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A B S T R A C T   

The present study performed in Horten Inner Harbor (southern Norway) shows that foraminifera link the present- 
day Ecological Quality Status (EcoQS) to EcoQS of former times and, this way, bridge an important knowledge 
gap concerning determination of reference conditions, even in naturally stressed environments such as transi
tional waters and oxygen depleted habitats. In Horten Inner Harbor, geochemical data in the oldest deposits 
showed stable background concentrations for about 200 years (from about 1600 to 1800) before human activity 
became noteworthy, reflecting ‘good’ to ‘high’ status. Hence, it is reasonable that organisms, which lived in the 
area during the same nearly un-impacted time interval, represent the biologically defined reference conditions, 
irrespectively of whether the biotic indices are classified as ‘good’ or ‘bad’. The present paper illustrates, with a 
conceptual model, how the retrospective foraminiferal biomonitoring method can be used to detect environ
mental perturbations in estuaries and meet the difficulties of the Estuarine Quality Paradox.   

1. Introduction 

Fjords are a type of estuary (e.g., Syvitski et al., 1987). They are 
relatively sheltered coastal marine areas, often with a naturally stressed 
environment due to the presence of one or more sills, estuarine circu
lation with high fresh-water input, stratified water columns, and irreg
ular deep-water exchange that may lead to natural oxygen depletion. 
Furthermore, they are commonly preferential urbanization areas and 
thus, exposed to domestic and industrial effluents. Because of their high 
sediment accumulation rates (commonly >1 mm yr� 1), they serve as 
pollution traps and sediment sinks for e.g., organic material (e.g., Alve, 
2000; Howe et al., 2010; Skei, 1996). 

Increasing population growth along the coasts and intensified 
human-induced activities (e.g., agricultural land-use, industrial activity) 
may result in severe pollution (including enhanced supply of nutrients, 
metals, and organic contaminants) in the marine system. In addition, 
cultural eutrophication is often identified as one of the main causes of 
oxygen deficiency in bottom waters and sediments (e.g., Aure et al., 
1996; Dale et al., 1999; Johannessen and Dahl, 1996). These 
human-induced environmental conditions affect the benthic faunal 
community and may cause e.g., an increase in opportunistic and tolerant 
species and a decline in faunal diversity and biomass (e.g., Diaz and 

Rosenberg, 1995; Gray et al., 2002; Levin et al., 2009). 
All countries implementing EU’s Water Framework Directive (WFD) 

are committed to obtain ‘good’ or ‘high’ Ecological Quality Status 
(EcoQS) in their coastal waterbodies by 2020 (European Parliament, 
2008). For areas with less than ‘good’ status, improvement is needed to 
obtain conditions similar to the ecological reference conditions, i.e., 
conditions “with no, or very minor disturbance from human activities” 
(European Commission, 2003, p. 36). Currently, due to lack of long 
biological time series, reference conditions are defined either by com
parison with reference sites of comparable ecoregions and water types or 
expert judgement (European Commission, 2003). 

Evaluating the EcoQS in transitional waters (TW) and naturally ox
ygen depleted fjord environments is a challenge. Faunal communities 
living in such naturally variable environments are adapted to cope with 
temporally changing environmental parameters (such as salinity, tem
perature, organic matter input) and might show faunal characteristics 
(e.g., low diversity, high abundance of stress-tolerant species) similar to 
assemblages exposed to anthropogenic stress. This difficulty of sepa
rating natural and anthropogenic stress in estuaries is known and 
described as the ‘Estuarine Quality Paradox’ (Dauvin, 2007; Dauvin and 
Ruellet, 2009; Elliot and Quintino, 2007). This paradox, together with 
the lack of long time-series, makes the ability to define reference 
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conditions the main uncertainty when classifying ecological status based 
on soft bottom macrofauna (the traditionally used biological quality 
element). In recent years, quantitative analyses of fossil benthic fora
minifera in dated sediment cores have been used to determine in situ 
reference conditions in fully marine, subtidal habitats (e.g., Alve et al., 
2009; Dolven et al., 2013; Polovodova Asteman et al., 2015). Norwegian 
national guidelines now recommend the retrospective foraminiferal 
method for defining reference conditions in coastal regions, where un
affected reference sites are difficult to find (Veileder 02: 2018). This 
foraminiferal method allows detecting anthropogenic stress against a 
background of natural conditions by the use of a number of biotic and 
abiotic parameters. 

Within the mentioned context, the overall aim of the present study is 
to investigate, if reference conditions, sensu the WFD, can be defined in 
naturally stressed fjord environments (e.g., brackish) where species di
versity can be naturally low and the ‘Estuarine Quality Paradox’ applies. 
To achieve this, temporal changes (past 3–400 yrs) in benthic forami
niferal assemblages and associated sediment- and geochemical param
eters in the present-day polluted Horten Inner Harbor (southern 
Norway) have been analyzed. 

2. Investigation area and its pollution history 

The Oslofjord, south-eastern Norway, is separated from the northern 
Skagerrak by a ~120 m deep sill. Horten Inner Harbor is an enclosed, 
small (3.8 km2) and shallow (max. 27 m water depth) basin at the 
western side of the outer Oslofjord (Fig. 1). In addition to a few shallow 
sounds (<6 m water depth), the inner harbor basin is separated from the 
Oslofjord by a sill at 9 m water depth. The astronomical tidal range is 

small, ca. 20 cm, and the basin has no major fluvial inputs. Still, there is 
a stratification of the water masses with a pronounced halocline be
tween 8 and 10 m water depth. Above the halocline, the salinity and 
temperature ranges are 15–26 and 4–6 �C (in March), respectively, and 
reach values of 33 and 8 �C in the basin (NGI, 2014). Since the envi
ronmental monitoring studies in the late 1980s (Baalsrud, 1990), the 
dissolved oxygen concentrations at > 10 m water depth have been 
continuously so low (<0.6 ml/l) that hardly any living macrofauna has 
been observed (Lund, 2013; Saunes and Konieczny, 2013; Walday et al., 
2012). 

For centuries, Horten Inner Harbor has been an easily defendable, 
enclosed basin. This was the main reason why it was established as 
Norway’s main naval base and shipyard in 1818. Additionally, the area 
was established as a municipality in 1837, and got the official status as a 
trade place in 1857. The activities led to increased urban settlement and 
the city of Horten was established in 1907. From 1849 to 1953, the area 
was used as a base and shipyard for the Navy and subsequently as a 
shipyard for civilian ships until 1987 and other industry until 2000. In 
1945, the base and shipyard were completely destroyed in a bomb attack 
but soon rebuilt (Krokaas, 2012). The shipyards typically discharged 
disposals like oils, sandblasting components, and antifouling paints, 
containing PAHs, metals, PCBs and TBT. Over the years parts of the 
shoreline became landfills created by the municipality, armed forces, 
and local industries. The landfills were in action during most of the 
1900s and were closed down between 1979 and 1993. Their most active 
periods were during the 1960s and 1970s, and typical pollutants 
included various kinds of hydrocarbons, slag, lead and other metals 
(Krokaas, 2012). 

A number of recent environmental studies have documented that the 

Fig. 1. Study area, Horten Inner Harbor (HIH), southern Norway, with sampling sites shown as red circles (modified map from www.kartverket.no). (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4. Results 

4.1. Sediment chronology and accumulation rates 

The 8m-core showed an unsupported 210Pb profile with an almost 
exponential decline in the upper 12 cm. A broad 137Cs peak occurred 
around 8 cm core depth, corresponding to the Chernobyl 1986 accident. 
However, the broad depth range of this peak indicated some bio
turbation at this site. Concentrations of 210Pb suggested a sediment 
accumulation rate of c. 0.07 g cm� 2 y� 1 with an average sedimentation 
rate of approx. 2.5 mm y� 1. A core chronology was calculated for the 
upper 11 cm (post-1970; Fig. 2, Table 3). Down-core extrapolation is 
somewhat uncertain due to the high sand content at the base of the core 
that possibly indicates re-sedimentation. 

The 12m-core showed an unsupported 210Pb profile with a clear 
exponential decline with depth in the upper 15 cm. The 137Cs concen
trations showed a distinct peak around 8 cm core depth, which can be 
considered a reliable chronostratigraphic marker, corresponding to the 
atmospheric fallout from the Chernobyl 1986 accident. Concentrations 
of 210Pb suggested a relatively stable sediment accumulation rate of c. 
0.05 g cm� 2 y� 1 with an average sedimentation rate of approx. 2 mm 
y� 1. The 210Pb dating of the 12m-core indicates that the recovered 
sediment record extends beyond 1800 (Fig. 2). 

The sediments of the 20m-core showed an irregular decline of un
supported 210Pb in the upper 6 cm, which could indicate some periods 
with sediment slumping or higher sediment accumulation. The 137Cs 
concentrations showed a distinct peak around 8 cm depth, which is most 
likely related to the Chernobyl 1986 accident. The chronology has 
therefore been calculated by using this peak as a reference date for 1986. 

The sediment accumulation rate was not constant throughout the core 
but fluctuated around 0.04 g cm� 2 y� 1 with an average sedimentation 
rate of approx. 1.7 mm y� 1. A core chronology was calculated for the 
upper 12 cm (post-1950s; Fig. 2) and down-core extrapolation indicates 
that the recovered sediment record extends beyond 1860 (Table 3). 

4.2. Hydrography and sediment characteristics at the sampling sites 

At the shallow-water site HIH-3 (8 m w.d.), the bottom temperature 
was 6 �C, the salinity 26, and the bottom water oxygen concentration 
was 4.9 ml/l at the time of collection (Table 1). 

The sediment cores from this site consisted of grey, sandy mud. The 
water content ranged between 35 and 85% and was highest in the core 
top. The sediments became gradually browner, softer and finer upwards 
the sediment column. The sediment surface was light brown, indicating 
well-oxygenated conditions, and some polychaete tubes were observed. 
The oxygen concentration in the sediment column decreased rapidly and 
reached the zero concentration at only 3 mm depth (Table 1). The sand- 
sized fraction (>63 μm) ranged between 1.3 and 48.1%, reaching 
maximum values in the lowermost 10 cm of the core (Fig. 3). Shell 
fragments and plant debris occurred regularly in the sediments. 

At the 12m- and 20m-core sites, the bottom temperature was 8 �C 
and salinity 31 and 33, respectively, at the time of sampling. Oxygen 
concentrations in the bottom water were low (0.6 ml/l and 0.4 ml/l, 
respectively) (Table 1). 

Both the 12m- and 20m-core were located in the deeper harbor basin 
(Fig. 1). These sediment cores consisted of homogenous, medium grey 
mud containing small shell fragments of molluscs up to approx. 25 cm 
core depth. The sediment got gradually darker and softer upwards. The 

Table 2 
Classification system for environmental and ecological quality status used in this study (based on Veileder 
02:2018, *Alve et al., 2019, and **Bouchet et al., 2012). 
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Fig. 2. (A) Age model of the three sediment cores from Horten Inner Harbor. Open symbols indicate extrapolated dates. (B) Unsupported 210Pb and 137Cs profiles of 
the three sediment cores. 
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Fig. 3. Sand content, total organic carbon (TOC63) content, C:N ratio, benthic foraminiferal accumulation rate (BFAR), normalised ecological quality ratio (nEQR) 
based on foraminiferal indices and environmental status of some contaminants (Cu, Pb, Hg, PAH-16) of the three sediment cores from Horten Inner Harbor. For color 
codes see Table 2. Years in Italics are extrapolated. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 4. Organic carbon accumulation rates and C:N ratio over time of the three analyzed sediment cores. Graph on the right side shows δ13C values of bulk sediments 
in the 12m-core. Unfilled data point symbols are based on extrapolated ages. 

Fig. 5. Copper (Cu), lead (Pb) and mercury (Hg) accumulation rates over time of the three sediment cores from Horten Inner Harbor. Unfilled data point symbols are 
based on extrapolated ages. 
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the concentrations peaked during the following decades and declined 
following their ban in Norway in 1980 (Arp et al., 2011). From the 1960s 
onwards, TBT was used as an agent in antifouling paints (Arp et al., 
2014; Hugget et al., 1992) until it was banned in Norway in 2003. 
Accordingly, the sediments showed increasing TBT concentrations from 
the mid-1900s; it peaked during the 1990s, and decreased in the sedi
ments deposited during the past few decades, although the surface 
sediments are still classified as ‘bad’ status (Supplementary Tables 1–3). 

Lead (Pb) and mercury (Hg) concentrations reached maximum 
values between the 1960s and 1970s, while copper (Cu) concentrations 
peaked in the 1980s–1990s (Fig. 5, Supplementary Tables 1–3). All were 
common components of antifouling paints and extensively used in 
connection with shipyard activities and boat traffic. The analyzed metals 
showed decreasing concentrations towards the most recently deposited 
sediments where they approached levels representing ‘good’ status 
(Fig. 3). In the same way as for inner Oslofjord the subsurface metal- 
maxima, which represent the mid to late 1900s, are probably not 
significantly influenced by diagenetic remobilization because the up- 
core metal-distribution profiles occur in cores with oxic as well as in 
cores with anoxic surface sediments (Dolven et al., 2013; Lepland et al., 
2010). 

Organic matter accumulation over several hundred years and a 
gradual isostatic rebound (see section 5.2), probably had a negative 
influence on the oxygen conditions in the basin at the 12m- and 20m- 

sites. Consequently, a long period of anoxic bottom conditions, in 
addition to a continuous, high supply of organic matter (either directly 
or, during the 1900s, indirectly through eutrophication; decreased C:N, 
Fig. 3), hampered a natural re-establishment of improved oxygen con
ditions in the deeper basin. 

In concert, the above reflects 1) low, stable background concentra
tions of naturally occurring, potential pollutants in the oldest, lower 
parts of the sediment cores representing ‘good’ or ‘high’ status, 2) 
temporally increasing concentrations of pollutants in the sediments due 
to local industrial development, and 3) recent (since 1990s) improve
ment of geochemical status which is now approaching background 
conditions. This indicates that the environmental conditions in Horten 
Inner Harbor are improving and there is a chance of natural recovery as 
long as sediment resuspension can be avoided. The temporal variation in 
concentration of geochemical parameters from reference-to present-day 
conditions is illustrated by the left hand diagram in Fig. 6. 

5.2. Conceptual model to define reference conditions 

Various approaches to define ecological reference conditions in 
marine and transitional waters (TW) have been suggested (e.g., Borja 
et al., 2012 and references therein). In this study, we define ecological 
reference conditions as value(s) of biotic indices that existed during a 
time interval of decades to centuries with stable geochemical conditions 

Fig. 6. Conceptual model illustrating the tem
poral development of in situ ecological status 
from pre-impacted reference conditions (1), 
through deteriorating periods (2) to potential 
recovered conditions (3), based on the retro
spective foraminiferal biomonitoring method. 
The upper, dashed lines reflect different potential 
scenarios. A ¼ normal marine coastal waters, B 
¼ naturally oxygen depleted waters, and C ¼
transitional waters (TW). Alterations between 
status classes in the lower column parts reflect 
natural variability.   
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reflecting “no or very minor disturbance from human activity” (Euro
pean Commission, 2003, p. 36). This implies that biotic indices, 
reflecting the ecological reference conditions will, for natural reasons, 
be low in stressful environments (i.e., naturally oxygen depleted waters 
or TW) and higher under well oxygenated, normal marine environ
mental conditions (Fig. 6). Reference conditions may reflect natural 
variability as indicated in the lower parts of the columns in Figure 6 (cf., 
European Commission, 2003, p. 37). 

5.2.1. Coastal waters 
In coastal, marine soft bottom habitats, benthic invertebrate mac

rofauna is the only accepted faunal biological quality element (BQE) to 
classify ecological quality status (EcoQS), including reference conditions 
(European Commission, 2003). However, due to lack of long time series, 
reference conditions cannot be directly determined using macrofauna 
and this is a recurring problem (European Commission, 2003, p. 41). An 
alternative method is to base the classification on fossilisable species of 
benthic foraminifera in dated sediment cores, back to pre-impact times, 
as suggested by Alve et al. (2009). How can the use of foraminifera be 
relevant for ecological information required to be based on macrofauna? 
Recently, quantitative comparisons have shown that living (stained) 
foraminiferal and macrofaunal community compositions in samples 
collected at the same time from the same coastal, marine stations 
correlated significantly (cross-taxon congruence), implying that fora
miniferal distribution patterns parallel those of the associated macro
fauna (Bouchet et al., 2018). Additionally, applying the same diversity 
and sensitivity indices on the two groups of organisms has shown that 
they reflect the present-day environmental conditions similarly (e.g., 
Alve et al., 2019; Wlodarska-Kowalczuk et al., 2013). Finally, an inter
calibration study between biotic indices based on the two groups 
showed that it was possible to define ecological classes and class 
boundaries for foraminifera-based EcoQS in present-day coastal waters 
using the Norwegian macrofauna-based classification system (Alve 
et al., 2019). Since the intercalibration was based on fossilisable, living 
(stained) foraminiferal species, the classification system also allows 
assessment of historical (biostratigraphical) changes in EcoQS beyond 
time intervals for which macroinvertebrate time series exist. Hence, in 
coastal, marine environments, foraminifera serve the function of 
bridging the gap between information based on present-day EcoQS and 
the in situ Paleo-EcoQS of former times, back to reference conditions (e. 
g., Alve et al., 2009; Dolven et al., 2013; Duffield et al., 2017; Polovo
dova Asteman et al., 2015). This temporal development of the ecological 
status from reference conditions in pre-impacted deposits through 
younger, impacted, deposits to present-day status is illustrated in 
Fig. 6A. 

5.2.2. Naturally oxygen depleted waters 
As opposed to the geochemical parameters that showed stable, 

environmental background concentrations until the late 1700s in Horten 
Inner Harbor, the associated foraminiferal assemblages at the two 
deeper sites (12 and 20 m), reflected declining ecological status during 
the same time interval (Figs. 3 and 5). The abundance of foraminifera 
decreased and the species diversity, which reflected ‘bad’ to ‘poor’ nEQR 
already during the 1600s and 1700s, reached minimum values before 
the assemblages dominated by S. fusiformis and B. marginata disappeared 
at the end of the 1700s. While most benthic foraminifera require oxic 
bottom water conditions (Murray, 2006, p. 56), some species like 
S. fusiformis and B. marginata are well-known opportunistic, low-oxygen 
tolerant species (e.g., Alve and Bernhard, 1995; Alve, 2003; Hess et al., 
2014) that profit from slow food degradation rate in the sediment 
(Bernhard and Sen Gupta, 1999). Stainforthia fusiformis even thrives 
under hypoxic to severe hypoxic conditions (Bouchet et al., 2018) and 
may be able to survive anoxia for weeks by performing anaerobic 
metabolism (e.g., Risgaard-Petersen et al., 2006). However, no forami
nifera survive in basins with permanently to nearly permanently anoxic 
bottom waters (Alve, 1995). 

At assemblage level, the diversity of living benthic foraminifera in 
marine fjord environments has shown to be significantly positively 
correlated with bottom water dissolved oxygen concentration, i.e., 
decreased foraminiferal diversity along a decreasing oxygen gradient 
reflect deteriorating conditions (Bouchet et al., 2012). Consequently, 
based on the dominance of S. fusiformis and B. marginata and low species 
diversity, the most likely explanation for the deteriorating ecological 
status during the 1600s and 1700s is that the reference conditions in the 
deeper areas developed from strongly oxygen depleted to nearly 
permanently anoxic conditions for natural reasons. The reference con
ditions in Horten Inner Harbor have higher TOC-values (about 2%, 
Fig. 3) than many other southern Norwegian fjord deposits (<1%) of 
similar age (e.g., Alve, 1991, 2000). A possible reason for the deterio
rating oxygen conditions already during the 1600s and 1700s may 
therefore have been a combination of the naturally occurring organi
cally enriched sediments and increased residence time of the bottom 
water below about 10 m water depth. The latter may have developed as 
a result of the gradual isostatic rebound that has been about 2–3 mm per 
year during the last 1000 years (Sørensen et al., 2014), representing 
about 1 m elevation of the land in 400 years. With the present-day 
halocline in the harbor at about 10 m water depth and the sill con
necting the harbor water with the Oslofjord (Fig. 1) at 8–9 m, the resi
dence time of the bottom water has been sensitive to elevation of the sill. 
This natural development continued until the time of sampling (2014). It 
implies that the basin water in Horten Inner Harbor reflected by the 
deeper parts of the 12m- and 20m-cores first were subject to natural 
stress (oxygen depletion), then additionally, to human induced stress. 
Together, this caused development of successively more oxygen 
depleted, and finally anoxic, bottom water conditions devoid of benthic 
foraminifera during the past few centuries (Fig. 3). Continued elevation 
of the land will probably not allow natural re-oxygenation in the deeper 
parts. A model of the temporal, faunal development from a combination 
of unpolluted (‘good’-‘high’ geochemical status) and naturally stressed, 
oxygen depleted reference conditions (‘poor’- ‘bad’ ecological status) to 
increasingly polluted and strongly oxygen depleted-anoxic bottom 
water conditions with no foraminifera is shown in Fig. 6B. 

5.2.3. Transitional waters 
For natural reasons, transitional waters (TW) have lower species 

diversity than most coastal waters. This is because TW are naturally 
stressed and have a high abundance of stress tolerant species. This makes 
it difficult to distinguish between naturally and human-induced stress 
factors and is known as the Estuarine Quality Paradox (Elliott and 
Quintino, 2007; Dauvin, 2007; Dauvin and Ruellet, 2009). Still, ac
cording to the WFD’s classification system, un-impacted TW represent 
‘moderate’ or worse ecological status, implying that action is needed to 
improve the conditions. How then, is it possible to define acceptable 
reference conditions in such environments? Is it possible to use a similar 
approach as shown above for coastal and naturally oxygen depleted 
waters? Although not characterized using governmental classification 
systems, numerous biostratigraphic studies from transitional waters 
worldwide indicate that this is the case (e.g., Cearreta et al., 2002; 
Hayward et al., 2004; Tsujimoto et al., 2006; Francescangeli et al., 
2016). 

The geochemical parameters in the older sediments in Horten Inner 
Harbor from the 8m-site showed stable background concentrations 
reflecting reference conditions of at least ‘good’ status until the late 
1800s (Figs. 3 and 5). On the other hand, the associated foraminiferal 
assemblages had low species diversity reflecting only ‘moderate’ refer
ence conditions during the same time interval. It is reasonable to infer 
that the organisms which lived at the site during times when the sedi
ments were not polluted represent the in situ biologically defined 
reference conditions, irrespectively of whether the biotic indices are 
classified as ‘good’ or ‘bad’. In other words, as long as the geochemical 
status reflects nearly un-impacted reference conditions, the associated 
biota represents the ecological reference conditions irrespectively of 
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how their biotic indices (according to the current WFD-system) are 
classified. In concert, this implies that the natural background envi
ronment (reference conditions), rather than pollution, was the reason 
for the ‘moderate’ ecological status. 

At this shallow, 8m-site there are no indications of oxygen depletion 
in the older deposits that are characterised by e.g. H. germanica and 
C. williamsoni. Both species are common “intertidal to shallow-subtidal 
(6 m) temperate brackish” species in the Skagerrak/Kattegat area 
(Murray, 2006, p. 79). Pigment analyses have indicated that they live in 
symbiotic association with diatoms or their chloroplasts (Knight and 
Mantoura, 1985). For H. germanica, this has been further supported by 
its ability to crack open and feed on/sequester living diatoms on mud
flats (Austin et al., 2005). Consequently, the low species diversity and 
the assemblage composition in the older sediments reflect pre-impacted, 
estuarine, brackish water depositional conditions. This inference also 
fits with the position of the halocline between 8 and 10 m water depth at 
the time of sampling and a salinity of about 26 at the 8 m site (Table 1). 

During the first half of the 1900s, the geochemical conditions dete
riorated while the nEQR changed from ‘moderate’ to ‘poor’ (Fig. 3). 
Possibly, due to further organic enrichment and nutrients from the city 
of Horten in the late 1900s, the ecological status deteriorated to ‘bad’ 
status. The development, although less severe, followed the same 
pattern as that of the two deeper sites; the foraminifera disappeared 
during the 1980s, they were gone for a few decades but (as opposed to 
the deeper sites) re-appeared with a very low-diverse, living (stained) 
assemblage around the time of collection in 2014 (Fig. 3). This probably 
reflects a positive trend in recent times as also indicated by the 
geochemical data. 

Overall, the temporal faunal development at the 8m-site reflects 
variable and stressful conditions during the 200 yrs time span repre
sented by the analyzed sediments. Initially, this was due to character
istics of naturally stressed transitional waters with reference conditions 
represented by ‘moderate’ to ‘poor’ ecological status while the 
geochemical conditions reflected ‘good’ to ‘high’ status. The conditions 
finally deteriorated during increasingly impacted times and the 
ecological status turned to ‘bad‘ as schematically illustrated in Fig. 6C. 
These in situ reference conditions represent the “type-specific” condi
tions sensu the European Commission (2003). The biotic indices used 
should be part of a classification system that fill the criteria set by the 
WFD. 

6. Conclusion 

Within the Water Framework Directive, naturally stressed environ
ments will, due to naturally low species diversity, be classified as having 
‘moderate’ or worse EcoQS. Strictly speaking, this implies that man
agement action is needed to improve the conditions, even though the 
conditions are natural. Consequently, it is crucial to be able to determine 
the ecological quality of the in situ reference conditions i.e., to evaluate if 
the conditions are stressful for natural reasons or if they are stressful due 
to anthropogenic forcing. 

Horten Inner Harbor is an example where the local geochemical 
reference conditions (the natural background), reflected ‘good’ to ‘high’ 
status at all three investigated sites. On the other hand, during the same 
time interval, two different kinds of ecological reference conditions were 
defined: 1) naturally oxygen depleted conditions in the two deepest 
basins (the 12 and 20 m sites) reflecting ‘poor’ to ‘bad’ status and 2) 
transitional, estuarine waters with naturally variable but low species 
diversity reflecting ‘moderate’ status at the shallower 8-m site. Both 
show temporally stable geochemical reference conditions with ‘good’ to 
‘high’ status, whereas the associated biotic indices are classified as 
worse than ‘good’ due to the naturally stressful conditions. 

The present study underlines that retrospective foraminiferal ana
lyses of dated sediment cores can be used in combination with 
geochemical analyses to determine ecological reference conditions in 
naturally stressed environments, in which species diversity is naturally 

low. It illustrates, with a conceptual model, how the retrospective 
foraminiferal biomonitoring method allows assessing information about 
ecological status developments from reference to present day condi
tions. Our results represent another example showing the potential of 
benthic foraminifera in biomonitoring. Through their fossil record they 
provide additional ecological information about in situ reference con
ditions which is not achievable by the use of traditional tools such as 
macrofauna. Therefore, we suggest that benthic foraminifera should be 
accepted as a Biological Quality Element within the WFD. 
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