling is

\[\mathcal{L} = -m_t \bar{t}_v \left(\bar{t}_i \gamma_i \cos(\alpha) + i \sin(\alpha) \gamma_5 \right) u H \]

where \(m_t \) is the top quark mass, \(v \) is the Higgs vacuum expectation value, \(\kappa_i \) (\(> 0 \)) is the top Yukawa coupling parameter, and \(\alpha \) is the CP-mixing angle. The SM corresponds to a CP-even coupling with \(\alpha = 0 \) and \(\kappa_i = 1 \), while a CP-odd coupling is realized when \(\alpha = 90^\circ \).

Simulated \(t\bar{t}H \) and \(tH \) samples were generated using MADGRAPH5_AMC@NLO 2.6.2 at next-to-leading order in QCD for different \(\alpha \) and \(\kappa_i \) (for \(t\bar{t}H \) values), with the NNPDF30NLO [23] parton distribution function (PDF) set used for the matrix element (ME) evaluation, and interfaced to PYTHIA 8 [24] using the NNPDF23LO [25] PDF set for parton showering (PS). The A14 parameter set [26], tuned to data, was used for both PS and underlying event (UE). From these samples, the yields for \(t\bar{t}H \) and \(tH \) are parameterized as functions of \(\alpha \) and \(\kappa_i \), which are used in the statistical interpretations. Samples for other Higgs boson production processes, ggF [27], vector-boson fusion (VBF) [28], and vector-boson associated production (VH) [29,30] were produced with POWHEG-BOX v2 generator [31] using the PDF4LHC15 PDF set [32] for ME, with the AZNLO set of tuned parameters [33] and PYTHIA 8 for PS using the CTEQ6L1 [34] PDF set. Samples generated with Herwig 7 [35] are used for systematic uncertainty studies that involve modeling of the PS, hadronization and UE. The simulated Higgs boson samples are normalized to the SM cross section times the SM branching ratio \(\text{BR} \) for the SM, which is used in the statistical interpretations.

The simulated Higgs boson samples are normalized to the SM cross section times the SM branching ratio \(\text{BR} \) for the SM boson and \(\eta, \phi \), and the energy \(E \) of the boson and \(b \) jet (where the \(W \) boson candidate is formed by a pair of jets). Furthermore, this BDT uses the angular distance \(\Delta R_{Wb} \) between the \(W \) boson and \(b \) jet, \(\Delta R_{jj} \) between the two jets composing the \(W \) boson candidate, and \(b \)-tagging information about all three jets in the triplet and the invariant mass of the triplet.

For events in the Had region, the triplet with the highest \(\Delta tH \) score from the three-jet (triplet) combination best matching the hadronic decay products of a top quark. This BDT uses \(\Delta R_{Wb} \), \(\Delta R_{jj} \), and \(\text{BR} \) of the hadronically decaying \(t \) and \(\bar{t} \) candidates (Refs. [20,65]). The “Had” region targets hadronic top quark decays (as well as top quark decays to both hadronically decaying \(t \) and \(\bar{t} \) c candidates) and requires events to have at least two additional jets with \(\Delta R_{Wb} > 0.25 \) and \(\Delta R_{jj} > 0.25 \).

A boosted decision tree (BDT) used for the top quark reconstruction, denoted by “Top Reco BDT,” is trained with \(\Delta tH \) and \(\Delta tH \) samples from the \(\Delta tH \) sample by using the xBoost package [66] to extract the three-jet (triplet) combination best matching the hadronic decay products of a top quark. This BDT uses \(\Delta R_{Wb} \), \(\Delta R_{jj} \), and \(\text{BR} \) of the hadronically decaying \(t \) and \(\bar{t} \) candidates (Refs. [20,65]). The “Lep” region, which targets events containing only one lepton, is reconstructed using the \(\Delta tH \) BDT score from the lepton and missing transverse momentum \(\Delta tH_{\text{miss}} \). Then \(t_1 \) is reconstructed from this lepton \(W \) boson candidate and the jet giving the highest \(\Delta tH \) score. No top quark candidate is reconstructed for events containing more than one lepton. After \(t_1 \) is selected, if there are at least three additional jets, a second top quark candidate \(t_2 \) is reconstructed by selecting the triplet with the highest \(\Delta tH \) score from the remaining jets; if there is only one or two additional jets, then \(t_2 \) is taken as the sum of the remaining jets; otherwise no \(t_2 \) is reconstructed.

To improve the analysis sensitivity, selected events are categorized using partitions of a two-dimensional BDT space. Two independent BDTs are trained using the xBoost algorithm: “Background Rejection BDT” and “CP BDT,” and each of them is trained separately in the Had and Lep regions. The Background Rejection BDT is trained to separate \(\Delta tH \) events from background that

061802-2
are mainly nonresonant diphoton production processes, including $\gamma\gamma$ + jets and $t\bar{t}\gamma$. A detailed discussion of this methodology is given in Ref. [1]. The CP BDT is trained to separate CP-even from CP-odd couplings using $t\bar{t}H$ and tH processes. The CP BDT uses p_T and η of the diphoton system, p_T and η of t_1 and t_2, their azimuthal angles calculated relative to the diphoton system $\phi_{t_1t_2}$, $\phi_{t_1t_2}$, as well as their Top Reco BDT scores. It also uses differences in pseudorapidity and azimuthal angle $\Delta\eta_{t_1t_2}$ and $\Delta\phi_{t_1t_2}$ between the two top quark candidates, the invariant mass of the diphoton and primary top quark system $m_{t_1t_2}$, the invariant mass of the two top quark candidates $m_{t_1t_2}$, the scalar p_T sum of jets H_T, the E_T^{miss} divided by $\sqrt{H_T}$, the number of jets and b-tagged jets, and the minimum and second smallest angular differences ΔR_{tj} between a photon and a jet.

Figure 1 shows the BDT discriminant distributions in the data as well as those expected from CP-even and CP-odd Higgs boson signals in the Had region. The discriminating power can be seen by comparing the CP-even, CP-odd, and data shapes. Events with low values of the Background Rejection BDT response are removed, and the remaining events are categorized. The number of categories and the boundary locations are chosen to optimize the $t\bar{t}H$ significance and the discriminating power between the CP-even and CP-odd cases. There are 20 categories in total; 12 in the Had region and 8 in the Lep region.

The results are impacted by three distinct types of uncertainties: the statistical uncertainty associated with the data, theoretical modeling systematic uncertainties, and experimental systematic uncertainties. The first dominates. Theoretical uncertainties for $t\bar{t}H$ and tH rates in the various categories are assessed. The following effects are considered: the value of the strong coupling constant; alternative generator for the PS, hadronization, and UE; and PDF uncertainty. In the three (two) most CP-even sensitive Had (Lep) categories, each of these uncertainties is less than 10%. The background from ggF is less than 0.25 events in each of the most sensitive categories; conservative uncertainties, including a 100% theoretical uncertainty in the modeling of the radiation of additional heavy-flavor jets, are assigned to it in the Had region. The same heavy-flavor uncertainty is also assigned to the VBF and VH processes.

Experimental uncertainties arise from identification and isolation criteria for photons, electrons, and muons and from their energy scale and resolution [20,65]. Jets have uncertainties from b tagging [64] and vertex identification [67] in addition to the energy scale and resolution [68]. Uncertainties in the measurement of E_T^{miss} [69], which is used in the leptonic categories, are also included. These experimental effects impact the expected event yield in each category and can cause events to migrate between the categories. The overall uncertainty is less than 20% in each category. In addition, uncertainties in the luminosity [70] obtained using the LUCID-2 detector [71] and trigger efficiency [19] are responsible for uncertainties in the overall event yield of 1.7% and 0.4%, respectively.

A simultaneous maximum-likelihood fit is performed to the $m_{\gamma\gamma}$ spectra in all the categories. Signal and background shapes are modeled by analytic functions using the strategy discussed in Ref. [6]. The chosen background function is

![Graph showing BDT discriminant distributions](image)

FIG. 1. Left: two-dimensional BDT distribution in the selected data events ($m_{\gamma\gamma} \in [105, 160]$ GeV) from the Had region showing the Background Rejection BDT and CP BDT. The inner (outer) contours capture 25% (50%) of the $t\bar{t}H$ and tH signal events for CP-even (blue) and CP-odd (red) hypotheses. Right: projections onto the background rejection and CP BDT axes. Contributions from CP-even (blue) and CP-odd (red) $t\bar{t}H/tH$ processes and the data (black) are shown and normalized to unit area. The error bars on data are statistical.
based on the simulated $t\bar{t}\gamma\gamma$ events following the procedure in Ref. [1], which imposes stringent conditions on potential biases in the extracted signal to avoid losses in sensitivity. The parameters of the background model and background normalization in each category are left free in the fit. The profile likelihood ratio is used as the test statistic, and the asymptotic approximation [72] is used for statistical interpretations. Yields from $t\bar{t}H$ and tH are extracted after subtracting the very small contribution from other Higgs boson production modes using their SM expected values. Figure 2 shows the distributions of the reconstructed masses for the diphoton system and primary top quark. The events are weighted by $\ln(1 + S/B)$ with S and B being the fitted signal and background yields in the smallest $m_{\gamma\gamma}$ interval containing 90% of the signal in each category. The p value associated with the compatibility between the observed spectra and the fit model using the goodness-of-fit test method described in Ref. [73] is 35%. Assuming a CP-even coupling, the $\sigma_{t\bar{t}H} \times B_{t\gamma}$ is derived by constraining all the non-$t\bar{t}H$ Higgs boson processes to their SM predictions and measured to be $1.64^{+0.38}_{-0.36} (\text{stat})^{+0.17}_{-0.14} (\text{sys})$ fb. The measured rate for $t\bar{t}H$ is $1.43^{+0.33}_{-0.31} (\text{stat})^{+0.21}_{-0.15} (\text{sys})$ times the SM expectation. The background-only hypothesis is rejected with an observed (expected) significance of 5.2σ (4.4σ). The rate for tH is derived by constraining all the non-$t\bar{t}H/tH$ Higgs boson processes to their SM prediction without prior constraint on the rate of $t\bar{t}H$. Using the CLs method [74], this yields a 95% confidence level (CL) upper limit of 12 times the SM prediction, the same as expected assuming the presence of SM tH signal. This is stricter than the previous best limit of 25 times the SM prediction on tH from the CMS analysis performed using 35.9 fb$^{-1}$ of data at $\sqrt{s} = 13$ TeV [75] with the $t\bar{t}H$ process constrained to the SM prediction.

Extraction of values for the top Yukawa coupling requires additional information. In particular, the BR of $H \rightarrow \gamma\gamma$ is needed to recover the total Higgs boson production rate, and the Higgs boson coupling to gluons is needed to account for the small ggF background. The corresponding Higgs boson coupling modifiers κ_t and κ_γ are measured in the Run 2 Higgs boson combination [76]. This combination includes the first 80 fb$^{-1}$ of data used in this paper, and $t\bar{t}H$ and tH analyses from other decay channels. The combination analysis is repeated without the $t\bar{t}H$ and tH inputs, and this result is used to constrain κ_t and κ_γ. The impact on κ_γ and κ_t of removing input $t\bar{t}H$ and tH analyses from the combination is small. The correlation of the systematic uncertainties between the Higgs boson coupling combination and this analysis is neglected. The correlation has a small impact on α, and a similar effect on κ_t as on signal strength reported in Ref. [76]. This analysis is insensitive to the potential modifications of ggF kinematics due to CP mixing, which is therefore neglected. The results of the fit for $\kappa_t \cos(\alpha)$ and $\kappa_t \sin(\alpha)$ are shown as contours in Fig. 3. A limit on α is set without prior constraint on κ_t in the fit: $|\alpha| > 43^\circ$ is excluded at 95% CL. The expected exclusion is $|\alpha| > 63^\circ$ under the CP-even hypothesis. A value of $\alpha = 90(180)^\circ$ is excluded at 3.9σ (2.5σ). A comparable study from the CMS experiment excluded $\alpha = 90^\circ$ at 3.2σ [3]. If κ_γ and κ_t are parameterized using α and κ_t [11], the observed (expected) exclusion is $|\alpha| > 43(56)^\circ$ without prior constraint on κ_t in the fit. The impact of the systematic uncertainties is negligible.
In summary, the production rate of the Higgs boson in association with top quarks is measured, and the \(CP \) property of the top Yukawa coupling is studied. The null-\(t\bar{t}H \) hypothesis is rejected with a significance of 5.2\(\sigma \), and the measured \(\sigma_{t\bar{t}H} \times B_{\gamma\gamma} \) is 1.64\(^{+0.38}_{-0.36} \) (stat)\(^{+0.17}_{-0.14} \) (sys) fb. The measured rate for \(t\bar{t}H \) is 1.43\(^{+0.33}_{-0.31} \) (stat)\(^{+0.21}_{-0.15} \) (sys) times the SM expectation. The \(t\bar{t}H \) process is not observed, and an upper limit of 12 times the SM expectation is set on its rate at 95\% CL. All measurements are consistent with the SM expectations, and the possibility of \(CP \)-odd couplings between the Higgs boson and top quark is severely constrained. A pure \(CP \)-odd coupling is excluded at 3.9\(\sigma \), and \(|\alpha| > 43^\circ \) is excluded at 95\% CL.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DLR and DMSNRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; and DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada, and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions, and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex, and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA), the Tier-2 facilities worldwide, and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [77].

References:

[7] CMS Collaboration, Combined search for anomalous pseudoscalar \(HV \) couplings in \(VH(H \rightarrow b\bar{b}) \) production and \(H \rightarrow \gamma\gamma \) decay, Phys. Lett. B 759, 672 (2016).

[74] CMS Collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment, Phys. Rev. D 101, 012002 (2020).

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
4cIstanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
6High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
7Department of Physics, University of Arizona, Tucson, Arizona, USA
8Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
9Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10Physics Department, National Technical University of Athens, Zografou, Greece
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12bIstanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
12cDepartment of Physics, Bogazici University, Istanbul, Turkey
12dDepartment of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13Institut de Fisica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
14LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
15Department of Physics, University of Belgrade, Belgrade, Serbia
15aInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15bPhysics Department, Tsinghua University, Beijing, China
15cDepartment of Physics, Nanjing University, Nanjing, China
15dUniversity of Chinese Academy of Sciences (UCAS), Beijing, China
15eInstitute of Physics, University of Belgrade, Belgrade, Serbia
16Institute of Physics, University of Belgrade, Belgrade, Serbia
17Department of Physics for Technology, University of Bergen, Bergen, Norway
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
19Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
21School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
22Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia
22bFacultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia
22cINFN Bologna and Università’ di Bologna, Dipartimento di Fisica, Italy
22dINFN Sezione di Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27Transilvania University of Brașov, Brașov, Romania
27bHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27cDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
27dNational Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
27eUniversity Politehnica Bucharest, Bucharest, Romania
27fWest University in Timisoara, Timisoara, Romania
28aFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31California State University, California, USA
32Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33aDepartment of Physics, University of Cape Town, Cape Town, South Africa
33bThembalabs, Western Cape, South Africa
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy

INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy

INFN Sezione di Pisa, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

INFN Sezione di Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

INFN-TIFPA, Italy
Universita degli Studi di Trento, Trento, Italy

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA

Joint Institute for Nuclear Research, Dubna, Russia

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UUFF), Juiz de Fora, Brazil

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil

Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

KEK, High Energy Accelerator Reserach Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Egham, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Louisiana Tech University, Ruston, Louisiana, USA

Physics Department, University of Ljubljana, Ljubljana, Slovenia

School of Physics, University of Manchester, Manchester, United Kingdom

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CAPP, Aix-Marseille Universitée, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA

Department of Physics, McGill University, Montreal, Quebec, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor, Michigan, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

Group of Particle Physics, University of Montreal, Montreal, Quebec, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto, Ontario, Canada
TRIUMF, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, University of Toronto, Toronto, Ontario, Canada
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
Department of Physics, University of Illinois, Urbana, Illinois, USA
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, Connecticut, USA

Deceased.
Also at Department of Physics, King’s College London, London, United Kingdom.
Also at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.
Also at TRIUMF, Vancouver, British Columbia, Canada.
Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
Also at Physics Department, An-Najah National University, Nablus, Palestine.
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
Also at Departamento de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
Also at Universita di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Vancouver, Canada.
Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine, Italy.
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
Also at Department of Physics, California State University, Fresno, USA.
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
Also at Centro Studi e Ricerche Enrico Fermi, Italy.
Also at Department of Physics, California State University, East Bay, USA.
Also at Instituto Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain.
Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France.
Also at Graduate School of Science, Osaka University, Osaka, Japan.
Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
Also at CERN, Geneva, Switzerland.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Hellenic Open University, Patras, Greece.
Also at The City College of New York, New York, New York, USA.
Also at Department of Physics, California State University, Sacramento, USA.
Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
Also at Louisiana Tech University, Ruston, Louisiana, USA.
Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.