
u n i ve r s i t y o f co pe n h ag e n

Condition/Decision Duality and the Internal Logic of Extensive Restriction Categories

Kaarsgaard, Robin

Published in:
Electronic notes in theoretical computer science

DOI:
10.1016/j.entcs.2019.09.010

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Kaarsgaard, R. (2019). Condition/Decision Duality and the Internal Logic of Extensive Restriction Categories.
Electronic notes in theoretical computer science, 347, 179-202. https://doi.org/10.1016/j.entcs.2019.09.010

Download date: 25. sep.. 2020

https://doi.org/10.1016/j.entcs.2019.09.010
https://curis.ku.dk/portal/da/persons/robin-kaarsgaard(a7603594-2558-40b9-b772-bd1133365510).html
https://curis.ku.dk/portal/da/publications/conditiondecision-duality-and-the-internal-logic-of-extensive-restriction-categories(7b4354e3-6705-4ae6-b1ad-d48de0edbc48).html
https://doi.org/10.1016/j.entcs.2019.09.010

Condition/Decision Duality and the
Internal Logic of Extensive Restriction

Categories

Robin Kaarsgaard 1,2

DIKU, Department of Computer Science
University of Copenhagen

Abstract

In flowchart languages, predicates play an interesting double role. In the textual representation, they are
often presented as conditions, i.e., expressions which are easily combined with other conditions (often via
Boolean combinators) to form new conditions, though they only play a supporting role in aiding branching
statements choose a branch to follow. On the other hand, in the graphical representation they are typi-
cally presented as decisions, intrinsically capable of directing control flow yet mostly oblivious to Boolean
combination.
While categorical treatments of flowchart languages are abundant, none of them provide a treatment of this
dual nature of predicates. In the present paper, we argue that extensive restriction categories are precisely
categories that capture such a condition/decision duality, by means of morphisms which, coincidentally,
are also called decisions. Further, we show that having these categorical decisions amounts to having an
internal logic: Analogous to how subobjects of an object in a topos form a Heyting algebra, we show that
decisions on an object in an extensive restriction category form a De Morgan quasilattice, the algebraic
structure associated with the (three-valued) weak Kleene logic Kw

3 . Full classical propositional logic can be
recovered by restricting to total decisions, yielding extensive categories in the usual sense, and confirming
(from a different direction) a result from effectus theory that predicates on objects in extensive categories
form Boolean algebras.
As an application, since (categorical) decisions are partial isomorphisms, this approach provides naturally
reversible models of classical propositional logic and weak Kleene logic.

Keywords: categorical logic, flowchart languages, restriction categories, extensivity, weak Kleene logic

1 Introduction

Flowchart languages are a particular class of imperative programming languages

which permit a pleasant and intuitive graphical representation of the control flow

of programs. While conceptually very simple, flowchart languages form the foun-

dation for modern imperative programming languages, and have been used for this

1 Email: robin@di.ku.dk
2 The author would like to thank Robert Glück for discussions relating to this paper, and to acknowledge
the support given by COST Action IC1405 Reversible computation: Extending horizons of computing. The
string diagrams and flowcharts in this paper were produced using TikZiT .

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 347 (2019) 179–202

1571-0661/© 2019 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2019.09.010

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:robin@di.ku.dk
https://tikzit.github.io/
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2019.09.010
https://doi.org/10.1016/j.entcs.2019.09.010
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

reason as vehicles for program analysis (e.g., to measure coverage in white-box

testing [1]), program transformations (e.g., partial evaluation, see [17]), and to ex-

press fundamental properties of imperative programming, such as the equivalence

of expressivity in structured and unstructured programming in the Böhm-Jacopini

theorem [4] (see also [3, 28]). Figure 1 shows the (textual and graphical) flowchart

structures used by structured flowchart languages.

An interesting feature in flowchart languages is the dual presentation of pred-

icates as conditions and decisions, depending on the context. On the one hand,

the textual if p then c1 else c2 seems to favor the view of p as a condition, i.e.,

a predicate which has inherently nothing to do with control flow, but which may

easily be combined with other conditions to other conditions to form new ones. In

other words, the textual representation considers the branching behaviour to be

given by the semantics of if . . . then . . . else . . . rather than by the semantics

of p. This view is also emphasized by the usual (big-step) operational semantics of

conditionals: Here, predicates are treated as expressions that may be evaluated in

a state to yield a Boolean value, which the conditional may then branch on, as in

〈p, σ〉 → true 〈c1, σ〉 → σ′

〈if p then c1 else c2, σ〉 → σ′ and
〈p, σ〉 → false 〈c2, σ〉 → σ′

〈if p then c1 else c2, σ〉 → σ′ .

On the other hand, the graphical representation of conditionals in Figure 1(c) seems

to rather prefer the view of p as a decision, i.e., a kind of flowchart operation

intrinsically capable of directing control flow. That is to say, that this is a structured

flowchart (corresponding to a conditional) is purely coincidental; for unstructured

flowcharts to make sense, p must be able to direct control flow on its own. However,

where conditions are most naturally composed via the Boolean combinators, the

only natural way of composing decisions seems to be in sequence (though this leads

to additional output branches).

While categorical models of structured flowchart languages have been widely

studied (see, e.g., [2,10,11,24,26,27]), none provide a treatment of this dual view of

predicates. In this paper, we argue that extensive restriction categories are precisely

categories that make clear this dual view on predicates as conditions and decisions,

offering both the ease of combination of conditions and the control flow behaviour of

decisions. Restriction categories (introduced in [7–9]) are categories of partial maps,

in which each morphism is equipped with a restriction idempotent that, in a certain

sense, gauges how partial that morphism is. Since models of flowchart languages

most provide a notion of partiality (due to possible nontermination), restriction

categories provide an ideal setting for such models. Coincidentally, the defining

feature of extensive restriction categories 3 is the presence of certain morphisms

called decisions, which play a similar role as the decision view on predicates in

flowchart languages.

In this setting, we show that the correspondence between conditions and deci-

sions is exhibited precisely as a natural isomorphism between the predicate fibration

3 Note that while extensive restriction categories are strongly connected to extensive categories, they are
confusingly not extensive in the usual sense of extensive categories [5].

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202180

p

c1

c2

t

f

c1 c2

c

p
t

ff

Atomic operations, f . Sequential composition, c1; c2. Conditionals, if p then c1 else c2. While loops, while p do c.

Fig. 1. The four flowchart structures.

Extensive category

Boolean algebras

Extensive restriction category

De Morgan quasilattices

Effectus

Effect algebras

Fig. 2. Extensive categories, extensive restriction categories, and effecti: their relationships and associated
logics.

Hom(X, 1 + 1) of predicates and predicate transformers (see also [6, 16]), and the

decision fibration Dec(X) of decisions (certain morphisms X → X+X) and decision

transformers. We then go on to explore the structure of Dec(X) (or equivalently,

Hom(X, 1 + 1)), showing that this extends to a fibration over the category of De

Morgan quasilattices and homomorphisms, which give algebraic semantics [12] to

Kleene’s weak logic Kw
3 [21]. Intuitively, Kw

3 can be seen as a partial version of

classical (Boolean) logic. We make this statement precise in this setting by showing

that if we restrict ourselves to total decisions and decision transformations, classical

logic can be recovered. Since the subcategory of objects and total morphisms of a

(split) extensive restriction category is an extensive category in the usual sense (see,

e.g., [5]), we can use this to provide an alternative proof of a statement from Effectus

theory [6, 16] that predicates over each extensive category forms a fibred Boolean

algebra via the predicate fibration [6, Prop. 61, Prop. 88]. This yields a relation-

ship diagram of effecti, extensive categories, and extensive restriction categories and

their corresponding logics as shown in Figure 2.

This paper is structured as follows: Section 2 gives a brief introduction to exten-

sive restriction categories. Section 3 demonstrates the condition/decision duality of

extensive restriction categories by showing that the decision and predicate fibrations

are naturally isomorphic; and, as a consequence, that decisions are a property of the

predicates. Then, in Section 4, we show that the decisions on an object form models

of Kw
3 , with decision transformers as homomorphisms. By restricting to only total

decisions, we show that these restrict to models of classical logic. Finally, 5 offers

some concluding remarks.

2 Extensive restriction categories

This section gives an introduction to extensive restriction categories as it will be

applied in the sections that follow. The experienced reader may safely skip this

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 181

section on a first reading, and instead refer back to it as necessary.

Restriction categories are categories equipped with notions of partiality and

totality of morphisms. This is done by means of a restriction combinator, assigning

to each morphism X
f−→ Y its restriction idempotent X

f−→ X (subject to certain

laws) which may intuitively be thought of as a partial identity defined precisely

where f is defined. In this way, restriction categories provide an axiomatic (and

relatively light-weight) approach to partiality of morphisms in categories. Formally,

restriction categories are defined in the following way:

Definition 2.1 A restriction structure on a category consists of a combinator map-

ping each morphism f to its restriction idempotent f , i.e.

X
f−→ Y

X
f−→ X

subject to the restriction laws:

(R1) ff = f for all X
f−→ Y ,

(R2) fg = gf for all X
f−→ Y and

X
g−→ Z,

(R3) fg = fg for all X
f−→ Y and

X
g−→ Z, and

(R4) gf = fgf for all X
f−→ Y and

Y
g−→ Z.

A category equipped with a restriction structure is called a restriction category.

As the name suggests, a restriction structure is a structure on a category rather

than a property of it; in particular, a category can be equipped with several different

restriction structures. For this reason, we must in principle specify which restric-

tion structure we are using when speaking of a particular category as a restriction

category, though this is often omitted when the restriction structure is implicitly

given to be a canonical one.

Given that restriction categories are built on a foundation of idempotents, one

would expect it to be occasionally useful when all such restriction idempotents

split, and indeed this is the case. Say that restriction structure is split when all

restriction idempotents split, and let Split(C) denote the category arising from the

usual idempotent splitting (i.e., the Karoubi envelope) of all restriction idempotents

in C . That Split(C) is a restriction category when C is follows by [7, Prop. 2.26]

As a canonical example, the category Pfn of sets and partial functions is a

restriction category, with the restriction idempotent X
f−→ X for X

f−→ Y given by

f(x) =

⎧
⎨
⎩

x if f is defined at x

undefined otherwise

In a restriction category, say that a morphism X
f−→ Y is total if f = idX , and that

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202182

it is a partial isomorphism if there exists Y
f†
−→ X such that f †f = f and ff † = f †.

Partial isomorphisms thus generalize ordinary isomorphisms, as an isomorphism is

then a partial isomorphism X
f−→ Y such that both f and f † are total.

Since total morphisms are closed under composition and include all identities,

they form an important subcategory Total(C) of any restriction category C . Like-

wise, partial isomorphisms are closed under composition and include all identities,

so all objects and partial isomorphisms of C form the subcategory Inv(C). As the

notation suggests, this category Inv(C) is not just a restriction category but an

inverse category (indeed, it is the cofree such [18]) in the usual sense (see [7, 20]).

A useful property of restriction categories is that they come with a natural

partial order on homsets (which extends to enrichment in Poset) given by f ≤ g

iff gf = f . Intuitively, this can be thought of as an information order ; f ≤ g if g

can do everything f can do, and possibly more.

Like any other categorical structure, when working in restriction categories we

require everything in sight to cooperate with the restriction structure. One of the

simplest examples of cooperation with restriction structure is given in the definition

of a restriction terminal object: This is simply a terminal object 1 in the usual

sense, which further satisfies that the unique map X → 1 is total for all objects

X. For coproducts, this means that we not only require the restriction category to

have all finite coproducts in the usual sense, but also that the coproduct injections

X
κ1−→ X + Y and Y

κ2−→ X + Y are total. In this case, we say that the restriction

category has restriction coproducts. There is also a similar notion of a restriction

zero object 0: a zero object in the usual sense which additionally satisfies that

each zero endomorphism X
0X,X−−−→ X is its own restriction idempotent, i.e., that

0X,X = 0X,X (or equivalently, that 0X,Y = 0X,X for all zero morphisms 0X,Y).

When zero morphisms exist, they serve as least element in their homset with respect

to the natural ordering, and when a category has restriction coproducts and a

restriction zero object, the restriction zero object serves as unit for the restriction

coproduct. When this is the case, restriction coproduct injections are further partial

isomorphisms (e.g., the partial inverse to X
κ1−→ X + Y is X + Y

[id,0]−−−→ X).

Extensivity for restriction categories means that the restriction coproducts are

particularly well-behaved, in the sense that they admit a calculus of matrices [9].

Concretely, this means that each morphism X
f−→ Y +Z is associated with a unique

morphism X
〈f〉−−→ X+X, its decision, which, intuitively, makes the same branching

choices as f does, but doesn’t do any actual work. Extensive restriction categories

are defined as follows.

Definition 2.2 A restriction category with restriction coproducts and a restriction

zero is said to be an extensive restriction category if each morphism f has a unique

decision 〈f〉, i.e.
X

f−→ Y + Z

X
〈f〉−−→ X +X

satisfying the decision laws

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 183

(D1) ∇〈f〉 = f (D2) (f + f)〈f〉 = (κ1 + κ2)f

where X +X
∇−→ X is the natural codiagonal [id, id].

Note that extensive restriction categories are not extensive in the usual sense

– rather, extensive restriction categories are the “partial” version of extensive cat-

egories. This connection is made precise by the following proposition due to [9].

Proposition 2.3 Whenever C is an extensive restriction category, Total(Split(C))

is an extensive category.

A straightforward example of an extensive restriction category is Pfn. Here, the

decision X
〈f〉−−→ X +X of a partial function X

f−→ Y + Z is given by

〈f〉(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

κ1(x) if f(x) = κ1(y) for some y ∈ Y

κ2(x) if f(x) = κ2(z) for some z ∈ Z

undefined if f undefined at x

For further examples and details on extensive restriction categories, see [9].

3 Condition/decision duality

Categorical models of flowcharts are categories with a notion of partiality (due

to possible nontermination) and coproducts (corresponding to the control flows of

the flowchart). As such, restriction categories with restriction coproducts serve

as a good starting point for these. We show in this section that the additional

requirement of extensivity of the restriction coproduct allows the category to exhibit

a condition/decision duality, analogous to the flowchart languages. This manifests

in the category as a natural isomorphism between the decisions and predicates over

an object (with their corresponding transformations).

We start with a few technical lemmas regarding the partial order on morphisms

in a restriction category as well as properties of decisions in extensive restriction

categories.

Lemma 3.1 It is the case that

(i) g ≤ g′ implies gf ≤ g′f ,

(ii) gf ≤ f ,

(iii) f ≤ g implies hf ≤ hg and fh′ ≤
gh′,

(iv) f ≤ f ′ and g ≤ g′ iff f + g ≤
f ′ + g′.

(v) f ≤ g implies f = f .

Lemma 3.2 Let X
f−→ Y +Z and X ′ g−→ X be arbitrary morphisms of an extensive

restriction category, and X
e−→ X any restriction idempotent. It is the case that

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202184

(i) 〈〈f〉〉 = 〈f〉
(ii) 〈f〉 is a partial isomorphism and

〈f〉† =
[
κ†1f, κ

†
2f

]

(iii) 〈f〉† = κ†1f + κ†2f

(iv) 〈f〉 = f

(v) γ〈f〉 = 〈γf〉

(vi) 〈〈f〉g〉 = 〈fg〉
(vii) (e+ e)〈f〉 = (e+ e)〈f〉e
(viii) 〈f〉e is a decision and 〈f〉e = (e+

e)〈f〉
(ix) 〈f〉e = 〈fe〉
(x) κ†i 〈f〉 = κ†if

(xi) 〈g〉f = (f + f)〈gf〉

A few of these identities were shown already in [9]; the rest are mostly straight-

forward to derive. Note that a direct consequence of (i) is that (〈f〉 + 〈f〉)〈f〉 =

(κ1 + κ2)〈f〉; we will make heavy use of this fact in Section 4. Another particularly

useful identity is the following, stating intuitively that anything that behaves as a

decision in each component is, in fact, a decision.

Lemma 3.3 If κ†1p = κ†1f and κ†2p = κ†2f then p = 〈f〉.

Proof. By Lemma 3.2(ii) 〈f〉† =
[
κ†1f, κ

†
2f

]
. Since κ†1p = κ†1f and κ†2p = κ†2f it

follows that κ†1f = (κ†1f)
† = (κ†1p)

† = p†κ1 and κ†2f = (κ†2f)
† = (κ†2p)

† = p†κ2 so it

follows by the universal mapping property of the coproduct that p† =
[
κ†1f, κ

†
2f

]
=

〈f〉†, and finally p = 〈f〉 by unicity of partial inverses. �

As a corollary, p is a decision if κ†1p and κ†2p are both restriction idempotents

(i.e., if κ†1p = κ†1p and κ†2p = κ†2p) since all decisions decide themselves (i.e., since

〈〈p〉〉 = 〈p〉).

Theorem 3.4 There is a functor C op Dec−−→ Set given by mapping objects to their

decisions, and morphisms to decision transformers.

Proof. Define this functor by Dec(X) = {〈p〉 | p ∈ Hom(X,X + X)} on objects,

and by Dec(f : Y → X)(〈p〉) = 〈〈p〉f〉 on morphisms. This is contravariantly

functorial since Dec(idX)(〈p〉) = 〈〈p〉 idX〉 = 〈〈p〉〉 = 〈p〉 by Lemma 3.2(i), and

Dec(gf)(〈p〉) = 〈〈p〉gf〉 = 〈〈〈p〉g〉f〉 = Dec(f)(Dec(g)(〈p〉)) by Lemma 3.2(vi) and

definition of Dec(f), as desired. �

From now on, we will use the notation Dec(Y)
f�
−→ Dec(X) for the decision

transformation Dec(f).

This is an example of a fibred category, which have historically been important

in categorical presentations of logic, e.g., in topoi (see [15] for a thorough treatment

of indexed and fibred categories in categorical logic). In Section 4, we will see that

this indexed category extends beyond Set to a model of Kw
3 . For now, it is sufficient

to show the equivalence between conditions (morphisms X → 1 + 1) and decisions

(morphisms X → X +X satisfying the decision laws of Definition 2.2).

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 185

Theorem 3.5 (Condition/decision duality) Decisions and predicates are nat-

urally isomorphic in any extensive restriction category with a restriction terminal

object: Dec(−) ∼= Hom(−, 1 + 1) .

Proof. Let C be an extensive restriction category with a restriction terminal object,

and X some object of C ; we begin by showing that the mappings

X
〈f〉−−→ X+X 	→ X

〈f〉−−→ X+X
!+!−−→ 1+1 and X

p−→ 1+1 	→ X
〈p〉−−→ X+X

between Dec(X) and Hom(X, 1 + 1) yields a bijection. In other words, we must

show that 〈(!+!)〈f〉〉 = 〈f〉 and p = (!+!)〈p〉. To show 〈(!+!)〈f〉〉 = 〈f〉, we show that

〈f〉 decides (!+!)〈f〉 by ∇〈f〉 = f = 〈f〉 = (!+!)〈f〉 using the fact that the unique

map X
!−→ 1 is total by 1 restriction terminal, and by (((!+!)〈f〉) + ((!+!)〈f〉))〈f〉 =

((!+!) + (!+!))(〈f〉+ 〈f〉)〈f〉 = ((!+!) + (!+!))(〈f〉+ 〈f〉)〈〈f〉〉 = ((!+!) + (!+!))(κ1 +

κ2)〈f〉 = (κ1 + κ2)(!+!)〈f〉. Thus 〈(!+!)〈f〉〉 = 〈f〉, as desired.
To show that p = (!+!)〈p〉 for X

p−→ 1 + 1 we show something slightly more

general, namely that (!+!)f = (!+!)〈f〉 for any X
f−→ Y +Z. That p = (!+!)〈p〉 then

follows as a special case since id1+1 = (!+!) by 1 terminal, so p = id1+1 p = (!+!)p.

This slightly more general statement follows by commutativity of the diagram below.

X X +X

Y + Z (Y + Z) + (Y + Z)

1 + 1

(i)

(ii)

(iii)

〈f〉

!+!
f

!+!

κ1 + κ2

f + f

!+!

Here, (i) commutes by the second axiom of decisions, while (ii) and (iii) both

commute by 1 terminal.

To see that this bijection extends to a natural isomorphism, we must fix some

Y
f−→ X and chase the diagram

Dec(X) Hom(X, 1 + 1)

Dec(Y) Hom(Y, 1 + 1)

f�

∼=

∼=

f∗

where we use f� to denote the functorial action Dec(f), Dec(f)(〈p〉) = 〈〈p〉f〉.
Picking some 〈g〉 ∈ Dec(X) we must have (!+!)〈〈g〉f〉 = (!+!)〈g〉f , which indeed

follows by the statement above. On the other hand, picking some p ∈ Hom(X, 1+1),

chasing yields that we must have 〈〈p〉f〉 = 〈pf〉, which follows directly by Lemma 3.2

(vi). �

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202186

A consequence of this equivalence in extensive restriction categories is that de-

cisions are a property of the predicates rather than a property of arbitrary maps, as

it is commonly presented. This is shown in the following corollary to Theorem 3.5.

Corollary 3.6 A restriction category with restriction coproducts, a restriction zero,

and a restriction terminal object has all decisions (i.e., is extensive as a restriction

category) iff it has all decisions of predicates.

Proof. It follows directly that having decisions for all morphisms implies having

decisions for all predicates. On the other hand, suppose that the category only has

decisions for predicates, and let X
f−→ Y + Z be an arbitrary morphism. But then,

by the proof of Theorem 3.5, the decision for the predicate X
f−→ Y + Z

!+!−−→ 1 + 1

decides X
f−→ Y + Z (by 〈(!+!)f〉 = 〈(!+!)〈f〉〉 = 〈f〉), and we are done. �

4 The internal logic of extensive restriction categories

Having established the natural isomorphism of decisions and predicates (with their

respective transformers) which forms the condition/decision duality at the categor-

ical level, we now turn to their structure. The main result of this section, Theo-

rem 4.7, shows that the decisions Dec(X) on an object X form a model of Kw
3 , and

that decision transformers Dec(Y)
f�
−→ Dec(X) are homomorphisms of these mod-

els. We first recall Kleene’s three valued logics, in particular Kw
3 and its algebraic

counterpart of De Morgan quasilattices.

4.1 Kleene’s three valued logics and De Morgan quasilattices

Kleene’s three valued logics of K3 (strong Kleene logic) and Kw
3 (weak Kleene logic),

both introduced in [21], are logics based on partial predicates with a computational

interpretation: Predicates are conceived of as programs which may not terminate,

but if they do, they terminate with a Boolean truth value as output. In this way,

both K3 and Kw
3 can be thought of as partial versions of classical logic. Here, pos-

sible nontermination is handled analogously to how it is handled in domain theory,

i.e., by the introduction of a third truth value in addition to truth t and falsehood

f , denoted u in Kleene’s presentation [21], which should be read as “undefined”.

The difference between K3 and Kw
3 lies in how they cope with undefined truth

values. In Kw
3 (see Figure 3), undefinedness is “contagious”: if any part of an

expression is undefined, the truth value of the entire expression is undefined as

well 4 . This fits well into a computation paradigm with possible nontermination

and only sequential composition available. In contrast, the semantics of K3 is to try

to recover definite truth values whenever possible, even if part of the computation

fails to terminate. For example, in K3 (and unlike Kw
3), p ∧ q is considered false if

4 This contagious behaviour has also been used to explain other phenomena. In philosophy, Kw
3 is better

known as B3 or Bochvar’s nonsense logic (see, e.g., [12]), and the third truth value read as “meaningless”
or “nonsensical” rather than “undefined”. The central idea is that nonsense is contagious: e.g., “2 + 2 = 5
and gobbledygook” is nonsensical even if part of it can be assigned meaning.

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 187

P t f u

Q ∧
t t f u

f f f u

u u u u

(a) Weak conjunction.

P t f u

Q ∨
t t t u

f t f u

u u u u

(b) Weak disjunction.

P t f u

¬P f t u

(c) Negation.

Fig. 3. The three-valued semantics of Kw
3 .

one of p and q is false, even if the other is undefined. While this allows for some

recovery in the face of nontermination, computationally it seems to require parallel

processing capabilities.

Like classical logic takes its algebraic semantics in Boolean algebras, the cor-

responding algebraic structure for Kw
3 is that of De Morgan quasilattices (see,

e.g., [12]). As is sometimes done, we assume these to be distributive; i.e., what

we call De Morgan quasilattices are sometimes called distributive De Morgan quasi-

lattices or even (distributive) De Morgan bisemilattices (see, e.g., [23]). Note that

we generally do not require these to be bounded, i.e., for top and bottom elements

� and ⊥ to exist.

Definition 4.1 A De Morgan quasilattice (in its algebraic formulation) is a quadru-

ple A = (|A|,¬,∧,∨) satisfying the following equations, for all p, q, r ∈ |A|:

(i) p ∧ p = p,

(ii) p ∨ p = p,

(iii) p ∧ q = q ∧ p,

(iv) p ∨ q = q ∨ p,

(v) p ∧ (q ∧ r) = (p ∧ q) ∧ r,

(vi) p ∨ (q ∨ r) = (p ∨ q) ∨ r,

(vii) p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r),

(viii) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r),

(ix) ¬¬p = p,

(x) ¬(p ∧ q) = ¬p ∨ ¬q,
(xi) ¬(p ∨ q) = ¬p ∧ ¬q,

Further, a De Morgan quasilattice A is said to be bounded if there exist elements

⊥,� ∈ |A| such that the following are satisfied (for all p ∈ |A|):

(xii) p ∧ � = p, and (xiii) p ∨ ⊥ = p.

A homomorphism A
h−→ B of De Morgan quasilattices is a function |A| → |B|

which preserves ¬, ∧, and ∨. A homomorphism of bounded De Morgan quasilattices

is one which additionally preserves � and ⊥.

Being a De Morgan quasilattice is a strictly weaker property than being a

Boolean algebra. In particular, a Boolean algebra is a bounded De Morgan quasi-

lattice which further satisfies the absorption laws p = p∧ (p∨ q) and p = p∨ (p∧ q),

and the laws of contradiction and tertium non datur, p ∧ ¬p = ⊥ and p ∨ ¬p = �.

De Morgan quasilattices and their homomorphisms form a category which we

call DMQLat. As for Boolean algebras, one can derive a partial order on De

Morgan quasilattices by p � q iff p ∧ q = p, and another one by p � q iff p ∨ q = q.

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202188

Unlike as for Boolean algebras, however, these do not coincide, though they are

anti-isomorphic, as it follows from the De Morgan laws that p � q iff ¬q � ¬p. We

will return to these in Section 4 and argue why · � · is the one more suitable as the

entailment relation for Kw
3 .

4.2 The internal logic

With Kw
3 and De Morgan quasilattices introduced, we return to the construction of

the internal logic. To aid in its presentation (and subsequent proofs), we start by

introducing a graphical language of extensive restriction categories, based on the

one for cocartesian categories (see, e.g., [25]). Then, we show how the constants

and connectives of Kw
3 can be interpreted (Definition 4.2) as decisions on an object

(Lemma 4.3). Finally, we show that decisions on an object form a model of Kw
3

(Lemma 4.5), and that decision transformations are homomorphisms of these models

(Lemma 4.6), concluding this construction. We go on to explore an important

corollary to this construction, namely that if we restrict ourselves from ordinary

decisions to total decisions and total decision transformations, we obtain a fibration

over Boolean algebras instead (Corollary 4.10 Theorem 4.11). The latter is a well-

known property of extensive categories first shown in [6], though this proof uses

entirely different machinery.

Figure 4 shows the graphical language of extensive restriction categories, which

has the restriction coproduct as its monoidal tensor. The first five gadgets are

from cocartesian categories (γX,Y is here the twist map, [κ2, κ1]). We add gadgets

corresponding to decisions X
〈f〉−−→ X+X, inverses to decisions X+X

〈f〉†−−→ X (as all

decisions are partial isomorphisms, see Lemma 3.2(ii)), and restriction idempotents

X
f−→ X. The gadget for inverses to decisions was inspired by assertions in reversible

flowcharts (see [29]). Useful derived gadgets include

X X

Y

X X

Y

X

Y YY Y

X
X Y

κ1 κ†1 κ2 κ†2 0X,Y

Just as the graphical language of cocartesian categories, isomorphism or isotopy of

diagrams is not enough for coherence – equations only hold in the graphical language

up to diagrammatic manipulations corresponding to the decision laws, as well as the

diagrammatic manipulations for coproducts (e.g., the commutative monoid axioms

and naturality for the codiagonal, the zero morphism laws, etc.). For more on the

latter, see [25]. For example, graphically, the decision laws are

f f f

f

f

= =
f

As in the example above, when the signature is clear from the context, we omit the

object annotations (e.g., X,Y, Z in Figure 4).

With the graphical language in place, we proceed to give the definition of the

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 189

f

ggX′ Y ′

fX Y

X′ Z

X Z

Z X X

X

Y X

Y

f + g [f, g] γX,Y 00,X 0X,0

ff
f

〈f〉 〈f〉† f

X

X

X

X

X

X XX

Fig. 4. An overview of the gadgets that make up the graphical language of extensive restriction categories.

internal logic of decisions in an extensive restriction category, i.e., the entailment

relation and construction of constants and propositional connectives.

Definition 4.2 In an extensive restriction category, propositional constants and

connectives are defined for decisions as follows, using the graphical language:

p p

p

q

¬ =

=p q∧ =p q∨
q

p

q

q

⊥ =� =

p

p

Entailment is defined by 〈p〉 � 〈q〉 iff 〈p〉 � 〈q〉 (explicitly, iff 〈p〉 ∧ 〈q〉 = 〈p〉).
For those more textually inclined, this defines � = κ1, ⊥ = κ2, ¬〈p〉 = γ〈p〉,

〈p〉 ∨ 〈q〉 = (〈p〉† + id)α(〈q〉+ 〈q〉)〈p〉, and 〈p〉 ∧ 〈q〉 = (id+〈p〉†)α(〈q〉+ 〈q〉)〈p〉.
Intuitively, we think of decisions as representing partial predicates by separating

values into witnesses and counterexamples of that partial predicate (see also [19]).

The definitions of � and ⊥ express the convention that the first component carries

witnesses, while the second component carries counterexamples. Negation of partial

predicates then amounts to swapping witnesses for counterexamples and vice versa,

i.e., by composing with the symmetry. The intuition behind conjunction (and,

dually, disjunction) is less obvious: Using the intuition of decisions as morphisms

that tag inputs with a branch but doesn’t change it otherwise, we see that a witness

of 〈p〉 ∧ 〈q〉 has to be a witness of both 〈p〉 and 〈q〉, while a counterexample of

〈p〉∧ 〈q〉 is either a counterexample of 〈p〉 which is further defined for 〈q〉 (necessary
to ensure commutativity), or a witness of 〈p〉 which is a counterexample of 〈q〉. The
case for disjunctions is dual.

Before we move on to show that this actually has the logical structure we’re

after, we first obliged to show that these connectives and constants actually define

well-formed decisions. This fact is expressed in the following lemma.

Lemma 4.3 The constants and connectives of Definition 4.2 are decisions.

Proof. See appendix. �

Before we can proceed, we need a small technical lemma.

Lemma 4.4 Let p and q be decisions. It is the case that

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202190

(i) p

q

q

q

p

p

= (ii) p

q

q p
p

q

q
= (iii) p

q

p
p

q
=

q q

Proof. See appendix. �

The first part of this lemma can be seen as a form of commutativity for decisions

– and, indeed, it performs most of the heavy lifting in showing commutativity of

conjunction and disjunction. On the other hand, parts (ii) and (iii) shows that

we could have defined conjunction and disjunction more simply in Definition 4.2.

The reason why we chose the current definition is that it yields entirely reversible

models (see also [19]), i.e., involving only partial isomorphisms. We will discuss this

property further in Section 5. For now, we continue with the internal logic.

Lemma 4.5 Dec(X) is a bounded De Morgan quasilattice for any object X.

Proof. We show only a few of the cases here using the graphical language. See the

appendix for the rest. Idempotence of conjunction, i.e., 〈p〉 ∧ 〈p〉 = 〈p〉, follows by

p

p

p p
p

p

p
p

p

p

p p p= = = = =

and similarly for disjunction. That 〈p〉 ∧ � = 〈p〉 is shown simply by

p
κ1

p
p p= =

and again, the unit law for disjunction has an analogous proof. The first De Morgan

law, that ¬〈p〉 ∧ ¬〈q〉 = ¬(〈p〉 ∨ 〈q〉)

p

q

¬q p
p

q

q
p

q

q

p

q

q

p

q

q

p

q

q

p

q

q

p

= = =

= = =

and the proof of the second De Morgan law follows similarly. �

As such, we have that each collection of decisions on an object form a local model

of Kw
3 , giving us the first part of the fibration. For the second, we need to show

that decision transformers preserve entailment and the propositional connectives

(though not necessarily the constants). This is shown in the following lemma.

Lemma 4.6 Let X
f−→ Y . Then Dec(Y)

f�
−→ Dec(X) is a homomorphism of De

Morgan quasilattices, i.e.,

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 191

(i) 〈p〉 � 〈q〉 implies f�(〈p〉) �
f�(〈q〉)

(ii) f�(¬〈p〉) = ¬f�(〈p〉)

(iii) f�(〈p〉 ∧ 〈q〉) = f�(〈p〉) ∧ f�(〈q〉)
(iv) f�(〈p〉 ∨ 〈q〉) = f�(〈p〉) ∨ f�(〈q〉)

In addition, if f is total then f� is a homomorphism of bounded De Morgan

quasilattice; i.e., we also have f�(�) = � and f�(⊥) = ⊥.

Proof. (i) follows by (iii) since 〈p〉 � 〈q〉 iff 〈p〉 � 〈q〉 iff 〈p〉 ∧ 〈q〉 = 〈q〉, which in

turn implies that f�(〈p〉) ∧ f�(〈q〉) = f�(〈p〉 ∧ 〈q〉) = f�(〈p〉), so f�(〈p〉) � f�(〈q〉)
as well, i.e., f�(〈p〉) � f�(〈q〉).

For (ii), we compute f�(¬〈p〉) = f�(γ〈p〉) = f�(〈γp〉) = 〈〈γp〉f〉 = 〈γpf〉 =

γ〈pf〉 = γ〈〈p〉f〉 = ¬f�(〈p〉) (using Lemma 3.2).

(iii) follows by lengthy but straightforward computation(see appendix).

(iv) is analogous to the previous case. �

Notice the final part regarding preservation of units. Generally, f�(�) = 〈�f〉 =
〈κ1f〉, so f�(�) = 〈κ1f〉 = κ1f = κ1f = f , so if f is not total, 〈κ1f〉 �= κ1 (instead

〈κ1f〉 = κ1f).

Putting the two lemmas together gives us the main result:

Theorem 4.7 In every extensive restriction category C , decisions over C form a

fibred De Morgan quasilattice via the decision fibration.

Proof. By Lemmas 4.5 and 4.6. �

We previously claimed that the conjunction order was the more suitable one for

entailment in extensive restriction categories. We are finally ready to state why:

Lemma 4.8 Entailment is upwards directed in truth and definedness: 〈p〉 � 〈q〉 iff

κ†1〈p〉 ≤ κ†1〈q〉 and 〈p〉 ≤ 〈q〉.
Proof. See appendix. �

In other words, 〈p〉 entails 〈q〉 iff 〈q〉 is both at least as true and at least as defined

as 〈p〉 is. That is, entailment preserves not only truth (as we expect all entailments

to) but also information (as we expect of orders on partial maps). Compare this to

the disjunction partial order for which 〈p〉 � 〈q〉 instead states that 〈q〉 is less false
and less defined than 〈p〉: In other words, it prefers for information to be forgotten

rather than preserved.

We move on now to an important special case of the situation above, which

is when only total decisions are considered rather than arbitrary ones. For this,

we need a small lemma regarding the restriction idempotents of decisions when

composed using the propositional connectives.

Lemma 4.9 We state some facts about restriction idempotents of decisions:

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202192

(i) ¬〈p〉 = 〈p〉,
(ii) 〈p〉 ∧ 〈q〉 = 〈p〉 〈q〉,
(iii) 〈p〉 ∨ 〈q〉 = 〈p〉 〈q〉,

(iv) 〈p〉 ∧ 〈q〉 ≤ 〈p〉 and 〈p〉 ∧ 〈q〉 ≤
〈q〉,

(v) 〈p〉 ∨ 〈q〉 ≤ 〈p〉 and 〈p〉 ∨ 〈q〉 ≤
〈q〉.

Proof. See appendix. �

We can now show that total decisions form a fibred Boolean algebra.

Corollary 4.10 TDec(X) is a Boolean algebra for any object X, and f� :

TDec(Y) → TDec(X) is homomorphism of Boolean algebras for any total X
f−→ Y .

Proof. Since Dec(X) is a De Morgan quasilattice (Lemma 4.5), since total decisions

are specifically decisions, and since the constants are total and the connectives

preserve totality (Lemma 4.9), it suffices to show that when 〈p〉 and 〈q〉 are total

they satisfy the absorption laws 〈p〉 = 〈p〉∧ (〈p〉∨〈q〉 and 〈p〉 = 〈p〉∨ (〈p〉∧〈q〉), and
the laws of contradiction and tertium non datur, 〈p〉∧¬〈p〉 = ⊥ and 〈p〉∨¬〈p〉 = �.

The first absorption law follows by

p

p ∨ q p

p

q

q

p

p

p

p

q

q

q

p

p

q

q

q
p

p

p ∨ q

p

q

q

p

q

q

q

p

q

q
p

q

q
p

= = = =

= = =

and the other follows analogously. Likewise, the law of contradiction can be shown

as

p

p

p

p

¬p
p

p

p

p

pp

p

p¬p

p p p

= = = =

= = =

=

and similarly for tertium non datur. �

Using the previous corollary, it follows (see [6] for the original proofs from effectus

theory) that predicates over an extensive category form a fibred Boolean algebra.

Theorem 4.11 Predicates (or, equivalently, decisions) over an extensive category

is a fibred Boolean algebra via the predicate fibration (or, equivalently, the decision

fibration).

Proof. Since total decisions on objects form Boolean algebras by Corollary 4.10,

it suffices to show that every extensive category arises as the subcategory of total

morphisms of an extensive restriction category.

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 193

Let C be an extensive category, and M denote the collection of all coproduct

injections of C . As remarked in [7], this is a stable system of monics, and by Example

4.17 of [8], Par(C ,M) is a classified restriction category under the +1 monad.

Since C has coproducts and Par(C ,M) is classified, it follows by Proposition 2.3

of [9] that Par(C ,M) has restriction coproducts. That 0 is a restriction zero in

Par(C ,M) follows straightforwardly, with the span X
!X←−↩ 0 !Y−→ Y as the unique

zero morphism X
0X,Y−−−→ Y . As such, it suffices to show that decisions can be

constructed in Par(C ,M). Let X
m←−↩ X ′ f−→ Y + Z be an arbitrary morphism

of Par(C ,M). Since C is extensive it has pullbacks of coproduct injections along

arbitrary morphisms, so the two squares

X1 X ′ X2

Y Y + Z Z

m1

f1 f

m2

f2

κ1 κ2

are pullbacks, and so the top row is a coproduct diagram (i.e., X1+X2
∼= X ′). But

then it readily follows that

X1 +X2

X′ X′ +X′

X X +X

m1+m2∼=
m m+m

is a decision for X
m←−↩ X ′ f−→ Y + Z in Par(C ,M), and we are done. �

5 Conclusion and future work

Motivated by an observation from flowchart languages that predicates serve a dual

role as both condition and decision, we have given an account of extensive restriction

categories (due to [7–9]) as categories with an internal logic (namely Kw
3) that

internalize this duality, in the form of a natural isomorphism between the predicate

fibration and the decision fibration.

We have also extended the graphical language of cocartesian categories to one for

extensive restriction categories, and used our results to give an alternative proof of

the fact that extensive categories, too, are categories with an internal logic – classical

logic. While the graphical language has proven itself useful in proving theorems,

it does have its shortcomings. For example, the only way to express restriction

idempotents of compositions, such as gf , is, awkwardly, as
gf

. That is, we

would want only one representation of composition as placing gadgets in sequence,

but since gf cannot generally be expressed as a composite involving only smaller

things (e.g., f and g), we are forced in this case to let the textual representation

(i.e., juxtaposition) bleed into the graphical language. The graphical notation for

decisions has similar issues.

An application of the developed theory is in reversible models of logics, which

was also the motivation for defining the connectives in slightly more involved fash-

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202194

ion, using partial inverses to decisions rather than the codiagonal. Indeed, the

inspiration for using decisions as predicates came from the study of the categorical

semantics of reversible flowchart languages (see [13,19]). Since a decision in C is still

a decision in Inv(C) (see [19]), Dec(X) is still a De Morgan quasilattice in Inv(C),

though the homomorphisms between fibres differ (i.e., only decision transformers

that are partial isomorphisms occur in the decision fibration on Inv(C)).

We have only considered the weak Kleene logic Kw
3 here, as it can be constructed

by purely sequential means. However, we conjecture that the strong Kleene logic K3

can be modelled as well in extensive restriction categories if additionally a parallel

composition operator such as finite joins (see [14]) is available. Finally, just the

propositional fragment of Kw
3 and classical logic has been considered in this paper.

Though decisions on an object yields a fibred category with a logical structure, we

have not explored extensions to models of first-order logics, e.g., by investigating the

feasibility of adjoints to substitution, as in the standard trick due to Lawvere [22]

(see also [15]).

References

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press, 1st edition,
2008.

[2] M. A. Arbib and E. G. Manes. Partially additive categories and flow-diagram semantics. Journal of
Algebra, 62(1):203 – 227, 1980.

[3] E. Ashcroft and Z. Manna. The translation of ’go to’ programs into ’while’ programs. In C. V. Freiman,
J. E. Griffith, and J. L. Rosenfeld, editors, Proceedings of IFIP Congress 71, volume 1, pages 250–255.
North-Holland, 1972.

[4] C. Böhm and G. Jacopini. Flow diagrams, Turing machines and languages with only two formation
rules. Communications of the ACM, 9(5):366–371, 1966.

[5] A. Carboni, S. Lack, and R. Walters. Introduction to extensive and distributive categories. Journal of
Pure and Applied Algebra, 84(2):145–158, 1993.

[6] K. Cho, B. Jacobs, B. Westerbaan, and A. Westerbaan. An introduction to effectus theory. See
http://arxiv.org/abs/1512.05813, 2015.

[7] J. R. B. Cockett and S. Lack. Restriction categories I: Categories of partial maps. Theoretical Computer
Science, 270(1–2):223–259, 2002.

[8] J. R. B. Cockett and S. Lack. Restriction categories II: Partial map classification. Theoretical Computer
Science, 294(1–2):61–102, 2003.

[9] R. Cockett and S. Lack. Restriction categories III: Colimits, partial limits and extensivity. Mathematical
Structures in Computer Science, 17(4):775–817, 2007.

[10] C. C. Elgot. Monadic computation and iterative algebraic theories. In H. E. Rose and J. C.
Shepherdson, editors, Logic Colloquium, pages 175–230. North Holland, 1975.

[11] C. C. Elgot. Structured programming with and without GO TO statements. IEEE Transactions on
Software Engineering, SE-2:41–53, 1976.

[12] V. K. Finn and R. Grigolia. Nonsense logics and their algebraic properties. Theoria, 59(1–3):207–273,
1993.

[13] R. Glück and R. Kaarsgaard. A categorical foundation for structured reversible flowchart languages.
In A. Silva, editor, The Thirty-third Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXXIII), volume 336 of Electronic Notes in Theoretical Computer Science. Elsevier,
2017.

[14] X. Guo. Products, Joins, Meets, and Ranges in Restriction Categories. PhD thesis, University of
Calgary, 2012.

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 195

http://arxiv.org/abs/1512.05813

[15] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the Foundations of
Mathematics. Elsevier, first edition, 1999.

[16] B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. Logical
Methods in Computer Science, 11(3), 2015.

[17] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall International, 1993.

[18] R. Kaarsgaard, H. B. Axelsen, and R. Glück. Join inverse categories and reversible recursion. Journal
of Logical and Algebraic Methods in Programming, 87:33–50, 2017.

[19] R. Kaarsgaard and R. Glück. A categorical foundation for structured reversible flowchart languages:
Soundness and adequacy. Logical Methods in Computer Science, 14(3):1–38, 2018.

[20] J. Kastl. Inverse categories. In H.-J. Hoehnke, editor, Algebraische Modelle, Kategorien und Gruppoide,
volume 7 of Studien zur Algebra und ihre Anwendungen, pages 51–60. Akademie-Verlag, 1979.

[21] S. C. Kleene. Introduction to metamathematics. North Holland, 1st edition, 1952.

[22] F. W. Lawvere. Adjointness in foundations. Dialectica, 23:281–296, 1969.

[23] A. Ledda. Stone-type representations and dualities for varieties of bisemilattices. Studia Logica,
106(2):417–448, 2018.

[24] E. G. Manes and M. A. Arbib. Algebraic approaches to program semantics. Springer, 1986.

[25] P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke, editor, New
Structures for Physics, pages 289–355. Springer, 2011.

[26] G. Ştefănescu. An algebraic theory of flowchart schemes. In P. Franchi-Zannettacci, editor, CAAP ’86,
volume 214 of Lecture Notes in Computer Science, pages 60–73. Springer, 1986.

[27] G. Ştefănescu. On flowchart theories part I: The deterministic case. Journal of Computer and System
Sciences, 35(2):163 – 191, 1987.

[28] M. Williams and H. Ossher. Conversion of unstructured flow diagrams into structured form. The
Computer Journal, 21(2):161–167, 1978.

[29] T. Yokoyama, H. B. Axelsen, and R. Glück. Fundamentals of reversible flowchart languages. Theoretical
Computer Science, 611:87–115, 2016.

A Omitted proofs

Proof. [Proof of Lemma 3.2] For (i) and (ii), see [9]. (iii) follows by (ii) since

〈f〉† = [κ†1f, κ
†
2f] = κ†1f + κ†2f = κ†1f + κ†2f.

For (iv), 〈f〉 = 〈f〉 = ∇〈f〉 = ∇〈f〉 = f = f . To show (v) we show that γ〈f〉
decides γf , since ∇γ〈f〉 = ∇〈f〉 = f = f = γf = γf and

((γf) + (γf))γ〈f〉 = γ((γf) + (γf))〈f〉 = γ(γ + γ)(f + f)〈f〉 = γ(γ + γ)(κ1 + κ2)p

= γ((γκ1) + (γκ2))p = γ(κ2 + κ1)p = (κ1 + κ2)γp

which was what we wanted. We show (vi) analogously by showing that 〈〈f〉g〉
decides 〈fg〉 since ∇〈〈f〉g〉 = 〈f〉g = ∇〈f〉g = ∇〈f〉g = fg = fg and

((fg) + (fg))〈〈f〉g〉 = ((ffg) + (ffg))〈〈f〉g〉 = ((f∇〈f〉g) + (f∇〈f〉g))〈〈f〉g〉
= ((f∇) + (f∇))((〈f〉g) + (〈f〉g))〈〈f〉g〉
= ((f∇) + (f∇))(κ1 + κ2)〈f〉g = ((f∇κ1) + (f∇κ2))〈f〉g
= (f + f)〈f〉g = (κ1 + κ2)fg .

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202196

For (vii), we observe that (e+ e)〈f〉 = ∇(e+ e)〈f〉 = e∇〈f〉 = ef = ef = fe = 〈f〉e
so (e+e)〈f〉 = (e+e)〈f〉(e+ e)〈f〉 = (e+e)〈f〉〈f〉e = (e+e)〈f〉e. To show (viii), we

show that the two morphism decide one another. We see that 〈f〉e decides (e+e)〈f〉
since ∇〈f〉e = fe = 〈f〉e = (e+ e)〈f〉 (see (vii) above) and

(((e+ e)〈f〉) + ((e+ e)〈f〉))〈f〉e = ((e+ e) + (e+ e))(〈f〉+ 〈f〉)〈f〉e
= ((e+ e) + (e+ e))(〈f〉+ 〈f〉)〈〈f〉〉e = ((e+ e) + (e+ e))(κ1 + κ2)〈f〉e
= (κ1 + κ2)(e+ e)〈f〉e = (κ1 + κ2)(e+ e)〈f〉

where (e+e)〈f〉 = (e+e)〈f〉e by (vii); thus 〈f〉e decides (e+e)〈f〉, i.e., 〈(e+e)〈f〉〉 =
〈f〉e = 〈〈f〉e〉 (the latter by (i)). In the other direction, ∇(e + e)〈f〉 = e∇〈f〉 =

ef = fe = 〈f〉e and it is the case that

((〈f〉e) + (〈f〉e))(e+ e)〈f〉 = ((〈f〉e) + (〈f〉e))(e+ e)〈f〉e
= ((〈f〉ee) + (〈f〉ee))〈f〉e = ((〈f〉e) + (〈f〉e))〈f〉e
= ((〈f〉e) + (〈f〉e))〈〈f〉e〉 = (κ1 + κ2)〈f〉e

For (ix) we have that 〈f〉e = 〈〈f〉e〉 by (viii) and get 〈f〉e = 〈〈f〉e〉 = 〈fe〉 by

(vi).

For (x), by (ii) 〈f〉† =
[
κ†1f, κ

†
2f

]
so κ†i 〈f〉 = κ†i

[
κ†1f, κ

†
2f

]†
=

([
κ†1f, κ

†
2f

]
κi

)†
= κ†if

†
= κ†if .

For (xi), we compute

〈g〉f = (κ†1 + κ†2)(κ1 + κ2)〈g〉f = (κ†1 + κ†2)((〈g〉f) + (〈g〉f))〈〈g〉f〉
= (κ†1 + κ†2)((〈g〉f) + (〈g〉f))〈gf〉 = (κ†1 + κ†2)(〈g〉+ 〈g〉)(f + f)〈gf〉
= ((κ†1〈g〉) + (κ†2〈g〉))(f + f)〈gf〉 = (κ†1g + κ†2g)(f + f)〈gf〉
= (f + f)(κ†1gf + κ†2gf)〈gf〉 = (f + f)[κ†1gf, κ

†
2gf]〈gf〉 = (f + f)〈gf〉†〈gf〉

= (f + f)〈gf〉

where we use that κ†i 〈g〉 = κ†ig by (xi), and 〈gf〉† = [κ†1gf, κ
†
2gf] by (ii). �

Proof. [Proof of Lemma 4.3] That � = κ1 and ⊥ = κ2 are decisions is shown in [9].

That ¬〈p〉 = γ〈p〉 is a decision follows by γ〈p〉 = 〈γp〉 by Lemma 3.2(v). To see

that 〈p〉 ∧ 〈q〉 is a decision, it suffices by Lemma 3.3 to show that κ†1(〈p〉 ∧ 〈q〉) =

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 197

κ†1(〈p〉 ∧ 〈q〉) and κ†2(〈p〉 ∧ 〈q〉) = κ†2(〈p〉 ∧ 〈q〉). We compute

κ†1(〈p〉 ∧ 〈q〉) = κ†1(id+〈p〉†)α(〈q〉+ 〈q〉)〈p〉
= idκ†1α(〈q〉+ 〈q〉)〈p〉
= κ†1α(〈q〉+ 〈q〉)〈p〉
= κ†1κ

†
1(〈q〉+ 〈q〉)〈p〉

= κ†1〈q〉κ†1〈p〉
= κ†1q κ

†
1p

so κ†1(〈p〉 ∧ 〈q〉) = κ†1q κ
†
1p = κ†1q κ

†
1p = κ†1(〈p〉 ∧ 〈q〉). Further

κ†2(〈p〉 ∧ 〈q〉) = κ†2(id+〈p〉†)α(〈q〉+ 〈q〉)〈p〉
= 〈p〉†κ†2α(〈q〉+ 〈q〉)〈p〉
= 〈p〉†(κ†2 + id)(〈q〉+ 〈q〉)〈p〉
= 〈p〉†((κ†2〈q〉) + 〈q〉))〈p〉
= 〈p〉†(κ†2q + q))〈p〉
≤ 〈p〉†(q + q))〈p〉
= 〈p〉†〈p〉q
= 〈p〉q
= p q

so since κ†2(〈p〉∧〈q〉) ≤ p q it follows that κ†2(〈p〉∧〈q〉) = κ†2(〈p〉 ∧ 〈q〉), and so finally

〈p〉 ∧ 〈q〉 is a decision by Lemma 3.3. The case for 〈p〉 ∨ 〈q〉 is entirely analogous.�

Proof. [Proof of Lemma 4.6(iii)] By Lemma 3.3 it suffices to show that κ†1f
�(〈p〉 ∧

〈q〉) = κ†1(f
�(〈p〉) ∧ f�(〈q〉)) and κ†2f

�(〈p〉 ∧ 〈q〉) = κ†2(f
�(〈p〉) ∧ f�(〈q〉)), Firstly

we expand f�(〈p〉 ∧ 〈q〉) = 〈(〈p〉 ∧ 〈q〉)f〉 and f�(〈p〉) ∧ f�(〈q〉) = 〈〈p〉f〉 ∧ 〈〈q〉f〉 =
〈pf〉 ∧ 〈qf〉. Then we compute

κ†1(f
�(〈p〉) ∧ f�(〈q〉) = κ†1〈(〈p〉 ∧ 〈q〉)f〉 = κ†1(〈p〉 ∧ 〈q〉)f

= κ†1(id+〈p〉†)α(〈q〉+ 〈q〉)〈p〉f = idκ†1α(〈q〉+ 〈q〉)〈p〉f
= κ†1α(〈q〉+ 〈q〉)〈p〉f = κ†1〈q〉κ†1〈p〉f
= κ†1〈q〉κ†1〈p〉f = κ†1〈q〉fκ†1〈p〉f
= fκ†1〈q〉f κ†1〈p〉f = f κ†1〈q〉f κ†1〈p〉f
= f κ†1〈q〉f κ†1〈p〉f = κ†1〈q〉ff κ†1〈p〉f
= κ†1〈q〉ff κ†1〈p〉f = κ†1〈q〉f κ†1〈p〉f

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202198

and

κ†1(f
�(〈p〉 ∧ f�(〈q〉)) = κ†1〈pf〉 ∧ 〈qf〉 = κ†1(〈pf〉 ∧ 〈qf〉)

= κ†1(id+〈pf〉)α(〈qf〉+ 〈qf〉)〈pf〉 = idκ†1α(〈qf〉+ 〈qf〉)〈pf〉
= κ†1α(〈qf〉+ 〈qf〉)〈pf〉 = κ†1κ

†
1(〈qf〉+ 〈qf〉)〈pf〉

= κ†1〈qf〉κ†1〈pf〉 = κ†1〈qf〉κ†1〈pf〉
= κ†1〈qf〉κ†1〈pf〉

so κ†1(f
�(〈p〉) ∧ f�(〈q〉)) = κ†1(f

�(〈p〉) ∧ f�(〈q〉)). For the second part,

κ†2f
�(〈p〉 ∧ 〈q〉) = κ†2〈(〈p〉 ∧ 〈q〉)f〉 = κ†2(〈p〉 ∧ 〈q〉)f

= κ†2(id+〈p〉†)α(〈q〉+ 〈q〉)〈p〉f = 〈p〉†κ†2α(〈q〉+ 〈q〉)〈p〉f
= 〈p〉†(κ†2 + id)(〈q〉+ 〈q〉)〈p〉f = 〈p〉†((κ†2〈q〉) + 〈q〉)〈p〉f
= 〈p〉†(κ†2〈q〉+ 〈q〉)〈p〉f = (κ†2〈q〉+ 〈q〉)〈p〉†〈p〉f
= (κ†2〈q〉+ 〈q〉)〈p〉f = ((κ†2〈q〉) + 〈q〉)〈p〉f
= ((κ†2〈q〉) + 〈q〉)〈p〉〈p〉f = ((κ†2〈q〉〈p〉) + (〈q〉〈p〉))〈p〉f
= ((κ†2〈q〉〈p〉f) + (〈q〉〈p〉f))〈pf〉

and

κ†2(f
�(〈p〉) ∧ f�(〈q〉)) = κ†2(〈pf〉 ∧ 〈qf〉) = κ†2(〈pf〉 ∧ 〈qf〉)

= κ†2(id+〈pf〉†)α(〈qf〉+ 〈qf〉)〈pf〉 = 〈pf〉†κ†2α(〈qf〉+ 〈qf〉)〈pf〉
= 〈pf〉†(κ†2 + id)(〈qf〉+ 〈qf〉)〈pf〉 = 〈pf〉†((κ†2〈qf〉) + 〈qf〉)〈pf〉
= 〈pf〉†(κ†2〈qf〉+ 〈qf〉)〈pf〉 = (κ†2〈qf〉+ 〈qf〉)〈pf〉†〈pf〉
= (κ†2〈qf〉+ 〈qf〉)〈pf〉 = (κ†2〈q〉f + 〈q〉f)〈pf〉
= ((κ†2〈q〉f) + (〈q〉f))〈pf〉 = ((κ†2〈q〉f) + (〈q〉f))〈pf〉〈pf〉
= ((κ†2〈q〉f) + (〈q〉f))〈pf〉〈p〉f = ((κ†2〈q〉f〈p〉f) + (〈q〉f〈p〉f))〈pf〉
= ((κ†2〈q〉〈p〉f) + (〈q〉〈p〉f))〈pf〉

so also κ†2f
�(〈p〉∧ 〈q〉) = κ†2(f

�(〈p〉)∧ f�(〈q〉)), which finally gives us f�(〈p〉∧ 〈q〉) =
f�(〈p〉) ∧ f�(〈q〉). �

Proof. [Proof of 4.9] (i) ¬〈p〉 = γ〈p〉 = γ〈p〉 = id〈p〉 = 〈p〉.

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 199

(ii) We have

〈p〉 ∧ 〈q〉 = (id+〈p〉†)α(〈q〉+ 〈q〉)〈p〉
= (id+∇)α(〈q〉+ 〈q〉)〈p〉
= (id+∇)α(〈q〉+ 〈q〉)〈p〉
= id(〈q〉+ 〈q〉)〈p〉
= (〈q〉+ 〈q〉)〈p〉
= (〈q〉+ 〈q〉)〈p〉
= 〈p〉〈q〉
= 〈p〉 〈q〉

(iii) follows by analogous reasoning to (ii). We have (iv) immediately by (ii) since

〈p〉 ∧ 〈q〉 = 〈p〉 〈q〉 ≤ 〈p〉 directly, and likewise 〈p〉 ∧ 〈q〉 = 〈p〉 〈q〉 ≤ 〈q〉. (v) follows

analogously. �

Proof. [Proof of Lemma 4.8] Assume κ†1〈p〉 ≤ κ†1〈q〉 and 〈p〉 ≤ 〈q〉. By Lemma 3.3,

to show 〈p〉 ∧ 〈q〉 = 〈p〉 (i.e., 〈p〉 � 〈q〉) it suffices to show that κ†1(〈p〉 ∧ 〈q〉) = κ†1〈p〉
and κ†2(〈p〉 ∧ 〈q〉) = κ†2〈p〉.

Since

κ†1(〈p〉 ∧ 〈q〉) = κ†1p κ
†
1q = κ†1〈p〉κ†1〈q〉 = κ†1〈p〉 = κ†1〈p〉

by the proof of Lemma 4.3, κ†1〈p〉 ≤ κ†1〈q〉, and Lemma 3.2, proving the first part.

For the second part,

κ†2(〈p〉 ∧ 〈q〉) = κ†2(〈p〉 ∧ 〈q〉) = 〈p〉†(κ†2〈q〉+ 〈q〉)〈p〉
= 〈p〉†(κ†2〈q〉+ 〈q〉)〈p〉 = (κ†1〈p〉+ κ†2〈p〉)(κ†2〈q〉+ 〈q〉)〈p〉
= ((κ†1〈p〉κ†2〈q〉) + (κ†2〈p〉 〈q〉))〈p〉 = ((κ†1〈p〉κ†1〈q〉κ†2〈q〉) + (κ†2〈p〉 〈q〉))〈p〉
= ((κ†1〈p〉 0) + (κ†2〈p〉 〈q〉))〈p〉 = (0 + (κ†2〈p〉 〈q〉))〈p〉
= (0 + (κ†2〈p〉〈q〉))〈p〉 = (0 + (κ†2〈p〉〈p〉 〈q〉))〈p〉
= (0 + (κ†2〈p〉〈p〉))〈p〉 = (0 + (κ†2〈p〉))〈p〉
= ((0κ†1〈p〉) + (κ†2〈p〉))〈p〉 = (0 + id)(κ†1〈p〉+ κ†2〈p〉)〈p〉
= (0 + id)〈p〉†〈p〉 = (0 + id)〈p〉 = κ†2〈p〉 = κ†2〈p〉 = κ†2〈p〉

In the other direction, suppose that 〈p〉 � 〈q〉, i.e., 〈p〉 ∧ 〈q〉 = 〈p〉. Then κ†1(〈p〉 ∧
〈q〉) = κ†1〈p〉 = κ†1〈p〉, but since we also know that κ†1(〈p〉 ∧ 〈q〉) = κ†1〈p〉κ†1〈q〉 (see

above), it follows that

κ†1〈q〉κ†1〈p〉 = κ†1〈q〉κ†1〈p〉 = κ†1〈p〉κ†1〈q〉 = κ†1〈p〉 = κ†1〈p〉

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202200

that is, κ†1〈p〉 ≤ κ†1〈q〉. That 〈p〉 ≤ 〈q〉 follows by Lemma 4.9, as we thus have

〈p〉 = 〈p〉 ∧ 〈q〉 ≤ 〈q〉. �

Proof. [Proof of Lemma 4.4] To prove (i), it suffices to show that their partial

inverses are equal, since partial inverses are unique. We show this as follows:

q

q

p =
q

q p

p

q

q

p

p

q

q p

p

q

q

p

p

q

q p

p

q

q

p

p

q

q p

p

q

q

p

p

q

q p

p

q

q

p

p

q

qp

p

q

q

p

p

q
p

p
q

p

p

p

p

q

p
q

q
p

q

q

= =

== =

=

=

=

(ii) follows by

p

q

q
p

p

q

q

p

p

p

p

p q

q

p

p

p

p

q

q

p

p

p

p

q
p

p

p

q
p

p

q
p

p

p

q
p

p

p q

q
p

q

q

= = = =

= = =

(iii) follows by analogous argument to (ii). �

Proof. [Proof of Lemma 4.5] Commutativity of conjunction follows by

p

q

q p
p

q

q
p

q

q

q

p

p

q

p

p

q

p

p

q

p

p

q

p

p
q

q

p

p

= = = =

= = = =

and commutativity of disjunction analogously. Associativity of conjunction is

demonstrated by

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202 201

p q ∧ r p

q
r q

r

p

q
r

r

rq

p

q
r

r

rq
p

q
r

q r

p

q ∧ r p

q ∧ r

p ∧ q

r

r
p ∧ q

r

p ∧ q
r

and associativity of disjunction can be shown similarly. For distributivity of con-

junction over disjunction,

p

q

q
p p

r

r p

p ∧ q

p ∨ r

p

q

q

r

r p

p ∨ r

p

p

p

q

q

r

r p

p ∨ r

p

p

p

q

q

r

r p

p ∨ r

p

p

p

p

p

q

q
p p

r

r p

p ∨ r

p

q

q

r

r p

p ∨ r

p

p

p

p

p

q

q

r

r p

p

p

p

p r

p

q

q

r

r p

p

p

p

rp

p

q

q

r

r p

p

p

rp

p

q

q

r

r p
p

r
p

p

q

q

r

r p

r

p

q

q ∨ r

r

p

r

p

q

q ∨ r

r

p

p
r

= = =

= = =

= = =

= = =

and the dual distributive law follows symmetrically. Finally, the double negation

law then follows simply by

p p=

which concludes the proof. �

R. Kaarsgaard / Electronic Notes in Theoretical Computer Science 347 (2019) 179–202202

	Introduction
	Extensive restriction categories
	Condition/decision duality
	The internal logic of extensive restriction categories
	Kleene's three valued logics and De Morgan quasilattices
	The internal logic

	Conclusion and future work
	References
	Omitted proofs

