JASPAR 2020

update of the open-access database of transcription factor binding profiles

Fornes, Oriol; Castro-Mondragon, Jaime A; Khan, Aziz; van der Lee, Robin; Zhang, Xi; Richmond, Phillip A; Modi, Bhavi P; Correard, Solenne; Gheorghe, Marius; Baranaši, Damir; Santana-Garcia, Walter; Tan, Ge; Chèneby, Jeanne; Ballester, Benoit; Parcy, François; Sandelin, Albin; Lenhard, Boris; Wasserman, Wyeth W; Mathelier, Anthony

Published in:
Nucleic Acids Research

DOI:
10.1093/nar/gkz1001

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC

Citation for published version (APA):
JASPAR 2020: update of the open-access database of transcription factor binding profiles

Oriol Fornes †1,†, Jaime A. Castro-Mondragon2,†, Aziz Khan †2,†, Robin van der Lee †1, Xi Zhang†, Phillip A. Richmond†, Bhavi P. Modi†, Solenne Correard†, Marius Gheorghe2, Damir Baranašić3,4, Walter Santana-Garcia5, Ge Tan6, Jeanne Chèneby7, Benoit Ballester†7, François Parcy8, Albin Sandelin9,*, Boris Lenhard †3,4,10,*, Wyeth W. Wasserman†1,** and Anthony Mathelier †2,11,***

1Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada, 2Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway, 3Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK, 4Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W120NN, UK, 5Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France, 6Functional Genomics Centre Zurich, ETH Zurich, Zurich, Switzerland, 7Aix Marseille Univ, INSERM, TAGC, Marseille, France, 8CNRS, Univ. Grenoble Alpes, CEA, INRA, IRIG-LPCV, 38000 Grenoble, France, 9The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, DK2200 Copenhagen N, Denmark, 10Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway and 11Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway

Received September 15, 2019; Revised October 15, 2019; Editorial Decision October 16, 2019; Accepted October 16, 2019

ABSTRACT

JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) for TFs across multiple species in six taxonomic groups. In this 8th release of JASPAR, the CORE collection has been expanded with 245 new PFMs (169 for vertebrates, 42 for plants, 17 for nematodes, 10 for insects, and 7 for fungi), and 156 PFMs were updated (125 for vertebrates, 28 for plants and 3 for insects). These new profiles represent an 18% expansion compared to the previous release. JASPAR 2020 comes with a novel collection of unvalidated TF-binding profiles for which our curators did not find orthogonal supporting evidence in the literature. This collection has a dedicated web form to engage the community in the curation of unvalidated TF-binding profiles. Moreover, we created a Q&A forum to ease the communication between the user community and JASPAR curators. Finally, we updated the genomic tracks, inference tool, and TF-binding profile similarity clusters. All the data is available through the JASPAR website, its associated RESTful API, and through the JASPAR2020 R/Bioconductor package.

INTRODUCTION

Transcription factors (TFs) are proteins involved in the regulation of gene expression at the transcriptional level (1). They interact with DNA in a sequence-specific manner through their DNA-binding domains (DBDs), which are used to classify TFs into structural families (2). The genomic locations where TFs bind to DNA are known as TF binding sites (TFBSs), which are typically short (6–20 bp) and exhibit sequence variability (3). Genome-wide identification of TFBSs is key to understanding transcriptional regulation. As it is not possible to identify all TFBSs for every cell type and cellular condition experimentally, computational modeling of TF-binding specificities has been instrumental to predict TFBSs in the genome. These compu-

†To whom correspondence should be addressed. Email: anthony.mathelier@ncmm.uio.no
Correspondence may also be addressed to Wyeth W. Wasserman. Email: wyeth@cmmt.ubc.ca
Correspondence may also be addressed to Boris Lenhard. Email: b.lenhard@imperial.ac.uk
Correspondence may also be addressed to Albin Sandelin. Email: albin@binf.ku.dk
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
tational models aim at representing the complex interplay between nucleotide and/or DNA shape readout at TFBSs (4), and can be used to predict not only the precise location where TFs interact in the genome (5), but also TFs with enriched TFBSs in a set of sequences (6), or the impact of mutations on TF binding (7,8), amongst others.

From the plethora of existing computational models (9), position frequency matrices (PFMs) (10) are one of the simplest and (still) most commonly used, although more complex models, for instance based on hidden Markov models or deep learning (11–13), are becoming more common. A PFM is a TF-binding profile that models the DNA-binding specificity of a TF by summarizing the frequencies of each nucleotide at each position from observed TF-DNA interactions. These interactions are usually derived from in vitro assays (e.g. SELEX (14) or protein binding microarrays (15)), which assess the binding affinity of TFs to DNA sequences, or from ChIP-based experiments (e.g. ChIP-seq (16), ChIP-exo (17), or ChIP-nexus (18)), which capture TF-DNA interactions in vivo, by looking for over-represented DNA sequences in regions bound by the ChIP-ed TF.

With the advent of high-throughput sequencing more than a decade ago, the number of PFMs derived from in vivo and in vitro experiments has increased dramatically, leading to the creation of multiple databases storing PFMs or more complex TF-binding profiles such as JASPAR (19), CIS-BP (20) and HOCOMOCO (21) (see (22) for a comprehensive review). The JASPAR database (http://jaspar.genereg.net/) is one of the most popular databases of TF-binding profiles, and has been maintained for over 15 years (23). As such, many computational tools dedicated to the study of gene regulation incorporate profiles from JASPAR (e.g. TFBSshape (24,25), RSAT (26), MEME (27) or i-cisTarget (6)). At the heart of JASPAR is its CORE collection, which contains TF-binding profiles that are: (i) manually curated (meaning that orthogonal supporting evidence from the literature is required for each profile); (ii) non-redundant (one profile per TF with the exception of TFs with multiple DNA-binding sequence preferences (28)); (iii) associated with TFs from one of six taxa (vertebrates, nematodes, insects, plants, fungi, and urochordata) and (iv) freely available to the community through a user-friendly web interface, a RESTful API (29), and a dedicated R/Bioconductor data package (‘JASPAR2020’).

Here, we present the 8th release of JASPAR, which comes with a major expansion and update of its CORE collection. Moreover, we introduce a new collection of unvalidated profiles, which stores quality-controlled PFMs for which our curators could not find orthogonal support. This collection has a dedicated web interface to engage the community of users in the curation of TF-binding profiles. Finally, we have updated the hierarchical clusters of TF-binding profiles, the genomic tracks of predicted TFBSs (now available for 8 genomes), and the profile inference tool.

EXPANSION AND UPDATE OF THE JASPAR CORE COLLECTION

For this 8th release of JASPAR, we added to the CORE collection 245 new TF-binding profiles for TFs in the following taxa: vertebrates (169 profiles, corresponding to an expansion of 29% for this taxon), plants (42 profiles, 9% expansion), nematodes (17 profiles, 65% expansion), insects (10 profiles, 8% expansion) and fungi (7 profiles, 4% expansion). We updated 156 profiles (Table 1). The new PFMs were derived from HT-SELEX (30), PBMs (20), ChIP-seq and DAP-seq experiments (data sourced from CistromeDB (31), ReMap (32,33), GTRD (34), ChIP-atlas (35) and ModERN (36), see Supplementary Text for method details). As pre-

Table 1. Overview of the growth of the number of PFMs in the JASPAR 2020 CORE and unvalidated collections compared to the JASPAR 2018 CORE collection

<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Non-redundant PFMs in JASPAR 2018</th>
<th>New non-redundant PFMs in JASPAR 2020</th>
<th>Updated PFMs in JASPAR 2020</th>
<th>Total PFMs in JASPAR 2020 (non-redundant)</th>
<th>Total PFMs in JASPAR 2020 (all versions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertebrates</td>
<td>579</td>
<td>169</td>
<td>125</td>
<td>746</td>
<td>1011</td>
</tr>
<tr>
<td>Plants</td>
<td>489</td>
<td>42</td>
<td>28</td>
<td>530</td>
<td>572</td>
</tr>
<tr>
<td>Insects</td>
<td>133</td>
<td>10</td>
<td>3</td>
<td>143</td>
<td>153</td>
</tr>
<tr>
<td>Nematodes</td>
<td>26</td>
<td>17</td>
<td>0</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Fungi</td>
<td>176</td>
<td>7</td>
<td>0</td>
<td>183</td>
<td>184</td>
</tr>
<tr>
<td>Urochordata</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total CORE unvalidated</td>
<td>1404</td>
<td>245</td>
<td>156</td>
<td>1646</td>
<td>1964</td>
</tr>
</tbody>
</table>

Figure 1. JASPAR CORE growth. The number of profiles in each taxon and overall (see legend) through all JASPAR releases.
Figure 2. Unvalidated TF-binding profile collection. Example with the ZNF793 profile. This high-quality PFM was derived from a ChIP-seq experiment and was built from thousands of potential TFBSs. Further, the TFBSs are enriched around the ChIP-seq peak summits. However, no orthogonal evidence supporting this profile was found by our curators. Users can upload relevant information about the profile in the unvalidated collection through the ‘Community curation’ box.

Previously described, the newly introduced profiles were manually curated to be supported by an orthogonal reference from the literature, which is provided in the metadata of the profiles. Moreover, the TF DBD class and family (following the TFClass classification (2)), the TF UniProt ID (37), and links to the TFBSshape (24,25), ReMap (32,33) and UniBind (38) databases are provided in the profiles metadata (whenever possible). Finally, the profiles previously associated with ID2, ID4 and TRB2 were removed from the CORE collection as these proteins are not TFs (1).

Overall, the JASPAR 2020 CORE collection includes 1646 non-redundant PFMs (746 for vertebrates, 530 for plants, 183 for fungi, 143 for insects, 43 for nematodes and 1 for urochordates) (Table 1; Figure 1). Moreover, we continued with the incorporation of novel transcription factor flexible models (TFFMs), which are hidden Markov-based models capturing dinucleotide dependencies in TF–DNA interactions (11). We introduced new TFFMs for 217 TFs (136 for vertebrates, 38 for plants, 21 for insects, 17 for nematodes, and 5 for fungi) and updated TFFMs for 20 verte-
brates TFs, which represents a 50% increase in the number
of TF/TFM available. All data is available on the JASPAR
website, its associated RESTful API, and through the JAS-
PAR2020 R/Bioconductor package.

A NEW COLLECTION OF UNVALIDATED PROFILES
FOR COMMUNITY ENGAGEMENT

We introduced a novel ‘unvalidated’ collection to store high-
quality (i.e. passing multiple quality controls, see Supple-
mental Text) TF-binding profiles for which no independ-
ent support was found in the literature by our curators.
This collection contains 337 PFMs. As these profiles are not
yet supported by an orthogonal evidence, we recommend
users to use this collection with caution. We encourage
the community to engage in the curation of these profiles by
providing the JASPAR curators with supporting comple-
mentary evidence (from their own work or others) whenever
possible. This is facilitated by the availability of an individ-
ual submission form for each profile in the ‘unvalidated’ col-
lection (Figure 2).

Further, we started a Q&A forum (https://groups.google.
com/forum/#!forum/jaspar) to ease the communication be-
 tween JASPAR curators and the community; we welcome
the community to send us their questions and suggestions,
or to report errors in JASPAR.

CLUSTERED PROFILES, GENOMIC TRACKS AND
PROFILE INFERENCE TOOL

In the previous releases, we introduced novel features such
as hierarchical clustering of TF-binding profiles in the
CORE collection to visualize profile similarities, genomic
tracks of predicted TFBSs, and an inference tool to predict
TF-binding profiles likely recognized by TFs not available
in the JASPAR CORE. We improved the profile inference
tool using our own implementation of a recently described
similarity regression method (20). We updated the genera-
tion of genomic tracks that are publicly available through
the UCSC Genome Browser data hub (39) for 7 organ-
isms: human (hg19, hg38), mouse (mm10), zebrafish (dan-
Rer11), Drosophila melanogaster (dm6), Caenorhabditis el-
egans (ce10), Arabidopsis thaliana (araTha1) and baker’s
yeast (sacCer3). For more details on the updated genomic
tracks and inference tool, refer to the Supplementary Text.
Finally, we generated the hierarchical clusters of available
TF-binding profiles for each taxon with RSAT matrix-
clustering (40). Users can explore the CORE/unvalidated
collection through the trees and access directly the corre-
sponding profiles by clicking on the TF name.

CONCLUSIONS AND PERSPECTIVES

Similar to previous releases, we substantially expanded the
CORE collection of the JASPAR database. For this 8th re-
 lease, we processed more than 18,000 ChIP-seq datasets.
As a large number of the obtained high-quality TF-binding
profiles were not supported with orthogonal supporting ev-
idence, it motivated us to create the novel ‘unvalidated’ col-
lection of profiles. We expect that upcoming experiments
and publications will provide additional supporting evi-
dence to some profiles to be incorporated into the JASPAR
CORE collection. Meanwhile, we would like to extend our
invitation to the research community to 1) help us curate
these unvalidated profiles (e.g. by pointing us to supporting
literature), and 2) send us their own novel profiles (e.g. deter-
mined experimentally) for incorporation in the next release
of JASPAR.

The JASPAR CORE vertebrates collection now contains
746 profiles, 637 of which are associated with human TFs
with known DNA-binding profiles (1), which corresponds
to a 58% of the 1,107 reported by Lambert et al. (1). While
this is an impressive collective achievement by the field (the
original JASPAR database only contained 81 profiles, a
∼7% coverage for human TFs), it suggests that targeted
experimental efforts to find the binding preferences for re-
maining TFs will be important. Although computational
approaches can be used to infer missing TF-binding profiles
(20,41), especially for non-model organisms, the JAS-
PAR approach is conservative, including profiles supported
by at least two experiments in the literature. This is very im-
portant as we stand by the reliability of our data. Since its
initial publication in 2004 (23), the JASPAR database has
been committed to provide the research community with
high-quality, manually curated, non-redundant TF-binding
profiles.

Lastly, although PFMs have dominated the field of gene
regulation for decades, new profile representations have
emerged. For example, profiles with expanded alphabets to
represent methylated bases (42,43), modelling binding en-
ergy (44) or derived from deep learning importance scores
(45). Depending on how the field evolves and how popular
these profiles become, we will consider them for inclusion in
JASPAR in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank the user community for useful input and the
scientific community for performing experimental assays
of TF-DNA interactions and for publicly releasing the
data. We thank Giovanna Ambrosini for her help with
PWMScan, the UCSC Genome Browser Project Team for
their assistance with the genome tracks, WestGrid
computecanada.ca), Georgios Magklaras and Georgios
Marselis for their IT support, Jacques van Helden and
Adam Handel for contacting us to add and validate TF
binding profiles, and Dora Pak and Ingrid Kjelsvik for ad-
ministrative support.

FUNDING

Norwegian Research Council [187615]; Helse Sør-Øst; Uni-
versity of Oslo through the Centre for Molecular Medicine
Norway (NCMM) (to A.M., J.A.C.-M., A.K., M.G.); Nor-
wegian Research Council [288404 to J.A.C.-M. and Math-
elier group]; The Norwegian Cancer Society [197884 to
Mathelier group]; O.F., X.Z., P.A.R., S.C. and W.W.W. were
supported by grants from the Canadian Institutes of Health
This paper is linked to: https://doi.org/10.1093/nar/gkz945.

REFERENCES

Downloaded from https://academic.oup.com/nar/article-abstract/48/D1/D87/5614568 by Royal Library Copenhagen user on 10 February 2020

