Probabilistic Programming for Voucher Information Extraction
Preliminary Practical Experiences
Al-Sibahi, Ahmad Salim; Hamelryck, Thomas Wim; Henglein, Fritz

Publication date: 2018

Document version
Early version, also known as pre-print

Citation for published version (APA):
Probabilistic Programming for Voucher Information Extraction

University of Copenhagen

Ahmad Salim Al-Sibahi

Thomas W. Hamelryck

Fritz Henglein

University of Copenhagen

Preliminary Practical Experiences

Introduction to Skanned.com

Skanned.com provides a Voucher Scanning service for extracting information from vouchers like product lines, total amounts, payment date, sender, and recipient.

Vouchers vary heavily in size, layout, purpose, and content; the scan quality is occasionally suboptimal. Probabilistic programming provides an opportunity to:

- Combine domain knowledge and machine learning to effectively extract features in a systematic fashion.
- Quantify confidence in results, which is important for manual validation.

Skanned.com’s Pipeline

- **OCR** Optical Character Recognition extracts textboxes from PDFs.
- **Feature Extractors** extract information from the text boxes.

Finding Features w/Keywords

Features are usually located around identifying keywords. Keywords can be positive or negative depending on the feature to be found.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Amount Excl. VAT</td>
<td>23613.00</td>
<td>DKK</td>
</tr>
<tr>
<td>Total VAT</td>
<td>5903.25</td>
<td>DKK</td>
</tr>
<tr>
<td>Total Amount</td>
<td>29516.25</td>
<td>DKK</td>
</tr>
</tbody>
</table>

Probabilistic model below tries to infer a latent score \(r \) from the vector of observed angles \(\overrightarrow{\theta} \) and distances \(\overrightarrow{d} \) from positive keywords to potential target features.

\[
\begin{align*}
 r & \sim \mathcal{B}(0.5,0.5) \quad \bar{r} = (r, 1 - r) \\
 w^+_1 & = (0.7, 0.3) \quad \mu^+_1 = (0, \frac{\pi}{2}) \\
 w^+_2 & = (0.5, 0.2, 0.3) \quad \mu^+_2 = (-\frac{\pi}{4}, \frac{\pi}{4}, 3\pi) \\
 \overrightarrow{\theta}^+ & \sim \sum_{j=1}^{2} \sum_{i=1}^{w^+_j} \frac{w^+_j}{\mu^+_j + \pi (\frac{4}{\pi})} \\
 \overrightarrow{d}^+ & \sim \bar{r}_1 \mathcal{N}(500) + \bar{r}_2 \mathcal{N}(1500, 1000)
\end{align*}
\]

Evaluating extended version on 1000 vouchers:
- **80%** of the time the expected score found the target feature
- **99%** of the time it was within confidence interval

Voucher Grouping

To provide more accurate models, to partition the voucher into groups of similar layout and style. We rely on probabilistic Latent Dirichlet Allocation (LDA) to perform the grouping, using visual (colors, lines) and textual cues (keywords).

Practical Experiences

- **Sampling**
 - Ease of use
 - Precision
 - Scalability

- **Variational Inference**
 - Scalability
 - Set-up
 - Precision

- **GPU Support**
 - Discrete Latents
 - Ease of use
 - Precision

The first author would like to thank Dan Rose and the Scanner Team at Skanned.com (Bjørn Kaae, Toke Reines, Danni Dromi) for discussions and feedback on the work!