Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of $K^*(892)(0)$ and $\phi(1020)$ mesons

Alice Collaboration

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2020.135225

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Alice Collaboration (2020). Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of $K^*(892)(0)$ and $\phi(1020)$ mesons. Physics Letters B, 802, [135225].
https://doi.org/10.1016/j.physletb.2020.135225
Evidence of rescattering effect in Pb–Pb collisions at the LHC through production of $K^*(892)^0$ and $\phi(1020)$ mesons

ALICE Collaboration*

ABSTRACT

Measurements of $K^*(892)^0$ and $\phi(1020)$ resonance production in Pb–Pb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the Large Hadron Collider are reported. The resonances are measured at midrapidity ($|y| < 0.5$) via their hadronic decay channels and the transverse momentum (p_T) distributions are obtained for various collision centrality classes up to $p_T = 20$ GeV/c. The p_T-integrated yield ratio $K^*(892)^0$/K in Pb–Pb collisions shows significant suppression relative to pp collisions and decreases towards more central collisions. In contrast, the $\phi(1020)$/K ratio does not show any suppression. Furthermore, the measured $K^*(892)^0$/K ratio in central Pb–Pb collisions is significantly suppressed with respect to the expectations based on a thermal model calculation, while the $\phi(1020)$/K ratio agrees with the model prediction. These measurements are an experimental demonstration of rescattering of $K^*(892)^0$ decay products in the hadronic phase of the collisions. The $K^*(892)^0$/K yield ratios in Pb–Pb and pp collisions are used to estimate the time duration between chemical and kinetic freeze-out, which is found to be ~ 4–7 fm/c for central collisions. The p_T-differential ratios of $K^*(892)^0$/K, $\phi(1020)$/K, $K^*(892)^0$/π^0, $\phi(1020)$/p, p/K and p/K are also presented for Pb–Pb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV. These ratios show that the rescattering effect is predominantly a low-p_T phenomenon.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Several measurements in high-energy heavy-ion collisions at the Large Hadron Collider (LHC) [1–3] and the Relativistic Heavy Ion Collider (RHIC) [4–9] have shown that a strongly-coupled Quark-Gluon Plasma (QGP) is formed that subsequently hadronizes. Resonances, short lived hadrons that decay via strong interactions, play an important role in characterizing the properties of hadronic matter formed in heavy-ion collisions [10–16]. Several resonances have been observed in pp and nuclear collisions [10–19]: $f_2(1270)$, $\rho(770)^0$, $\Delta(1232)^{++}$, $f_0(980)$, $K^*(892)^0$,$\Sigma(1385)$, $\Lambda(1520)$ and $\phi(1020)$ with lifetimes of the order of 1.1 fm/c, 1.3 fm/c, 1.6 fm/c, 2.6 fm/c, 4.3 fm/c, 5.5 fm/c, 12.6 fm/c and 46.3 fm/c, respectively [20]. The wide range of their lifetimes allows them to be good probes of the dynamics of the system formed in ultra-relativistic heavy-ion collisions [21–27].

In the hadronic phase of the evolution of the system formed in heavy-ion collisions, there are two important temperatures and corresponding timescales: the chemical freeze-out, when the inelastic collisions among the constituents are expected to cease, and the later kinetic freeze-out, when all (elastc) interactions stop [28–30]. If resonances decay before kinetic freeze-out, then their decay products are subject to hadronic rescattering that alters their momentum distributions. This leads to inability to reconstruct the parent resonance using the invariant mass technique, resulting in a decrease in the measured yield relative to the primordial resonance yield, i.e. the yield at chemical freeze-out. The fraction of resonances that cannot be recovered depends on the lifetime of the hadronic phase (defined as the time between chemical and kinetic freeze-out), the hadronic interaction cross section of resonance decay products, the particle density in the medium and the resonance phase space distributions. For example, a pion from a $K^*(892)^0$ meson decay could scatter with another pion in the medium as $\pi^-\pi^+ \rightarrow \rho^0 \rightarrow \pi^-\pi^+$. At the same time, after the chemical freeze-out, pseudoelastic interactions could regenerate resonances in the medium, leading to an enhancement of their yields. For example, interactions like $\pi K \rightarrow K^*(892)^0 \rightarrow \pi K$ and $K^- K^+ \rightarrow \phi(1020) \rightarrow K^- K^+$ could happen until kinetic freeze-out. Hence, resonances are probes of the rescattering and regeneration processes during the evolution of the fireball from chemical to kinetic freeze-out. Indeed, transport-based model calculations show that both rescattering and regeneration processes affect the final resonance yields [31,32]. Thermal statistical models, which have successfully explained a host of particle yields in heavy-ion collisions across a wide range of center-of-mass energies [33–36], are
able to explain the measured resonance yields only after including rescattering effects [37,38].

In this paper, the measurement of the production of $K^*(892)^0$ and $\phi(1020)$ vector mesons at midrapidity in Pb–Pb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV is presented. Although both vector mesons have similar masses, their lifetime differs by a factor of larger than 10. This aspect is exploited to establish the dominance of rescattering in central Pb–Pb collisions at the LHC. The kaon and pion daughters of the short-lived $K^*(892)^0 \to K\pi$ rescatter with other hadrons in the medium. The magnitude of the effect is mainly determined by the pion-pion interaction cross section [39], which is measured to be significantly larger (factor 5) than the total kaon-pion interaction cross section [40]. The latter determines the magnitude of the regeneration effect [41]. Thus with rescattering dominating over regeneration, the observable $K^*(892)^0$ yields should decrease compared to the primordial yields, and therefore, a suppression of the $K^*(892)^0/K$ yield ratio is expected in heavy-ion collisions relative to pp collisions. Furthermore, this ratio is expected to decrease with increase in system size, which is determined by the collision centrality (maximum for central collisions). In contrast, because of a larger lifetime compared to that of the hadronic phase, the $\phi(1020)$ meson yields are not expected to be affected by rescattering [14,32]. The $\phi(1020)$ mesons are also expected not to be affected by the regeneration due to significantly lower KK cross section compared to $K\pi$ and $\pi\pi$ cross sections [39,40]. Hence the independence of the $\phi(1020)/K$ yield ratio of the system size will act as a baseline for corresponding $K^*(892)^0/K$ measurements, thereby supporting the presence of the rescattering effect in heavy-ion collisions. The lower $K^*(892)^0/K$ yield ratio in Pb–Pb collisions compared to pp at the same $\sqrt{s_{NN}}$ can then be used to estimate the time span between chemical and kinetic freeze-out in heavy-ion collisions. Furthermore, due to the scattering of the decay products, the low-p_T $K^*(892)^0$ are less likely to escape the hadronic medium before decaying, compared to high-p_T $K^*(892)^0$ [32]. This could alter the $K^*(892)^0/p_T$ spectra in Pb–Pb collisions compared to pp, while no such effect is expected for ϕ mesons. Therefore, studying p_T-differential ratios of $K^*(892)^0$ and $\phi(1020)$ mesons with respect to other non-strange (π) and strange (K) mesons, and baryons (p) in Pb–Pb and pp collisions will help to establish the p_T dependence of rescattering effects and disentangle them from other physics processes like radial flow that modifies the shapes of the p_T distributions at low and intermediate transverse momenta. In addition, the measurements at $\sqrt{s_{NN}} = 5.02$ TeV are compared to results from Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [14,42]. Since production of particles and antiparticles is equal at midrapidity at LHC energies, the average of the yields of $K^*(892)^0$ and $K^*_+(892)^0$ is presented in this paper and is denoted by the symbol K_0^* unless specified otherwise. The $\phi(1020)$ is denoted by the symbol ϕ.

The paper is organized as follows: In section 2, the detectors used in the analysis are briefly described. In section 3, the dataset, the analysis techniques, the procedure for extraction of the yields of K_0^* and ϕ mesons and the study of the systematic uncertainties are presented. In section 4, the yields obtained by invarian mass reconstruction of K_0^* and ϕ mesons as a function of transverse momentum in Pb–Pb and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV, the p_T-integrated ratios of K_0^* and ϕ relative to charged kaons, and p_T-differential ratios relative to charged π, K and protons are reported. Finally, in section 5 the findings are summarized.

2. Experimental apparatus

The measurements of K_0^* and ϕ meson production in pp and Pb–Pb collisions have been performed using the data collected by the ALICE detector in the year 2015. The details of the ALICE detector can be found in Refs. [43–45]. So we briefly focus on the following main detectors used for this analysis. The forward V0 detector, a scintillator detector with a timing resolution less than 1 ns, is used for centrality selection, triggering and beam-induced background rejection. The V0 consists of two sub-detectors, V0A and V0C, placed at asymmetric positions, one on each side of the interaction point with full azimuthal acceptance and cover the pseudorapidity ranges $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$, respectively. The centrality classes in Pb–Pb collisions are determined from the sum of the measured signal amplitudes in V0A and V0C, as discussed in Refs. [46,47]. The collision time information is provided by T0 which consist of two arrays of Cherenkov counters T0A and T0C, positioned on both sides of the interaction point [48]. The Zero Degree Calorimeter (ZDC) consists of two tungsten-quartz neutron and two brass-quartz proton calorimeter placed at a distance of 113 m on both sides of the interaction point. It is used to reject the background events and to measure the spectator nucleons.

In the central barrel, the Inner Tracking System (ITS) and the Time Projection Chamber (TPC) are used for charged-particle tracking and primary collision vertex reconstruction. The ITS consists of three sub-detectors of two layers each, covering a central pseudorapidity range $|\eta| < 0.9$: Silicon Pixel Detector (SPD), Silicon Drift Detector (SDD) and Silicon Strip Detector (SSD). The TPC is the main charged particle tracking detector, and has full azimuthal coverage in the pseudorapidity range $|\eta| < 0.9$. Along with track reconstruction, it also provides a measurement of the momentum and excellent particle identification (PID). The TPC provides the measured specific energy loss (dE/dx) to identify the particles, especially in low momentum range ($p < 1$ GeV/c) where the dE/dx of particles are well separated. To extend the particle identification to higher p_T, the Time of Flight (TOF) detector is used in addition to the TPC information. The TOF is based on the Multigap Resistive Plate Chamber (MRPC) technology and measures the arrival times of particles with a resolution of the order of 80 ps. It covers a pseudorapidity range $|\eta| < 0.9$ and provides excellent PID capabilities in the intermediate p_T range by exploiting the time-of-flight information.

3. Data sample and analysis details

The pp data were collected using a minimum bias (MB) trigger. The logic for MB trigger requires at least one hit in V0A or V0C and one hit in the central barrel detector SPD in coincidence with the LHC bunch crossing [49,50]. In pp collisions, a criterion based on the offline reconstruction of multiple primary vertices in the SPD [45] is applied to reduce the pileup, which is caused by multiple interactions in the same bunch crossing. The rejected pileup events are less than 1% of the total events. The Pb–Pb data were also collected using a MB trigger with a logic that requires a coincidence of signals in V0A and V0C. The MB-triggered events are analyzed if they have a reconstructed collision vertex whose position along the beam axis (V_z, z is the longitudinal direction) is within 10 cm from the nominal interaction point in both pp and Pb–Pb collisions. Background events are rejected using the timing information from the Zero Degree Calorimeters (ZDCs) and V0 detectors.

The Pb–Pb analysis is performed in 8 centrality classes defined in Ref. [46]: 0–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70% and 70–80%. The 0–10% class corresponds to the most central Pb–Pb collisions, with small impact parameter, while the 70–80% class corresponds to peripheral Pb–Pb collisions, with large impact parameter. The total number of events that are analyzed after passing the event selection criteria are ~110 million for pp and ~30 million for Pb–Pb collisions. Charged tracks are selected.
for analysis based on track selection criteria that ensure good track quality, as done in previous work [42]. In particular, a track in the TPC is requested to have a minimum of 70 crossed rows (horizontal segments along the transverse readout plane of the TPC) out of a maximum possible 159 [51]. A p_T-dependent selection criterion on the distance of closest approach to the collision vertex in the transverse (xy) plane (DCAx,y) and along the longitudinal direction (DCA$_z$) is used to reduce the contamination from secondary charged particles coming from weakly decaying hadrons. In addition to these selection criteria, tracks are required to have $p_T > 0.15$ GeV/c in both pp and Pb–Pb collisions. Charged particles are accepted in the pseudorapidity range $|\eta| < 0.8$, which ensures a uniform acceptance.

The particle identification exploits both the TPC and the TOF. For K0_s and ϕ reconstruction in Pb–Pb collisions, charged particles are identified as pion or kaon if the mean specific energy loss (dE/dx) measured by the TPC falls within two standard deviations (2σ_{TPC}) from the expected dE/dx values for π or K over the entire momentum range. If the TOF information is available for the track, in addition to the TPC, a TOF-based selection criterion 3σ_{TOF} is applied over the measured momentum range, where σ_{TOF} is the standard deviation from the expected time-of-flight for a given species. These requirements help in reducing the background under the signal peak over a large momentum range and provide a better separation between signal and background with respect to TPC PID only. For K0_s reconstruction in pp collisions, the same PID selection criteria are applied to identify pion and kaon candidates as are used in Pb–Pb collisions. For the ϕ reconstruction in pp collisions, the kaon candidates are identified using a 6σ_{TPC}, 4σ_{TPC} and 2σ_{TPC} selection on the measured dE/dx distributions in the momentum ranges $p < 0.3$ GeV/c, $0.3 < p < 0.4$ GeV/c and $p > 0.4$ GeV/c, respectively. On top of this, the TOF-based selection criterion of 3σ_{TOF} is applied over the entire measured momentum range in pp collisions if the TOF information is available.

3.1. Yield extraction, corrections and normalization

The K0_s and ϕ resonances are reconstructed by calculating the invariant mass of their decay products through the hadronic decay channels K0_s(KK) \rightarrow K$^+\pi^-$ (Branching Ratio, BR $= 66.666 \pm 0.006\%$ [20]) and ϕ \rightarrow K$^+K^-$ (BR $= 49.2 \pm 0.5\%$ [20]), respectively. Oppositely charged K and π (or K) from the same event are paired to reconstruct the invariant mass distributions of K0_s(K$^\pm$). The K$^\pm$ and KK pairs are selected in the rapidity range $|y| < 0.5$ in both pp and Pb–Pb collisions. The invariant mass distribution exhibits a signal peak and a large combinatorial background resulting from the uncorrelated K$^\pi$ (KK) pairs. The combinatorial background is estimated using a mixed-event technique in both collision systems. The mixed-event background is constructed by combining kaons from one event with the oppositely charged π (K) from different events for K0_s(K$^\pm$). The events which are mixed are required to have similar characteristics. In Pb–Pb, two events are mixed if they belong to the same centrality class and the difference between the collision vertex positions is $|\Delta z| < 1$ cm. In pp collisions, two events are mixed with a condition of $|\Delta z| < 1$ cm and a difference in charged-particle density at midrapidity ($|\Delta y| < 0.5$) of less than 5. To minimize the statistical fluctuations in the background distribution, each event is mixed with five other events. The invariant mass distribution from the mixed-event is normalized to the same-event oppositely-charged pair distribution in the mass range region 1.1–1.3 GeV/c2 for K0_s (resp. ϕ), which is away from the mass peak (6 GeV/c2 for K0_s and 7.7 GeV/c2 for ϕ, Γ is the width of the resonance). After the combinatorial background subtraction, the signal peak is observed on top of a residual background. The latter is due to the correlated Kπ or KK pairs that originate from jets and from the misidentification of particles. It is shown in Ref. [42] that the residual background has a smooth dependence on mass and the shape of the background is well described by a second order polynomial [14,42]. The invariant mass distributions after mixed-event background subtraction are fitted with a Breit-Wigner (resp. Voigtian) function for the signal peak of K0_s (resp. ϕ) plus a second order polynomial for the residual background [42]. The Voigtian function is a convolution of a Breit-Wigner distribution and a Gaussian, where the width σ of the Gaussian accounts for the mass resolution. The latter is p_T-dependent and varies between 1 and 2 MeV/c2. The raw yields are measured as a function of p_T for K0_s and ϕ in pp collisions and in various centrality classes in Pb–Pb collisions. A detailed description of the yield extraction procedure is given in Ref. [42].

The measured yields are affected by the detector acceptance and reconstruction efficiency ($A \times \epsilon_{rec}$). This is estimated by means of dedicated Monte Carlo simulations using the PYTHIA (PYTHIA 6 Perugia 2011 tune and PYTHIA 8 Monash 2013 tune) [52,53] and HIJING [54] event generators for pp and Pb–Pb collisions, respectively. The generated particles are then propagated through the detector material using GEANT3 [55]. The $A \times \epsilon_{rec}$ is calculated as a function of p_T and is defined as the ratio of the reconstructed K0_s(K$^\pm$) to the generated K0_s(K$^\pm$), both within $|y| < 0.5$. For the reconstruction of resonances, the same track and PID selection criteria are applied to the simulations as used in the analysis of the measured data. The $A \times \epsilon_{rec}$ is calculated for K0_s(K$^\pm$) that decay through the hadronic channel K$^\pm\pi^\mp$ (K$^\pm$K$^\mp$), hence it does not include the correction for BR. In Pb–Pb collisions, the $A \times \epsilon_{rec}$ has a weak centrality dependence and the raw yields are corrected using the $A \times \epsilon_{rec}$ of the respective centrality class.

The procedure to correct the raw yields is given by

$$\frac{1}{N_{event}} \frac{d^2N}{dy dp_T} = \frac{1}{N_{acc}} \frac{d^2N_{raw}}{dy dp_T} \frac{\epsilon_{trig} \cdot \epsilon_{vert} \cdot \epsilon_{sig}}{(A \times \epsilon_{rec}) \cdot BR}. \quad (1)$$

The raw yields are normalized to the number of accepted events (N_{acc}) and corrected for $A \times \epsilon_{rec}$, trigger efficiency (ϵ_{trig}), vertex reconstruction efficiency (ϵ_{vert}), signal loss (ϵ_{sig}) and the BR of the decay channel. The yields in pp are normalized to the number of inelastic collisions with a trigger efficiency correction, $\epsilon_{sig} = 0.757 \pm 0.019$ [56]. The vertex reconstruction efficiency in pp collisions is found to be $\epsilon_{vert} = 0.958$. The signal loss correction factor ϵ_{sig} is determined based on MC simulations as a function of p_T and accounts for the resonance signal lost due to trigger inefficiencies. The $\epsilon_{sig}(p_T)$ correction is only significant for $p_T < 2.5$ GeV/c and has a value of less than 5% both for K0_s and ϕ in pp collisions. In Pb–Pb collisions, the yields of K0_s and ϕ in a given centrality class are normalized by the number of events in the respective V0M (sum of V0A and V0C amplitude) event centrality class. The correction factors ϵ_{trig}, ϵ_{vert} and $\epsilon_{sig}(p_T)$ are compatible with unity in the reported centrality classes in Pb–Pb collisions and hence are not used.

3.2. Systematic uncertainties

The systematic uncertainties in the measurement of K0_s and ϕ yields in pp and Pb–Pb collisions are summarized in Table 1. The sources of systematic uncertainties are related to the yield extraction method, PID and track selection criteria, global tracking efficiency, the knowledge of the ALICE material budget and of the interaction cross section of hadrons in the detector material. The uncertainties are reported for three transverse momentum values, low, mid and high p_T. For Pb–Pb collisions all the systematic uncertainties except the one related to the yield extraction are common in the various centrality classes and the values given in the
Table 1
Systematic uncertainties in the measurement of K^0 and ϕ yields in pp and Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. These uncertainties are shown for three transverse momentum values, low, mid and high p_T. For Pb–Pb collisions all the systematic uncertainties except yield extraction are common in various centrality classes and the values given in the table are averaged over all centrality classes.

<table>
<thead>
<tr>
<th>Systematic variation</th>
<th>Pb–Pb</th>
<th>pp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K^0</td>
<td>ϕ</td>
</tr>
<tr>
<td></td>
<td>p_T (GeV/c)</td>
<td>p_T (GeV/c)</td>
</tr>
<tr>
<td>Yield extraction (%)</td>
<td>7.3</td>
<td>7.5</td>
</tr>
<tr>
<td>Track selection (%)</td>
<td>2.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Particle identification (%)</td>
<td>5.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Global tracking efficiency (%)</td>
<td>4.7</td>
<td>7.4</td>
</tr>
<tr>
<td>Material budget (%)</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Hadronic Interaction (%)</td>
<td>2.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Total (%)</td>
<td>10.9</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Fig. 1. The p_T distributions of (a) K^0 and (b) ϕ mesons in pp collisions and various centrality classes in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The values are plotted at the center of each bin. The statistical and systematic uncertainties are shown as bars and boxes, respectively.

The p_T distributions of the K^0 and ϕ mesons for $|y| < 0.5$, normalized to the number of events and corrected for efficiency, acceptance and branching ratio of the decay channel, are shown in Fig. 1. The results for Pb–Pb collisions are presented for eight different centrality classes (0–10% up to 70–80% in 10% wide centrality intervals) together with the results from inelastic pp collisions at the same energy.

The p_T-integrated particle yields have been extracted using the procedure described in Refs. [14,42]. The p_T distributions are fitted with a Lévy-Tsallis function [56,59] in pp and a Boltzmann-Gibbs blast-wave function [60] in Pb–Pb collisions. The yields have been extracted from the data in the measured p_T region and the fit functions have been used to extrapolate into the unmeasured (low and high p_T) region. The low-p_T extrapolation covers $p_T < 0.4$ GeV/c for K^0 and ϕ mesons and accounts for 8.6% (7.2%) and 12.5% (12.7%) of the total yield in the 0–10% and 70–80% centrality classes in Pb–Pb collisions, respectively. In pp collisions, the K^0 is measured in the range $0 < p_T < 20$ GeV/c. For the ϕ meson, the low-p_T extrapolation covers $p_T < 0.4$ GeV/c, accounting for 15.7% of the total.
yield. The extrapolated fraction of the yield is negligible for \(p_T > 20 \text{ GeV}/c \).

4.2. Particle ratios

Fig. 2 shows the \(K^0/K^- \) and \(\phi/K^- \) ratios as a function of \(\langle dN_{ch}/d\eta \rangle^{1/3} \) [46,47,51] for \(p\text{-Pb} \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) [14, 42] and \(p\text{-Pb} \) collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) [17] and \(pp \) collisions at \(\sqrt{s} = 5.02 \text{ TeV} \). The kaon yields in \(p\text{-Pb} \) at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) are from Ref. [51]. The \(\langle dN_{ch}/d\eta \rangle^{1/3} \) measured at midrapidity, is used here as a proxy for the system size. This is supported by the observation of the linear increase in the HBT radii with \(\langle dN_{ch}/d\eta \rangle^{1/3} \) [61,62]. The \(K^0/K^- \) ratio decreases for rising \(\langle dN_{ch}/d\eta \rangle^{1/3} \) while the \(\phi/K^- \) ratio is almost independent of \(\langle dN_{ch}/d\eta \rangle^{1/3} \). The ratios exhibit a smooth trend across the different collision systems and collision energies studied. The \(K^0/K^- \) and \(\phi/K^- \) ratios in \(p\text{-Pb} \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ and } 5.02 \text{ TeV} \) are in agreement within uncertainties.

The resonance yields are modified during the hadronic phase by rescattering (which would reduce the measured yields) and regeneration (which would increase the measured yields). The observed dependence of the \(K^0/K^- \) ratio on the charged-particle multiplicity is consistent with the behavior that would be expected if rescattering is the cause of the suppression. The fact that the \(\phi/K^- \) ratio does not exhibit suppression with charged-particle multiplicity suggests that the \(\phi^- \), which has a lifetime an order of magnitude larger than that of the \(K^0 \), decays predominantly outside the hadronic medium. Theoretical estimates suggest that about 55% of the \(K^0 \) and \(K^- \) mesons with momentum \(p = 1 \text{ GeV}/c \), decay within 5 fm/c of production (a typical estimate for the time between chemical and kinetic freeze-out in heavy-ion collisions [22,32,63]), while only 7% of \(\phi^- \) mesons with \(p = 1 \text{ GeV}/c \) decay within that time. This supports the hypothesis that the experimentally observed decrease of the \(K^0/K^- \) ratio with charged-particle multiplicity is caused by rescattering. A similar suppression has also been observed for \(\rho^0 \) [15] and \(\Delta^+/\Lambda \) [13] in central \(p\text{-Pb} \) collisions relative to peripheral \(p\text{-Pb} \) and \(pp \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \).

In addition, the \(K^0/K^- \) ratio from thermal model calculations without rescattering effects and with chemical freeze-out temperature \(T_{ch} = 156 \text{ MeV} \) for the most central \(p\text{-Pb} \) collisions [34,64] is found to be higher than the corresponding measurements, while the measured \(\phi/K^- \) ratio agrees with the thermal model predictions. The \(K^0/K^- \) and \(\phi/K^- \) ratios in \(p\text{-Pb} \) collisions are also compared to EPOS3 model calculations with and without a hadronic cascade phase modeled by UrQMD [32]. The EPOS3 model predictions shown in the figure are for \(p\text{-Pb} \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) but no significant qualitative differences are expected between the two energies. The EPOS3 generator with UrQMD reproduces the observed trend of the \(K^0/K^- \) and \(\phi/K^- \) ratios which further supports the experimental data.

The fact that \(K^0/K^- \) decreases with increasing \(\langle dN_{ch}/d\eta \rangle^{1/3} \) implies that rescattering of the decay products of \(K^0 \) in the hadronic phase is dominant over \(K^0 \) regeneration. This suggests that \(K^0 \rightarrow K^- \) is not in balance. Hence in \(p\text{-Pb} \) the \(K^0/K^- \) ratio can be used to get an estimate of the time between chemical and kinetic freeze-out, \(\tau \), as \(\langle [K^0/K^-]_{\text{chemical}} \rangle \propto e^{-\tau/T_{\chi 0}} \), where \(T_{\chi 0} \) is the \(K^0 \) lifetime. Here, \(T_{\chi 0} \) is taken as 4.16 fm/c ignoring any medium modification of the width of the invariant mass distribution of \(K^0 \). Furthermore, it is assumed that \(\langle [K^0/K^-]_{\text{chemical}} \rangle \) is given by the values measured in pp collisions and the \(p\text{-Pb} \) collision data provides an estimate for \([K^0/K^-]_{\text{chemical}} \). This is equivalent to assuming that all \(K^0 \)’s that decay before kinetic freeze-out are lost due to rescattering effects and there is no regeneration effect between kinetic and chemical freeze-out which is supported by AMPT simulations [31]. All the assumptions listed above lead to an estimate of \(\tau \) as a lower limit for the time span between chemical and kinetic freeze-outs. A decrease in the \(K^0/K^- \) ratio with increasing multiplicity has previously also been observed in \(p\text{-Pb} \) collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) [17]. This might indicate the presence of rescattering effect in high multiplicity \(p\text{-Pb} \) collisions and is suggestive of a finite lifetime of the hadronic phase. For comparison we have also estimated the hadronic phase lifetime in \(p\text{-Pb} \) data. Fig. 3 shows the results for \(\tau \) boosted by a Lorentz factor (\(\sim 1.65 \) for \(p\text{-Pb} \) collisions and \(1.75 \) for \(p\text{-Pb} \) collision) as a function of \(\langle dN_{ch}/d\eta \rangle^{1/3} \). Neglecting higher order terms, the Lorentz factor is estimated as \(\sqrt{1 + ((p_T)/m)^2} \). Here \(m \) is the rest mass of the resonance and \(p_T \) is used as an approximation for \(p \) for the measurements at midrapidity. The time interval between chemical and kinetic freeze-out increases with the system size as expected. For central \(p\text{-Pb} \) collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \), the lower limit of time between chemical and
kinetic freeze-out is about 4–7 fm/c. This is of the same order of magnitude as the K^0 lifetime, but about an order of magnitude shorter than the ϕ lifetime. A smooth increase of τ with system size from p–Pb to Pb–Pb collisions is observed. The EPOS3 generator with UrQMD reproduces the increasing trend of τ with multiplicity qualitatively [32]. If a constant chemical freeze-out temperature is assumed, then the increase of τ with multiplicity in Pb–Pb collisions corresponds to a decrease of the kinetic freeze-out temperature. This is in qualitative agreement with results from blast-wave fits to identified particle p_T distributions [51], which are interpreted as decrease in the kinetic freeze-out temperature from peripheral to central collisions.

Further, to quantify the p_T-dependence of the rescattering effect observed in Pb–Pb collisions, a set of p_T-differential yield ratios was studied: $K^{(0, \pi, \phi)}/K, \phi/K, K^{(0, \pi, \phi)}/\pi, \phi/\pi, p/K^{(0, \pi, \phi)}$ and p/ϕ as shown in Figs. 4, 5 and 6. The choice of the ratios is motivated by the following reasons: (a) the ratio of resonance yields relative to the ones of kaons and pions can shed light on the shapes of the p_T distributions of mesons with different mass and quark content, and (b) the ratios of the proton yield with respect to the yields of the resonances allow comparisons among hadrons of similar mass, but different baryon number and quark content to be made. For case (a), ratios in 0–10%, 70–80% Pb–Pb collisions and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV are compared. For case (b), ratios in 0–10% Pb–Pb collisions and pp collisions at $\sqrt{s_{NN}} = 5.02$ TeV are compared with 0–5% in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The ratios for 70–80% in Pb–Pb collisions are closer to the corresponding results in pp collisions. Noticeably, there are distinct differences between central and peripheral (pp) collisions in the ratios for p_T below ~2 GeV/c and intermediate p_T (between 2 and 6 GeV/c) but the ratios are consistent at higher p_T [42].

At low p_T, the $K^{(0, \pi, \phi)}/K$ and $K^{(0, \pi, \phi)}/\pi$ for central collisions are lower than in peripheral (pp) collisions, while the corresponding yield ratios for ϕ meson are comparable within the uncertainties. This observation is consistent with the suppression of $K^{(0, \pi, \phi)}$ yields due to rescattering in the hadronic phase. It demonstrates that rescattering affects low momentum particles. At intermediate p_T, both ratios show an enhancement for central Pb–Pb collisions relative to peripheral and pp collisions, which is more prominent for $\phi/K, \phi/\pi$ and $K^{(0, \pi, \phi)}/\pi$. This is consistent with the presence of a larger

Fig. 4. Particle yield ratios $(K^{(0, \pi, \phi)}/K)$ in panel (a) and $(2\phi/(K^{(0, \pi, \phi)}/K^{(0, \pi, \phi)}))$ in panel (b), both as a function of p_T for centrality classes 0–10% and 70–80% in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. For comparison, the corresponding ratios are also shown for inelastic pp collisions at $\sqrt{s} = 5.02$ TeV. The statistical uncertainties are shown as bars and systematic uncertainties are shown as boxes. In the text $(K^{(0, \pi, \phi)}/K^{(0, \pi, \phi)})$ and $(K^{(0, \pi, \phi)}/K^{(0, \pi, \phi)})$ are denoted by $K^{(0, \pi, \phi)}$ and $K^{(0, \pi, \phi)}$, respectively.

Fig. 5. Particle yield ratios $(K^{(0, \pi, \phi)}/K)$ in panel (a) and $(2\phi/(K^{(0, \pi, \phi)}/K^{(0, \pi, \phi)}))$ in panel (b), both as a function of p_T for centrality classes 0–10% and 70–80% in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. For comparison, the corresponding ratios are also shown for inelastic pp collisions at $\sqrt{s} = 5.02$ TeV. The statistical uncertainties are shown as bars and systematic uncertainties are shown as boxes. In the text $(K^{(0, \pi, \phi)}/K^{(0, \pi, \phi)})$ and $(K^{(0, \pi, \phi)}/K^{(0, \pi, \phi)})$ are denoted by $K^{(0, \pi, \phi)}$ and $K^{(0, \pi, \phi)}$, respectively.
radial flow in central collisions relative to peripheral and pp collisions [51]. Given that the masses of K^0 and φ mesons are larger than those of the charged kaon and pion, the resonances experience a larger radial flow effect. In central Pb–Pb collisions, for pt below 5 GeV/c, the p/φ ratio is observed to be independent of pt and the p/K^0 ratio exhibits a weak pt-dependence within the uncertainties, in contrast to the decrease of both ratios with pt observed in pp collisions. In turn, this suggests that the shapes of the pt distributions are similar for K^0, φ and p in this pt range. Although the quark contents are different, the masses of these hadrons are similar, indicating that this is the relevant quantity in determining spectra shapes. This is consistent with expectations from hydrodynamic-based models [65,66]. Within the uncertainties, the p/K^0 and p/φ ratios for central Pb–Pb collisions at √SNN = 5.02 TeV and 2.76 TeV [42] are constant at intermediate pt. This is consistent with the observation of similar order radial flow at both energies, obtained from the analysis of pt spectra of pions, kaons and protons [51]. For pt > 6 GeV/c, the K^0/φ, K^0/π, φ/π, p/K^0 and p/φ yield ratios in central collisions are similar to peripheral and pp collisions, indicating that fragmentation is the dominant hadron production mechanism in this pt region. This is consistent with previous measurements at √SNN = 2.76 TeV [42].

5. Summary

The transverse momentum distributions of K^0 and φ mesons have been measured at midrapidity (|y| < 0.5) for various collision centralities in Pb–Pb and inelastic pp collisions at √SNN = 5.02 TeV using the ALICE detector. The K^0 yields relative to charged kaons in Pb–Pb collisions show a suppression with respect to pp collisions, which increases with the system size, quantified using (dN_{ch}/dη)^{1/3} measured at midrapidity. In contrast, no such suppression is observed for the φ mesons. The lack of suppression for the φ meson can be attributed to the fact that most of them decay outside the fireball because of its longer lifetime (τ_φ = 463 ± 0.4 fm/c). Because of a shorter lifetime (τ_K^0 = 416 ± 0.05 fm/c), a significant number of produced K^0 decays in the hadronic medium. The decay product(s) undergo interactions with other hadrons in the medium resulting in a significant change in their momentum, and no longer contributing to the K^0 signal reconstructed in the experiment. Although both rescattering and regeneration are possible, the results presented here represent an experimental demonstration of the predominance of rescattering effects in the hadronic phase of the system produced in high-energy collisions. The effect of rescattering increases with the system size. Furthermore, the K^0/φ yield ratios in central Pb–Pb collisions are significantly lower compared to the values from thermal model calculations without rescattering effects, while the measured φ/K^0 yield ratio agrees with the model calculation. This further corroborates the hypothesis that rescattering affects the measured K^0 yields in Pb–Pb collisions. A lower limit for the lifetime of the hadronic phase is determined by using the K^0/φ ratios in Pb–Pb and pp collisions at √SNN = 5.02 TeV. The lifetime, as expected, increases with system size. For central Pb–Pb collisions, it is about 4–7 fm/c.

The pt-differential yield ratios of K^0/φ and K^0/π are studied in central Pb–Pb, peripheral Pb–Pb and pp collisions to understand the pt-dependence of the rescattering effect. It is observed that rescattering dominantly affects the hadrons at pt < 2 GeV/c. At intermediate pt (2–6 GeV/c), the φ/π, K^0/φ and p/K^0 and p/φ yield ratios in central Pb–Pb collisions are similar to peripheral and pp collisions. In addition, the spectral shapes of K^0, φ and p, which have comparable masses, are similar within the uncertainties for pt below 5 GeV/c in Pb–Pb collisions. These measurements demonstrate the effect of higher radial flow in central Pb–Pb collisions relative to peripheral Pb–Pb and pp collisions. A comparison of the p/K^0 and p/φ ratios for central Pb–Pb collisions at √SNN = 5.02 and 2.76 TeV shows the constancy of the ratios with pt. This is consistent with the observation of comparable radial flow at √SNN = 5.02 TeV and 2.76 TeV. For higher pt, above 6 GeV/c, all the ratios agree within the uncertainties for central and peripheral Pb–Pb, and pp collisions, indicating that particle production via fragmentation at high transverse momenta is not significantly modified in the presence of a medium.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the

ALICE Collaboration

France

Department of Physics, Pusan National University, Pusan, Republic of Korea

Department of Physics, Sejong University, Seoul, Republic of Korea

Department of Physics, University of California, Berkeley, CA, United States

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics and Technology, University of Bergen, Bergen, Norway

Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy

Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy

Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy

Dipartimento di Fisica ‘E. R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy

Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy

Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

Faculty of Science, P. J. Safárik University, Košice, Slovakia

Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Fudan University, Shanghai, China

Gangneung-Wonju National University, Gangneung, Republic of Korea

Gauhati University, Department of Physics, Guwahati, India

Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

Helsinki Institute of Physics (HIP), Helsinki, Finland

High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico

Hiroshima University, Hiroshima, Japan

Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany

Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

Indian Institute of Technology Bombay (IIT), Mumbai, India

Indian Institute of Technology Indore, Indore, India

Indonesian Institute of Sciences, Jakarta, Indonesia

INFN, Laboratori Nazionali di Frascati, Frascati, Italy

INFN, Sezione di Bari, Bari, Italy

INFN, Sezione di Bologna, Bologna, Italy

INFN, Sezione di Cagliari, Cagliari, Italy

INFN, Sezione di Catania, Catania, Italy

INFN, Sezione di Padova, Padova, Italy

INFN, Sezione di Roma, Rome, Italy

INFN, Sezione di Torino, Turin, Italy

INFN, Sezione di Trieste, Trieste, Italy

Inho University, Incheon, Republic of Korea

Institut de Physique Nucléaire de Lyon (IPNL), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Lyon-1, Université Lyon-2, Université Joseph Fourier, Grenoble, France

Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands

Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

Institute of Physics, Homi Bhabha National Institute, Bhavnagar, India

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Institute of Space Science (ISI), Bucharest, Romania

Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

iThemba LABS, National Research Foundation, Somerset West, South Africa

Jeonbuk National University, Jeonju, Republic of Korea

Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany

Joint Institute for Nuclear Research (JINR), Dubna, Russia

Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

KTO Karatay University, Konya, Turkey

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

Lawrence Berkeley National Laboratory, Berkeley, CA, United States

Lund University Department of Physics, Division of Particle Physics, Lund, Sweden

Nagasaki Institute of Applied Science, Nagaoka, Japan

Nara Women’s University (NWU), Nara, Japan

National and Kapodistrian University of Athens, School of Physics, Department of Physics, Athens, Greece

National Centre for Nuclear Research, Warsaw, Poland

National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

National Nuclear Research Center, Baku, Azerbaijan

National Research Centre Kurchatov Institute, Moscow, Russia

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Nikhef, National Institute for subatomic physics, Amsterdam, Netherlands

NRC Kurchatov Institute IHEP, Protvino, Russia

NRC “Kurchatov Institute” – IHEP, Moscow, Russia

NRNU Moscow Engineering Physics Institute, Moscow, Russia

Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
95 Oak Ridge National Laboratory, Oak Ridge, TN, United States
96 Ohio State University, Columbus, OH, United States
97 Petersburg Nuclear Physics Institute, Gatchina, Russia
98 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
99 Physics Department, Panjab University, Chandigarh, India
100 Physics Department, University of Jammu, Jammu, India
101 Physics Department, University of Rajasthan, Jaipur, India
102 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
103 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
104 Physik Department, Technische Universität München, Munich, Germany
105 Politecnico di Bari, Bari, Italy
106 Research Division and Extreme Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
107 Rudjer Bošković Institute, Zagreb, Croatia
108 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
109 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
110 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
111 Sección Fisica, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
112 St. Petersburg State University, St. Petersburg, Russia
113 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
114 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
115 Suranaree University of Technology, Nakhon Ratchasima, Thailand
116 Technical University of Košice, Košice, Slovakia
117 Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Austin, TX, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo André, Brazil
124 University of Cape Town, Cape Town, South Africa
125 University of Houston, Houston, TX, United States
126 University of Jyväskylä, Jyväskylä, Finland
127 University of Liverpool, Liverpool, United Kingdom
128 University of Science and Technology of China, Hefei, China
129 University of South-Eastern Norway, Tønsberg, Norway
130 University of Tennessee, Knoxville, TN, United States
131 University of the Witwatersrand, Johannesburg, South Africa
132 University of Tokyo, Tokyo, Japan
133 University of Tsukuba, Tsukuba, Japan
134 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
135 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
136 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
137 Université Paris-Saclay Centre d'Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
138 Università degli Studi di Foggia, Foggia, Italy
139 Università degli Studi di Pavia, Pavia, Italy
140 Università di Brescia, Brescia, Italy
141 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
142 Warsaw University of Technology, Warsaw, Poland
143 Wayne State University, Detroit, MI, United States
144 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
145 Wigner Research Centre for Physics, Budapest, Hungary
146 Yale University, New Haven, CT, United States
147 Yonsei University, Seoul, Republic of Korea

1 Deceased.
ii Dipartimento DET del Politecnico di Torino, Turin, Italy
iii M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
iv Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
v Institute of Theoretical Physics, University of Wroclaw, Poland.