Inferring the flavor of high-energy astrophysical neutrinos at their sources

Bustamante, Mauricio; Ahlers, Markus

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.122.241101

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Inferring the Flavor of High-Energy Astrophysical Neutrinos at Their Sources

Mauricio Bustamante\(^1,2,*\) and Markus Ahlers\(^1,\+)

\(^1\)Niels Bohr International Academy and Discovery Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

\(^2\)DARK, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

(Received 4 February 2019; revised manuscript received 8 April 2019; published 20 June 2019)

The sources and production mechanisms of high-energy astrophysical neutrinos are largely unknown. A promising opportunity for progress lies in the study of neutrino flavor composition, i.e., the proportion of each flavor in the flux of neutrinos, which reflects the physical conditions at the sources. To seize it, we introduce a Bayesian method that infers the flavor composition at the neutrino sources based on the flavor composition measured at Earth. We find that the present data from the IceCube neutrino telescope favor neutrino production via the decay of high-energy pions and rule out production via the decay of neutrons. In the future, improved measurements of flavor composition and mixing parameters may single out the production mechanism with high significance.

DOI: 10.1103/PhysRevLett.122.241101

Introduction.—High-energy astrophysical neutrinos with TeV–PeV energies provide crucial and unique information to understand the nonthermal Universe\(^[1,2]\). Yet, though firmly detected\(^[3–7]\), they have a largely unknown origin. They likely come predominantly from extragalactic sources\(^[2,8–11]\), but, to date, no pointlike source is known with certainty, notwithstanding noteworthy recent findings\(^[12,13]\). In the future, improved event statistics, reduced systematic uncertainties, and combined multimessenger analyses will boost the prospects of discovering sources\(^[14,15]\).

A complementary opportunity for progress, accessible already today, lies in measuring the flavor composition of high-energy astrophysical neutrinos, i.e., the relative number of neutrinos of each flavor. The flavor composition that neutrinos are emitted with is the result of production processes that depend on the physical conditions in the astrophysical sources. Therefore, flavor measurements can help to discriminate between candidate source classes\(^[16–20]\). After emission, as neutrinos propagate *en route* to Earth, flavor oscillations modify the composition. Neutrino telescopes, like IceCube, measure the flavor composition of the arriving flux. Based on it, one can, in principle, infer the composition at the sources.

Yet, existing analyses are either largely focused on inferring the flavor composition at Earth from data\(^[21–27]\) or confined to assessing the compatibility of the flavor composition measured at Earth with expectations from a few idealized scenarios of neutrino production. We follow an alternative strategy, hitherto unexplored, that provides more insight. Using Bayesian statistics, we infer the composition at the sources based on the composition measured at neutrino telescopes, accounting for the uncertainties in its measurement and in the neutrino mixing parameters that drive oscillations.

FIG. 1. Flavor composition of high-energy astrophysical neutrinos at their sources, inferred from present IceCube measurements\(^[23]\) (bottom) and from the projected sensitivities of the near-future IceCube upgrade\(^[28]\) (center) and planned IceCube-Gen2\(^[29]\) (top), assuming production by pion decay. Here we enforce a prior of no ν_τ production, i.e., $f_{\tau S} = 0$. We show the most probable values (white dotted lines) and credible intervals (blue shaded regions) of $f_{e S}$ and mark physically motivated neutrino production scenarios: pion decay, muon-damped, and neutron decay.
Figure 1 shows our results obtained using published and projected flavor measurements in IceCube. We report results in terms of flavor ratios $f_{\alpha\beta}$ ($\alpha=e, \mu, \tau$), i.e., the relative contribution of $\nu_\alpha + \bar{\nu}_\alpha$ to the total emission. We find that the present data favor neutrino production via the decay of high-energy pions and the synchrotron cooling of intermediate muons in strong magnetic fields and strongly disfavor production via neutron decay.

Producing astrophysical neutrinos.—We expect astrophysical sources of high-energy neutrinos to accelerate protons beyond PeV energies via collisionless shocks in magnetized environments. High-energy protons interact with ambient matter [30–32] and photons [31,33,34] to produce high-energy pions. When they decay, they produce TeV–PeV neutrinos via $\pi^+ \rightarrow \mu^+ + \nu_\mu$, followed by $\mu^+ \rightarrow \bar{\nu}_e + e^+$, and their charge-conjugated processes. Thus, neutrinos are nominally expected to be produced with flavor ratios $(N_e; N_\mu; N_\tau) = (1:2:0)$, with N_α the sum of ν_α and $\bar{\nu}_\alpha$. Because at these energies it is difficult to disentangle the relative contribution of ν and $\bar{\nu}$ in neutrino telescopes, existing analyses typically assume that they contribute equally to the flux. Thus, below, ν_α refers to $\nu_\alpha + \bar{\nu}_\alpha$, unless otherwise indicated. Interaction with matter in the sources likely does not modify the flavor ratios after production [35–39].

Other production mechanisms may affect the flavor composition; we highlight two possibilities. First, if the muons from pion decay significantly lose energy before decaying, e.g., by synchrotron radiation in a strong magnetic field, neutrinos born from muon decay have lower energies. In this “muon-damped” scenario, the high-energy flavor ratios are $(0:1:0)$, Second, neutrons coproduced with pions beta decay into $\bar{\nu}_e$, yielding $(1:0:0)$. Yet, these neutrinos are ~ 100 times less energetic than those made in pion decays. Throughout, we use the three physically motivated scenarios—full pion decay, muon damping, and neutron decay—as benchmarks.

Production of ν_e is expected to be strongly suppressed, since it would require producing rare mesons, like D^+_s. Below, we explore the full breadth of production mechanisms—including those with large ν_e content—and the scenario that enforces no ν_e production.

The flavor ratios might evolve with energy [34,40–43]. In the main text, we assume that they are measured in a single energy bin, so that any flavor evolution is hidden. This is the current experimental status [22,23]. However, future neutrino analyses will allow us to study the flavor composition in multiple high-energy bins; see Supplemental Material [44] for the case of IceCube-Gen2.

Neutrino oscillations.—Because a neutrino of a given flavor ν_α is a superposition of neutrino mass eigenstates ν_i ($i=1, 2, 3$), it can change flavor as it propagates. The connection between the flavor and mass bases is represented by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) unitary mixing matrix U. Following convention, we parameterize it in terms of three mixing angles, θ_{12}, θ_{23}, and θ_{13}, and one CP-violation phase, δ_{CP}, whose values are measured in numerous oscillation experiments.

For TeV–PeV astrophysical neutrinos, the probability $P_{\alpha\beta}$ of the flavor transition $\nu_\alpha \rightarrow \nu_\beta$ oscillates rapidly. Because of the energy spread of neutrinos and the limited energy resolution of detectors [45], flavor oscillations average out and the probability is [46] $P_{\alpha\beta} = \sum_{i=1}^3 |U_{ai}|^2 |U_{bi}|^2$, where U_{ai} are elements of the PMNS matrix. Thus, the flavor ratios at Earth are $f_{\alpha\beta} = P_{\beta\alpha} f_{\beta\beta}$. If neutrinos are produced in the full pion decay chain and the probability is evaluated at the best-fit values of the mixing parameters, the flavor ratios at Earth are close to $(1:1:1)$, this is the nominal expectation. Flavor ratios can be used to probe fundamental neutrino physics, though we do not explore this possibility here; see, e.g., Refs. [16,43,47–57].

Mixing parameters.—Presently, θ_{12} and θ_{13} are known at 1σ to within 2%, θ_{23} to within 8%, and δ_{CP} to within 20%. This translates into uncertainties of around 20% in transition probabilities, which we account for below. For our analysis, we adopt the allowed ranges of mixing parameters from the NuFit 3.2 global fit to oscillation data [58,59], assuming normal neutrino mass ordering ($\nu_{12} \equiv \sin \theta_{12}$):

\begin{align*}
\theta_{12} &= 0.307^{+0.003}_{-0.002}, \\
\theta_{23} &= 0.538^{+0.033}_{-0.089}, \\
\theta_{13} &= (2.206 \pm 0.075) \times 10^{-2},
\end{align*}

and $\delta_{CP} = (234^{+43}_{-21})^\circ$. The phase δ_{CP} has only a marginal influence on the flavor composition at Earth, since it appears in the flavor-transition probabilities suppressed by two or four powers of the small angle δ_{13}. Using inverted ordering does not affect our conclusions; we show this in Suplemental Material [44].

We account for the uncertainties in the mixing parameters via their probability density functions (PDFs) P. For each parameter in the set $\theta \equiv (\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})$, we approximate its PDF as a normal distribution with the mean and standard deviation computed, respectively, from the best-fit and largest 1σ error above. This is justified, because the $\Delta \chi^2$ curves that represent their uncertainties are nearly symmetric around the best-fit values [58,59]. Future implementations of our proposed method could use refined PDFs built directly from the $\Delta \chi^2$ curves.

Figure 2, left, shows for the three benchmark production scenarios that varying the mixing parameters within their 3σ uncertainties results in small allowed regions of flavor ratios at Earth. Yet, these uncertainties, small though they seem, are an important limiting factor when reconstructing flavor ratios at the sources.

Measuring flavor at Earth.—IceCube is presently the largest, most sensitive detector of high-energy neutrinos [2]. It instruments a gigaton Antarctic ice with an array of strings of photomultipliers [60]. When a high-energy neutrino interacts with a nucleon in the vicinity of the detector, final-state charged particles initiate particle showers that radiate Cherenkov light, which is collected by the photomultipliers. In the TeV–PeV neutrino energy range, IceCube detects two types of neutrino-induced event...
topologies: elongated tracks from high-energy muons—
included mainly by interactions of \(\nu_\mu \)—and approximately
spherical showers from electromagnetic and hadronic
cascades—initiated by all flavors but predominantly by
\(\nu_e \) and \(\nu_\tau \). Comparing the relative numbers of tracks and
showers yields the flavor ratios \(f_{\alpha,S} \) [21–27]. At higher
energies, flavor-specific event topologies due to \(\bar{\nu}_e \)
[24,61–64] and \(\nu_\tau \) [65–67], already hinted at by current
data [68,69], might improve flavor and \(\nu \) vs \(\bar{\nu} \) discrimination.

Figure 2, left, shows the latest published IceCube flavor
measurements [23], covering energies between 25 TeV
and 2.8 PeV, expressed via the likelihood function
\(L_\Theta(f_{\alpha,B}, f_{\mu,B}) \). Since precise IceCube likelihood data
are not public, here and below we approximate present
and future IceCube likelihood functions as two-
dimensional normal distributions in \(f_{\alpha,B} \) and \(f_{\mu,B} \); unitarity
demands \(f_{\alpha,B} = 1 - f_{\bar{\nu},B} - f_{\mu,B} \). Because of the low
statistics of present analyses, the confidence regions are
broad. Because \(\nu_e \) and \(\nu_\tau \)-initiated showers are similar,
they are currently not distinguished from one another on an
event-by-event basis; see, however, Ref. [70]. This is why
the isocontours in Fig. 2 are approximately horizontal,
aligned with a direction of constant \(f_{\bar{\nu},B} + f_{\mu,B} \). The
degeneracy is weakly broken, because \(\nu_\tau \) interactions create
muon tracks 17% of the time, unlike \(\nu_e \). The best fit is at
\((0.49:0.51:0)_{\Theta_B} \), about 1 \(\sigma \) away from the nominal
expectation. Later, we consider projected improvements in flavor
measurement.

IceCube measures the flavor composition of the diffuse
flux of high-energy astrophysical neutrinos. Since the
diffuse flux is the aggregated contribution of multiple
Sources—which possibly emit neutrinos with different
flavor ratios—the flavor ratios \(f_{\alpha,S} \) measured by
IceCube are the average of all sources. By extension, so
are the flavor ratios at the sources \(f_{\alpha,S} \) that we infer below.

Inferring flavor at the sources.—For a given test choice
of flavor ratios at the sources, we assess its compatibility
with the data by computing an associated Bayesian
posterior probability density that factors in the uncertainties
in mixing parameters—via their PDFs—and the detector
performance in measuring flavor ratios—via the likelihood
\(L_\Theta \). The posterior probability density of \(f_{\alpha,S} \) being
the flavor ratios at the sources is

\[
P(f_{\alpha,S}) = \int d\theta \frac{\mathcal{P}(\theta)}{\mathcal{N}(\theta)} L_{\ThetaB}(f_{\alpha,B}(f_{\alpha,S},\theta), f_{\mu,B}(f_{\alpha,S},\theta)),
\]

where \(\mathcal{P}(\theta) \equiv \mathcal{P}(s_{12}) \mathcal{P}(s_{23}) \mathcal{P}(s_{13}) \mathcal{P}(\Delta_{CP}) \) are the PDFs
of the mixing parameters and

\[
\mathcal{N}(\theta) = \int_{0}^{1} df_{\alpha,S} \int_{0}^{1-f_{\alpha,S}} df_{\mu,S} L_{\ThetaB}(f_{\alpha,B}(f_{\alpha,S},\theta), f_{\mu,B}(f_{\alpha,S},\theta))
\]

is a normalization constant.
We compute the posterior of all possible values of $f_{\alpha,S}$. After that, we calculate credible intervals of $f_{\alpha,S}$ by integrating the posterior, starting from its global maximum, down to the desired level, e.g., 68%, 90%, 95%, or 99%.

A previous analysis [21] also inferred the flavor composition at the sources, using early IceCube data. However, unlike the present analysis, it did not account for uncertainties in the mixing parameters, which are crucial for the interpretation of the data.

Present results.—Figure 2, right, shows the posterior of all possible flavor ratios at the sources, computed based on the latest published IceCube flavor measurements [23] (Fig. 2, left). The maximum-posterior composition is $(0:0.7:0.3)_S$, and compositions with low $f_{\tau,S}$ and high $f_{\mu,S}$ are preferred. This is a consequence of the current preference for low f_{τ} in the IceCube likelihood, which maps compositions at the sources close to the $f_{e,S} = 0$ axis into compositions at Earth with a high likelihood value.

Among the benchmark scenarios included in Fig. 2, production via pion decay with muon damping is allowed at the 68% credible level (Cr.L.), the full pion decay chain is slightly less favored, and neutron decay is in tension with the data, since it is allowed only at more than the 99% Cr.L. Later, we explore how this changes if future IceCube flavor likelihood functions are centered instead on a nearly equiflavor composition.

Because the production of ν_τ should be suppressed, next we supplement our method by introducing the prior $f_{\tau,S} = 0$. With it, the posterior becomes a function of only $f_{e,S}$, since $f_{\mu,S} = 1 - f_{e,S}$. Figure 1, bottom, shows the resulting one-dimensional posterior: The maximum-posterior composition and 68% credible interval is $f_{e,S} = 0.04^{+0.27}_{-0.04}$.

Future prospects.—Larger event samples, advances in flavor tagging, and reduced uncertainties in mixing parameters will significantly improve how well flavor ratios at the sources are inferred. Below, we estimate prospects for the IceCube upgrade [28]—to be built in the near future, with seven new in-fill detector strings—and for 15 years of running of the planned IceCube-Gen2 [14]—with 5–7 times the effective area.

Figure 3, left, shows the projected flavor likelihood of the IceCube upgrade [28]. Unlike the present-day likelihood, the projected one is maximum, by design, at the nominal expectation of $(0.31, 0.35, 0.34)_S$, i.e., the nearly equiflavor composition at Earth expected from production by the full pion decay chain, $(1:2:0)_S$, computed using the present best-fit values of the mixing parameters. The same is true for IceCube-Gen2, though with flavor contours 5 times tighter; see Supplemental Material [44].

Figure 3, right, shows the posterior computed based on the projected likelihood of the IceCube upgrade and Fig. 3, left, without applying any prior on $f_{\tau,S}$. The maximum posterior is at $(0.25:0.33:0.42)_S$—not far from flavor equipartition—even though the IceCube likelihood was designed assuming $(1:2:0)_S$. The reason behind this is subtle but consistent with our Bayesian approach; we detail it in Supplemental Material [44]. By imposing again the prior $f_{\tau,S} = 0$, we are able to sidetrack this subtlety and recover $(1:2:0)_S$ as the maximum-posterior composition.

Figure 1 shows projections for the posterior assuming $f_{\tau,S} = 0$ in the IceCube upgrade and IceCube-Gen2. For IceCube-Gen2, we assume that the mixing parameters will be known with negligible uncertainties compared to the width of the likelihood.
Assuming that neutrino production indeed occurs via pion decay, Fig. 1 shows that, in the near future, the IceCube upgrade could disfavor the muon-damped scenario at the 95% Cr.L. and the neutron-decay scenario at more than the 99% Cr.L. The uncertainty on \(f_{\nu,\delta} \) is expected to shrink by a factor of 2.5. Later, in IceCube-Gen2, the uncertainty could be up to 10 times smaller than today, allowing us to single out the composition from pion decay and rule out alternatives. Supplemental Material [44] shows that, if production includes muon damping, the performance of IceCube-Gen2 will be comparable to Fig. 1. These studies could measure or constrain the average magnetic field strength in neutrino sources [71]. In reality, analyses performed at the time of operation of IceCube-Gen2 will need to factor in the finite, but small, expected uncertainties in the mixing parameters.

Summary and outlook.—The study of the flavor composition of high-energy astrophysical neutrinos can help to identify their unknown production mechanism. We have introduced a method to infer the flavor composition at the neutrino sources based on measurements of the composition at Earth and on the allowed ranges of values of the neutrino mixing parameters. We hope that our results encourage neutrino-telescope collaborations, present and future, to perform further analyses in this direction.

Based on published IceCube data, we found that production of neutrinos via the decay of high-energy pions is compatible with data at the 90% credible level (Cr.L.), while the scenario where intermediate muons in the pion decay chain cool in strong magnetic fields is slightly favored, at the 68% Cr.L. Production via neutron decay is strongly disfavored, at more than 99% Cr.L.

In the future, the IceCube upgrade and extension, IceCube-Gen2, should be capable of singling out the production mechanism and firmly excluding alternatives. This will require synergy between astrophysical-neutrino experiments—to reduce uncertainties in flavor measurements—and oscillation experiments—to reduce uncertainties in neutrino mixing parameters. On both fronts, progress is ongoing, with promising prospects.

We thank Carlos Argüelles, Siqiao Mu, and Sergio Palomares-Ruiz for useful discussion. M. A. and M. B. are supported by the Danmarks Grundforskningsfond Grant No. 1041811001 and Villum Fonden (Projects No. 18994 and No. 13164, respectively). This work used resources provided by the High Performance Computing Center at the University of Copenhagen.