New factorization relations for Yang-Mills amplitudes

Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Gomez, Humberto

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.99.025014

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
New factorization relations for Yang-Mills amplitudes

N. E. J. Bjerrum-Bohr,1 Poul H. Damgaard,1 and Humberto Gomez1,2
1Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, University of Copenhagen Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
2Facultad de Ciencias Basicas, Universidad Santiago de Cali, Calle 5 N° 62-00 Barrio Pampalinda, Cali, Valle, Colombia

(Received 17 October 2018; published 28 January 2019)

A double-cover extension of the scattering equation formalism of Cachazo, He, and Yuan leads us to conjecture covariant factorization formulas of n-particle scattering amplitudes in Yang-Mills theories. Evidence is given that these factorization relations are related to Berends-Giele recursions through repeated use of partial fraction identities involving linearized propagators.

DOI: 10.1103/PhysRevD.99.025014

I. INTRODUCTION

The CHY formalism of scattering equations of Cachazo, He, and Yuan provide an intriguing novel way of computing gauge and gravity S-matrix elements [1–3]. The n-point scattering amplitudes are expressed here in terms of integrals over auxiliary variables za on the Riemann sphere that become localized on the set of solutions to the scattering equations,

$$S_a = \sum_{b=1, b\neq a}^n \frac{s_{ab}}{z_a - z_b} = 0.$$

(1)

Here $s_{ab} = 2k_a \cdot k_b$ are generalized Mandelstam variables, and the index a labels the (ordered) external particles of momenta k_a. One remarkable feature of the CHY formalism, and one which shows its fundamental nature, is that it is dimension-agnostic. The defining integral over the variables z_a is invariant under an SL(2, C) transformation

$$z_a \rightarrow \frac{Az_a + B}{Cz_a + D}, \quad AD - BC = 1,$$

(2)

which needs to be fixed. Fixing three of the variables in the standard manner, only $(n - 3)$ variables z_a are left. This precisely matches the $(n - 3)$ independent scattering equations after imposing overall momentum conservation. The number of independent solutions $(n - 3)!$ is nevertheless huge, and finding all these solutions is computationally difficult even for moderate values of n. Summing over these independent solutions can fortunately be done more directly, through general integration rules developed in Refs. [4,5]. A proof of the CHY formalism has been provided by Dolan and Goddard in Ref. [6].

Recently, one of us [7] (see also Ref. [8]) showed how the CHY formalism can be given a new formulation in which the basic variables z_a live not on \mathbb{CP}^1 but on the complex projective plane \mathbb{CP}^2. Dubbed the “A-formalism” in [7], here we refer to it as CHY on a double cover. At first sight it may seem to be a complication to extend the CHY formalism in this manner. However, as we demonstrate in this paper, the double-cover formalism adds a new ingredient to the standard CHY formalism that is much more difficult to extract in the single-cover formulation. Briefly stated, the double-cover formalism naturally expresses the scattering amplitude so that it is factorized into different channels. The propagator that forms the bridge between two factorized pieces arises as the link between two separate \mathbb{CP}^1 pieces, thus intuitively explaining why the double cover naturally expresses amplitudes in a factorized manner.

In many cases, the factorizations obtained in this way correspond directly to all the physical channels. Interestingly, there are instances where, unavoidably, the factorizations proceed in a slightly different manner: Some physical channels appear immediately, but others only resurface after pole-canceling terms have rearranged the expressions.

We start with a brief review of the CHY formalism and then give the corresponding expressions in the double-cover formulation of Ref. [7]. Next, we describe how the evaluation of amplitudes on a double cover produces factorizations into different channels. Finally, we write down an explicit factorization expression valid for n gluons in any dimension and relate it to known techniques such as on-shell and Berends-Giele recursions.

II. THE CHY CONSTRUCTION AND A DOUBLE-COVER

Consider the scattering of n massless particles. The scattering data will then be presented in terms of a set
of \(n \) momentum vectors \(\{k_1^\mu, k_2^\mu, \ldots, k_n^\mu \} \) and \(n \) “wave functions” that encode the spin degrees of freedom. For Yang-Mills amplitudes the latter will correspond to the polarization vectors \(\{e_1^\mu, e_2^\mu, \ldots, e_n^\mu \} \). Graviton scattering will similarly be characterized by a set of polarization tensors or, put more simply, as outer products of polarization vectors.

Let us introduce the compact notation of \([ijk]\), indicating the Vandermonde determinant of variables \(z_i, z_j, z_k \):

\[
[ijk] \equiv \prod_{i<j}(z_j - z_i) = \begin{vmatrix} 1 & z_i & z_i^2 \\ 1 & z_j & z_j^2 \\ 1 & z_k & z_k^2 \end{vmatrix}.
\]

(3)

It is possible to show that for any rational function \(H(z) \) which transforms as

\[
H(z) \rightarrow H(z) \prod_{a=1}^n (Cz_a + D)^4,
\]

(4)

when

\[
z_a \rightarrow \frac{Az_a + B}{Cz_a + D} \quad \text{and} \quad AB - CD = 1,
\]

(5)

the contour integral [2]

\[
\int \prod_{a=1, a \neq \{i,j,k\}}^n dz_a \prod_{c=1, c \neq \{p,q,r\}}^n S_c(z) H(z)
\]

(6)

is independent of the choice of fixed punctures, \(\{z_i, z_j, z_k \} \), and of equations eliminated, \(\{S_p, S_q, S_r \} \).

The precise form of the integrand \(H(z) \) defines different (color-ordered) theories. The simplest case is \(\phi^3 \) theory. Let us define a “Parke-Taylor”-factor

\[
PT(1, 2, \ldots, n) \equiv \frac{1}{(z_1 - z_2)(z_2 - z_3) \cdots (z_n - z_1)}.
\]

(7)

Color-ordered \(\phi^3 \) amplitudes correspond to integrands with such factors squared:

\[
H(z) = [PT(1, 2, \ldots, n)]^2.
\]

(8)

As shown in Refs. [9,10] (see also [11]), the basic building blocks of other theories are products of one Parke-Taylor factor with a shuffled Parke-Taylor factor (\(\alpha \) indicating a permutation):

\[
H(z) = PT(1, 2, \ldots, n) \times PT(\alpha(1), \alpha(2), \ldots, \alpha(n)).
\]

(9)

Such a product of Parke-Taylor factors in the integrand thus forms a basic skeleton for all other theories.

For Yang-Mills theory we have

\[
H_n^{YM} = PT(1, 2, \ldots, n) \times Pr^i \Psi_n,
\]

(10)

where

\[
Pr^i \Psi_n \equiv \frac{(-1)^{i+j}}{z_i - z_j} \Pr(\Psi_n^{ij}).
\]

(11)

The \(2n \times 2n \) matrix, \(\Psi_n \), is defined as

\[
\Psi_n \equiv \begin{pmatrix} A & -C^T \\ C & B \end{pmatrix},
\]

(12)

with

\[
A_{ab} \equiv \begin{cases} \frac{\alpha z_a - z_b}{z_a - z_b} & a \neq b, \\ 0 & a = b, \end{cases}, \quad B_{ab} \equiv \begin{cases} \frac{\alpha z_a + z_b}{z_a + z_b} & a \neq b, \\ 0 & a = b, \end{cases}
\]

(13)

and

\[
C_{ab} \equiv \begin{cases} \frac{\alpha z_a - z_b}{z_a - z_b} & a \neq b, \\ -\frac{\alpha z_a z_b}{z_a - z_b} & a = b. \end{cases}
\]

(14)

Notice the unusual normalization in the \(A \) and \(C \) matrices. If we put \(\alpha = 1 \), we recover the CHY prescription as originally defined. If instead we choose \(\alpha = \sqrt{2} \), the normalization matches with the color-ordered Feynman rules given by Dixon in [12]. In what follows, \(\alpha \) can take any value (it only changes the overall normalization of the color-ordered amplitudes, a convention), but we keep it arbitrary at this point to facilitate a comparison with Feynman diagrams based on color-ordered Feynman rules later in this paper. The matrix \((\Psi_n)^{ij} \) denotes the reduced matrix obtained by removing the rows and columns \(i, j \) from \(\Psi_n \), where \(1 \leq i < j \leq n \). For how to use the integration rules [5,13] in the context of Yang-Mills theory, see [9–11].

A. The double cover

A double-cover version of the CHY construction was recently developed by one of us in [7]. In this approach the amplitudes are given as contour integrals on \(n \)-punctured double-covered Riemann spheres. Restricted to the curves \(0 = C_a \equiv y_a^2 - \sigma_a^2 + \Lambda^2 \) for \(a = 1, \ldots, n \), the pairs \((\sigma_1, y_1), (\sigma_2, y_2), \ldots, (\sigma_n, y_n) \) provide the new set of doubled variables. A translation table has been worked out in detail in Ref. [7]. Specifically, one defines

\[
\tau_{(a,b)} \equiv \frac{1}{2(\sigma_a - \sigma_b)} \left(\frac{y_a + y_b + \sigma_a - \sigma_b}{y_a} \right)
\]

(15)

and

\[
\Delta_{(pqr)} \equiv (\tau_{(p,q)} \tau_{(q,r)} \tau_{(r,p)})^{-1}
\]

(16)
and simultaneously imposes scattering equations in the form (momentum conservation $\sum \vec{k}_a = 0$ is implicitly used throughout)

$$S_d^\tau \equiv \sum_{\nu=1}^n S_{ab}\tau_{(a,b)} = 0,$$

where $a = 1, \ldots, n$. Amplitudes are then derived from the following expression:

$$A_n^\tau = \int d\mu_n^\Lambda \times \mathcal{I}_n(\sigma, y) \frac{\Delta_{(pqr)}}{S_m^\tau},$$

where the measure $d\mu_n^\Lambda$ is defined as

$$d\mu_n^\Lambda \equiv \frac{1}{\text{Vol}(\text{GL}(2, \mathbb{C}))} \times \frac{d\Lambda}{\Lambda} \prod_{a=1}^n \frac{y_a dy_a d\sigma_a}{C_a} \prod_{d\neq p,q,r,m} \frac{\Delta_{(pqr)}}{S_d^\tau},$$

with the Γ contour being defined by the equations

$$\begin{cases} \Lambda = 0 & \text{for } d \neq \{p, q, r, m\}, \\ S_d^\tau = 0 & \text{if } d = \{p, q, r, m\}. \end{cases}$$

(19)

This rewriting of the amplitude in terms of this contour Γ, which does not encircle the scattering equation S_m^τ, follows from the global residue theorem. Note that the integrand now includes a scale Λ. In order to fix this larger $\text{GL}(2, \mathbb{C})$ symmetry, we gauge-fix four σ_a’s. Then the measure must be multiplied by the Faddeev-Popov determinant

$$\Delta_{(pqr|m)} \equiv \sigma_p \Delta_{(pqr)} - \sigma_m \Delta_{(pqr)} + \sigma_r \Delta_{(pq|m)} - \sigma_q \Delta_{(mqr)}.$$

(20)

Therefore, $d\mu_n^\Lambda$ becomes

$$d\mu_n^\Lambda = \frac{1}{2\pi^2} \frac{d\Lambda}{\Lambda} \prod_{a=1}^n \frac{y_a dy_a}{C_a} \prod_{d\neq p,q,r,m} \frac{d\sigma_d}{S_d^\tau} \times \Delta_{(pqr|m)} \Delta_{(pqr)}.$$

(21)

which has been explained in detail in [7,14].

As in the original CHY approach, the precise form of the integrand $I_n(\sigma, y)$ defines the theory. For example, color-ordered ϕ^3 theory corresponds to the integrand

$$I_n = [PT^\tau(1, 2, \ldots, n)]^2,$$

(22)

where

$$PT^\tau(1, 2, \ldots, n) \equiv \tau_{(1,2)}(\tau_{(2,3)} \cdots \tau_{(n,1)}).$$

(23)

Note the τ’s are neither antisymmetric nor symmetric; the precise definition as given above is correct. Similarly, other theories correspond to products of such modified Parke-Taylor factors with additional expressions, much like in the original CHY formalism. Again, the integrands for these other theories can be broken down to products of shuffled Parke-Taylor expressions.

III. The Yang-Mills Theory in the Double-Cover Prescription

Since $\tau_{(a,b)} \neq -\tau_{(b,a)}$, it is not immediately obvious how to define the double-cover analog of the reduced Pfaffian for pure Yang-Mills theory. In order to obtain the double-cover version of the Ψ_n matrix, we write [we define $(y\sigma)_a \equiv y_a + \sigma_a$]

$$\tau_{(a,b)} = (y\sigma)_a \times T_{ab} = (y\sigma)_a \times \frac{1}{(y\sigma)_a - (y\sigma)_b}. $$

(24)

on the support, $C_a = C_b = 0$, where clearly $T_{ab} = -T_{ba}$. Since T_{ab} is antisymmetric, we establish the single- and double-cover identification, $y\sigma_a \leftrightarrow T_{ab}$, so the double-cover matrix Ψ_n^Λ is defined as $\Psi_n^\Lambda \equiv \Psi_n^\Lambda \frac{1}{y\sigma_1 \cdots T_{ab}}$. Notice that it is straightforward to rewrite the ϕ^3 integrand in terms of T_{ab}, namely,

$$T_n^\psi(\alpha|\beta) = PT^\tau(\alpha_1, \ldots, \alpha_n) \times \prod_{a=1}^n \frac{(y\sigma)_a}{y_a} \times PT^\tau(\beta_1, \ldots, \beta_n),$$

(25)

with

$$PT^\tau(\beta_1, \beta_2, \ldots, \beta_n) \equiv T_{\beta_1, \beta_2} T_{\beta_2, \beta_3} \cdots T_{\beta_{n-1}, \beta_n}. $$

(26)

Following the CHY program developed in [3], the double-cover representation of the ordered Yang-Mills amplitude is obtained by the replacement $PT^\tau(\beta_1, \beta_2, \ldots, \beta_n) \rightarrow (-1)^{i+j} T_{ij} \text{Pr}[(\Psi_n^{\Lambda})_{ij}]$, i.e.,

$$T_n^{\text{YM}}(\alpha) = PT^\tau(\alpha_1, \ldots, \alpha_n) \times \text{Pr}(\Psi_n^{\Lambda}), $$

(27)

where

$$\text{Pr}(\Psi_n^{\Lambda}) \equiv \prod_{a=1}^n \frac{(y\sigma)_a}{y_a} \times (-1)^{i+j} T_{ij} \text{Pr}[(\Psi_n^{\Lambda})_{ij}], $$

(28)

and the $(\Psi_n^{\Lambda})_{ij}$ matrix is given by removing the rows and columns i, j from Ψ_n^{Λ}, with $1 \leq i < j \leq n$. Therefore, the pure Yang-Mills amplitude at tree level in the double-cover language is given by the expression

$$A_n(\alpha) = \int_\Gamma d\mu_n^\Lambda \frac{(-1)^{\Delta_{(pqr)}} \Delta_{(pqr|m)} S_m^\tau}{\Delta_{(pqr|m)}^2} \times T_n^{\text{YM}}(\alpha).$$

(29)

where the upper index “YM” in $A_n(\alpha)$ is no longer necessary.
IV. A SIMPLE EXAMPLE

As a simple example, let us consider the four-point amplitude $A_4(1,2,3,4)$, with the gauge fixing $(pqr|m) = (123|4)$ and the reduced matrix $\langle \Psi_4^{\Lambda} \rangle_{13}$.

First, we focus on the configuration where the sets of punctures $\{\sigma_1, \sigma_2\}$ and $\{\sigma_3, \sigma_4\}$ are on the upper and the lower sheet of the curves, respectively,

$$
\begin{aligned}
(y_1) &= +\sqrt{\sigma_1^2 - \Lambda^2}, \\
(y_2) &= +\sqrt{\sigma_2^2 - \Lambda^2}, \\
(y_3) &= -\sqrt{\sigma_3^2 - \Lambda^2}, \\
(y_4) &= -\sqrt{\sigma_4^2 - \Lambda^2}.
\end{aligned}
$$

(30)

Expanding all elements in $A_4(1,2,3,4)$ around $\Lambda = 0$, we obtain (to leading order)

$$
PT^r(1,2,3,4)|_{13}^{12} = \frac{\Lambda^2}{2^2} \left(\begin{array}{c}
\frac{1}{\sigma_{12}\sigma_{23}\sigma_{34}\sigma_{41}} \\
\frac{1}{\sigma_{13}\sigma_{34}\sigma_{42}}
\end{array} \right),
$$

and the new fixed punctures

$$
\begin{aligned}
\Delta(123)\Delta(123|4)|_{13}^{12} &= \frac{2^5}{\Lambda^4} \left(\begin{array}{c}
\frac{1}{\sigma_{12}\sigma_{23}\sigma_{34}\sigma_{41}} \\
\frac{1}{\sigma_{13}\sigma_{34}\sigma_{42}}
\end{array} \right) \left(\begin{array}{c}
\frac{1}{\sigma_{12}\sigma_{23}\sigma_{34}\sigma_{41}} \\
\frac{1}{\sigma_{13}\sigma_{34}\sigma_{42}}
\end{array} \right),
\end{aligned}
$$

(31)

$$
\begin{aligned}
\prod_{a=1}^{4} \left(\frac{y}{\sigma_{a}} \right) &\times T_{13} \text{Pr}[\langle \Psi_4^{\Lambda} \rangle_{13}]_{13}^{12} = -\frac{\Lambda^2}{2^2} \sum M \left(\begin{array}{c}
C_{22} \\
C_{44}
\end{array} \right) \\
\times &\left(\begin{array}{c}
\frac{1}{\sigma_{12}\sigma_{23}\sigma_{34\sigma_{41}}} \\
\frac{1}{\sigma_{13}\sigma_{34}\sigma_{42}}
\end{array} \right)
\end{aligned}
$$

(32)

where we have introduced the notation $P_{ij} = k_i + k_j$ and the new fixed punctures $\sigma_{P_{ij}} = \sigma_{P_{ij}} = 0$. The C_{22} and C_{44} factors are given by the usual expressions

$$
\begin{aligned}
C_{22} &= -\alpha_{\sigma_{12}\sigma_{23}} - \alpha_{\sigma_{23}\sigma_{34}} - \alpha_{\sigma_{34}\sigma_{41}}, \\
C_{44} &= -\alpha_{\sigma_{13}\sigma_{34}} - \alpha_{\sigma_{34}\sigma_{42}}.
\end{aligned}
$$

(33)

The equality in (32) is obtained under the completeness relationship

$$
\sum \epsilon_j^\mu M^\mu e_j^\mu = \eta^\mu\nu.
$$

(34)

Therefore, the labels sets $\{1,2\}$ and $\{3,4\}$ have been separated.

From the measure $d\mu^\Lambda = \frac{1}{\sqrt{\Lambda}}$, we compute the Λ integral, and the amplitude becomes

$$
A_4(1,2,3,4)|_{13}^{12} = \frac{1}{2} \sum M \frac{A_3(34,1,2) \times A_3(34,1,3)}{p^2_{12}}.
$$

(35)

In a similar way, the factorization expansion $A_4(1,2,3,4)|_{23}^{14}$ becomes

$$
A_4(1,2,3,4)|_{23}^{14} + A_4(1,2,3,4)|_{13}^{12} = \frac{1}{2} \sum M \frac{A_3(41,2,3) \times A_3(41,2,4)}{p^2_{23}}.
$$

(36)

Notice that after starting with the double-cover reduced matrix, $\langle \Psi_4^{\Lambda} \rangle_{ij} = \langle \Psi_4^{\Lambda} \rangle_{13}^{12}$, the resulting subamplitudes in (35) and (36) have as reduced matrices the ones obtained by removing the rows or columns,

$$
\{i,j\} = \{\text{off-shell puncture} \} \cup \{\text{all punctures} \cap \{1,3\} \},
$$

(37)

as can be seen in (32).

Finally, besides the two physical factorization expansions around $\Lambda = 0$ achieved previously, from the double-cover approach arises a spurious channel given by $A_4(1,2,3,4)|_{13}^{12}$, up to its mirrored configuration. At leading order, this configuration is expanded as

$$
PT^r(1,2,3,4)|_{13}^{12} = \frac{\Lambda^4}{2^4} \left(\begin{array}{c}
\frac{1}{\sigma_{(12}\sigma_{34}\sigma_{41}\sigma_{13})^r} \\
\frac{1}{\sigma_{(13}\sigma_{34}\sigma_{42}\sigma_{32})^r}
\end{array} \right),
$$

(38)

$$
\begin{aligned}
\Delta(123)\Delta(123|4)|_{13}^{12} &= \frac{2^5}{\Lambda^4} \left(\begin{array}{c}
\frac{1}{\sigma_{(13}\sigma_{34}\sigma_{42}\sigma_{32})^r} \\
\frac{1}{\sigma_{(12}\sigma_{34}\sigma_{41}\sigma_{13})^r}
\end{array} \right) \left(\begin{array}{c}
\frac{1}{\sigma_{(13}\sigma_{34}\sigma_{42}\sigma_{32})^r} \\
\frac{1}{\sigma_{(12}\sigma_{34}\sigma_{41}\sigma_{13})^r}
\end{array} \right),
\end{aligned}
$$

(39)
NEW FACTORIZATION RELATIONS FOR YANG-MILLS …

\[\prod_{d=1}^{4} \frac{(y_d)_{\frac{1}{2}}}{y_d} T_{13} \text{Pf}[\{\Psi_d\}_{13}^{1}]_{24} \]

\[= \frac{\alpha^2 P^2 \epsilon_1 \cdot \epsilon_3 (\epsilon_2 \cdot \epsilon_4)}{2 \sigma \sigma_{13} \sigma_{24}} \left\{ \begin{array}{ccc}
0 & -\alpha & -C_{33} \\
-\alpha & 0 & -\alpha \cdot \epsilon_3 \\
-\alpha \cdot \epsilon_3 & 0 & 0
\end{array} \right\} \times 2 \sum_{L} (-1)^{L} \times \text{Pf} \left[\begin{array}{c}
\sigma \sigma_{13} \\
\sigma \sigma_{13} \\
\sigma \sigma_{13}
\end{array} \right]

\[= \frac{(\sigma \sigma_{13} \sigma \sigma_{24})}{\sigma \sigma_{13} \sigma_{24}} \times 2 \sum_{L} (-1)^{L} \times \text{Pf}[\{\Psi_d\}_{24}]_{13}

\times \frac{(-1)}{\sigma \sigma_{13} \sigma_{24}} \text{Pf}[\{\Psi_d\}_{13}^{1}]

(39)

\[\sum_{L} \sigma_{13} \sigma_{24} = \sigma_{13} \sigma_{24} \]

with \(\sigma_{13} = \sigma_{24} = 0 \), and \(\sum_{L} \) means a sum over longitudinal degrees of freedom, namely,

\[\sum_{L} \sigma_{13} \sigma_{24} = \frac{P_{1} \cdot P_{2}}{P_{1} \cdot P_{2}}. \]

(40)

Considering the above expansions we are able to integrate the measure \(d\mu_4 \), so it is straightforward to see that

\[A_4(1, 2, 3, 4)_{13}^{1} + A_4(1, 2, 3, 4)_{12}^{1} = -2 \times \sum_{L} \frac{A_4(P_{34}^{\ell}, 1, 2) \times A_4(P_{12}^{\ell}, 3, 4)}{P_{12}^{2}}. \]

(41)

Therefore, the double-cover approach gives us the four-point factorization relation

\[A_4(1, 2, 3, 4) = \sum_{L} \frac{A_4(P_{34}^{\ell}, 2, 3) \times A_4(P_{23}^{\ell}, 4, 1)}{P_{23}^{2}} + \sum_{L} \frac{A_4(P_{34}^{\ell}, 1, 2) \times A_4(P_{12}^{\ell}, 3, 4)}{P_{12}^{2}} - 2 \times \sum_{L} \frac{A_4(P_{34}^{\ell}, 1, 2) \times A_4(P_{12}^{\ell}, 3, 4)}{P_{12}^{2}}. \]

(42)

where the subamplitudes are given in the single-cover approach with reduced matrices satisfying Eq. (37).

V. A NEW RELATION FOR YANG-MILLS AMPLITUDES

We now generalize the new factorization realization obtained from double-cover formalism in the previous section. As will be shown in great detail elsewhere [14], by integrating the double-cover representation of an ordered Yang-Mills amplitude, one is led to the following general formula which factorizes arbitrary \(n \)-point Yang-Mills amplitudes into a product of (single-cover) CHY representations of lower-point amplitudes:

\[A_n(1, \ldots, n) = \sum_{\epsilon} \frac{A_3(P_{41}^{\epsilon}, 2, 3) \times A_{n-1}(P_{23}^{\epsilon}, 4, \ldots, n, 1)}{P_{23}^{2}} + \sum_{i=1}^{n} \frac{A_{n-i+3}(P_{3,i}^{\epsilon}, i+1, \ldots, n, 1)}{P_{i+1}^{2}} \]

\[- 2 \sum_{\epsilon} \frac{A_{n-i+3}(P_{3,i}^{\epsilon}, i+1, \ldots, n, 1)}{P_{i+1}^{2}} \times \frac{A_{i-1}(P_{i+1}^{\epsilon}, 3, \ldots, i)}{P_{i+1}^{2}} \]

(43)

To be clear, this factorized form of Yang-Mills amplitudes is a conjecture. What the double-cover formalism produces directly are the first two terms plus contributions that come from linking amplitudes together with scalar degrees of freedom. Miraculously, it appears that these scalar contributions can be exactly represented by gluing two Yang-Mills amplitudes together with longitudinal polarizations only. The technical details of how these manipulations arise will be presented elsewhere [14]. Needless to say, in the factorized form on the right-hand side, the two amplitudes each have one external leg off shell (although still dressed with the corresponding unphysical polarization vector). Gluing these two amplitudes together proceeds through the polarization sums as described in Eqs. (33) and (40). It should also be stressed that the above expression comes from the double-cover formalism with Mobius and scale-invariance gauge choices \((pqr|m) = (123|4) \) and reduced matrix \((\Psi_n \sigma_{n+1}) \).
This is important to remark since the above factorization is a gauge-fixing-dependent expression. Of course, the final result, the left-hand side, is the correct full n-point amplitude, but the precise factorized form on the right-hand side depends on that generalized gauge fixing. The three punctures which must be fixed in the smaller off-shell Yang-Mills amplitudes are given by the set \{fixed punctures\} = \{all punctures\} \cap \{1, 2, 3, 4\} \cup \{off-shell puncture\}, and their reduced matrices are obtained by removing the rows or columns under the rule given in (37). We denote sums of cyclically consecutive external momenta (modulo the total number of external momenta) by $P_{i:j} = k_i + k_{i+1} + \ldots + k_{j-1} + k_j$. For expressions with only two momenta involved (not necessarily consecutive), we use the shorthand notation $P_{ij} = k_i + k_j$.

We have denoted the polarization degrees of freedom by ϵ_M and the longitudinal ones by ϵ_L. Using the simple identity $\sum q_i \epsilon_{iM} \epsilon_j = \sum q_i \epsilon_i^{\mu \nu} \epsilon_j^{\mu \nu} + \sum q_i \epsilon_i^{\nu} \epsilon_j^{\nu L}$, we can rewrite (43) in terms of transverse (T) and longitudinal (L) polarization vectors,

$$A_n(1, \ldots, n) = \sum_{\epsilon_T} A_3(P^T_{12}, 3, 4) A_{n-1}(P^T_{12}, 4, \ldots, n, 1) \left. \frac{P^2_{12}}{\epsilon_T} \right|_{2e+3} + \sum_{\epsilon_T} A_3(P^T_{i+1:2}, 3, \ldots, i) \left. \frac{P^2_{i+1:2}}{\epsilon_T} \right|_{2e+3} + \sum_{\epsilon_L} A_3(P^L_{12}, 3, 4) A_{n-1}(P^L_{12}, 4, \ldots, n, 1) \left. \frac{P^2_{12}}{\epsilon_L} \right|_{2e+3}.$$ \hspace{1cm} (44)

Notice that the poles related to the longitudinal polarization contributions are not physical, and indeed these unphysical poles are canceled by corresponding numerator factors. This is the way local four-point Yang-Mills interactions appear in this formalism.

A. Feynman diagrams and Bern-Carrasco-Johansson (BCJ) numerators

We first consider how the double-cover representation relates to BCJ numerator identities [16]. From the formula (44), we arrive at

$$A_4(1, 2, 3, 4) = \sum_{\epsilon_T} \frac{A_3(P^T_{12}, 3, 4) \times A_3(P^T_{34}, 1, 2)}{P^2_{12}} + \sum_{\epsilon_T} \frac{A_3(P^T_{i+1:2}, 3, \ldots, i)}{P^2_{i+1:2}} - 2 \sum_{\epsilon_T} \left[\frac{A_3(P^L_{12}, 3, 4) \times A_3(P^L_{34}, 1, 2)}{P^2_{12}} \right]_{2e+3} - \frac{1}{2} \sum_{\epsilon_T} \frac{A_3(P^L_{i+1:2}, 3, \ldots, i)}{P^2_{i+1:2}}.$$

It is simple to check that in the normalization convention $\alpha = \sqrt{2}$ (corresponding to [12]), the first and second lines are just the conventionally normalized Feynman diagrams $\frac{g^2}{4} \times \frac{1}{4}$ and $\frac{1}{4} \times \frac{1}{4}$ and the remainder represents the quartic vertex, namely $\frac{1}{4} \times \frac{1}{4}$. Finally, to obtain the BCJ numerators, we reorganize (45) in the following way:

$$A_4(1, 2, 3, 4) = \sum_{T} \frac{A_3(P^T_{12}, 3, 4) \times A_3(P^T_{34}, 1, 2)}{P^2_{12}} + \sum_{L} \frac{A_3(P^L_{12}, 3, 4) \times A_3(P^L_{34}, 1, 2)}{P^2_{12}} \left. \frac{P^2_{12}}{P^2_{12}} \right|_{2e+3} + \sum_{L} \frac{A_3(P^L_{i+1:2}, 3, \ldots, i)}{P^2_{i+1:2}}.$$ \hspace{1cm} (46)

For the numerators, we have

$$\frac{1}{P^2_{12}} \sum_{T} \frac{A_3(P^T_{12}, 3, 4) \times A_3(P^T_{34}, 1, 2)}{P^2_{12}} \left. \frac{P^2_{12}}{P^2_{12}} \right|_{2e+3} + \frac{1}{P^2_{12}} \sum_{L} \frac{A_3(P^L_{12}, 3, 4) \times A_3(P^L_{34}, 1, 2)}{P^2_{12}} \left. \frac{P^2_{12}}{P^2_{12}} \right|_{2e+3} + \frac{1}{P^2_{12}} \sum_{L} \frac{A_3(P^L_{i+1:2}, 3, \ldots, i)}{P^2_{i+1:2}}.$$ \hspace{1cm} (47)

Using the above equation, it is simple to check that we have $\mathbf{n}_s - \mathbf{n}_t = \mathbf{n}_u$, where \mathbf{n}_u can be obtained from \mathbf{n}_s under the permutation $1, 2, 3, 4 \rightarrow 1, 3, 2, 4$. Extending such ideas to a higher number of points should be a possible avenue and would be very interesting.

B. BCFW recursion

It is interesting to compare the factorizations above with what one would obtain based on Britto-Cachazo-Feng-
Witten (BCFW) recursion [17]. To illustrate this, consider the five-point amplitude \(A_5(1, 2, 3, 4, 5)\) and introduce the momentum deformation

\[
k^\mu_2(z) = k^\mu_2 + zq^\mu, \quad k^\mu_3(z) = k^\mu_3 - zq^\mu, \quad z \in \mathbb{C},
\]

where \(q^\mu\) satisfies \(k_2 \cdot q = k_3 \cdot q = q \cdot q = 0\) and \(q \cdot \bar{q} = 1\). Additionally, the polarization vectors \(\{\epsilon_2, \epsilon_3\}\) must be deformed in order to keep the transversality, so we consider \(\epsilon_2^+(z) = \bar{q} - z \frac{k_3}{k_2 \cdot k_3}\) and \(\epsilon_3^+(z) = q\); another option is \(\epsilon_2^+(z) = q\) and \(\epsilon_3^+(z) = \bar{q} + z \frac{k_3}{k_2 \cdot k_3}\). Since we have momentum conservation for deformed momenta \(k_1 + k_2(z) + k_3(z) + k_4 + k_5 = 0\) and the on-shell condition \(k^\mu_2(z) = k^\mu_3(z) = 0\) and transversality remain valid, the CHY approach is well defined. Thus, from (43) and using Cauchy, one has

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

\[
A_5(1, 2, 3, 4, 5) = -\text{Res}_{p^2_{34}}[A_4(P^\mu_{34}, 5, 1, 2)(z)] \left(\sum_{i=4}^{N} A_{3}^i(P^\mu_{34}, i+1, 1, 2) \times A_{i-1}(P^\mu_{i+1}, 3, 4, 5) \right) \frac{z}{p^2_{34}(z)}
\]

where we have chosen the gauge fixing \((pqr|m) = (123|4)\). On the other hand, Berends-Giele recursion gives (see, e.g., Ref. [19])

\[
\frac{1}{p^2_{12}} \left(\frac{1}{p^2_{34}} + \frac{1}{p^2_{12}} \right) \left(\frac{1}{p^2_{34}} + \frac{1}{p^2_{13}} \left(\frac{1}{p^2_{12}} + \frac{1}{p^2_{23}} \right) \right). \tag{50}
\]

On the support, \(k_1 + k_2 + k_3 + k_4 + k_5 = 0\), and under the on-shell condition \(k^2_1 = 0\), it is trivial to check that the expressions obtained in (49) and (50) are identical. However, the appearance of the unphysical poles in the double-cover framework, \((p^2_{34} - p^2_{12})^{-1} = (p^2_{34} - p^2_{35})^{-1}\) and \((p^2_{34} - p^2_{35})^{-1}\), makes it clear that the two representations are not directly equal. Interestingly, these unphysical poles are related to the physical channel \(p^2_{34}\) by use of the partial fraction identity

\[
\frac{1}{p^2_{35}} \left(\frac{1}{p^2_{34}} + \frac{1}{p^2_{35}} \right) \left(\frac{1}{p^2_{34}} + \frac{1}{p^2_{13}} \left(\frac{1}{p^2_{12}} + \frac{1}{p^2_{23}} \right) \right). \tag{51}
\]

As it happens with the linear propagators at loop level [8,20–22], the CHY formalism is naturally built of linear propagators that can relate to the usual Feynman propagators by means of partial fractioning.

VI. CONCLUSIONS

We have presented a new set of factorization identities for Yang-Mills theory that naturally arise from a double-cover version of the CHY formalism. These factorizations glue amplitudes together in what can be interpreted as the covariant Feynman gauge, with the additional four-point contact interactions coming from an explicit sum over longitudinal polarizations. The factorizations are at the conjectured level, but there are many hints that they may also be derivable from Berends-Giele recursions. Although spurious poles appear, simple checks show that they cancel through repeated use of partial fraction identities. It would be an interesting extension of this work to derive these relations directly from off-shell recursion relations.
Factorizations of amplitudes grow out of the double-cover formalism precisely because it is “double”: There are, figuratively speaking, two CHY integrals involved. The bridge between these two CHY integrals is an off-shell leg, a propagator. In the double-cover formalism this off-shell leg stems from one scattering equation that is not imposed as a delta-function constraint.

These factorizations of Yang-Mills amplitudes are just a small part of more general relations that follow when the double-cover formalism of CHY is analyzed for the known set of theories that can be represented in this form. Details will be provided by one of us in a subsequent paper [14].

ACKNOWLEDGMENTS

Numerous discussions with J. Bourjaily are gratefully acknowledged. We also thank N. Ahmadinia, C. Cardona, and C. Lopez-Arcos for useful discussions and comments. This work was supported in part by the Danish National Research Foundation (DNRF91). H. G. is grateful for partial financial support from Universidad Santiago de Cali.