Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model

Che, Lianqiang; Hu, Qi; Wang, Ru; Zhang, Du; Liu, Cong; Zhang, Yihe; Xin, Guizhong; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Feng, Bin; Chen, Daiwen; Wu, De; Gao, Fei

Published in:
Journal of Nutritional Biochemistry

DOI:
10.1016/j.jnutbio.2019.108246

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Inter-correlated gut microbiota and SCFAs changes upon antibiotics exposure links with rapid body-mass gain in weaned piglet model

Lianqiang Chea,⁎,1, Qi Huib,1, Ru Wanga, Du Zhanga, Cong Liub, Yihe Zhanga, Guizhong Xind, Zhengfeng Fanga, Yan Lina, Shengyu Xua, Bin Fenga, Daiwen Chena, De Wua, Fei Gaob,⁎⁎

⁎⁎ These authors contributed equally to this work.

⁎ Correspondence to: L. Che, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
E-mail addresses: clianqiang@hotmail.com (L. Che), flys828@gmail.com (F. Gao).

1 These authors contributed equally to this work.

⁎⁎ Correspondence to: L. Che, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
E-mail addresses: clianqiang@hotmail.com (L. Che), flys828@gmail.com (F. Gao).

1 These authors contributed equally to this work.

aAnimal Nutrition Institute, Sichuan Agricultural University, Ya'an, China
bGenome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, DK, Denmark
State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing, China

Available online at www.sciencedirect.com

Journal of Nutritional Biochemistry 74 (2019) 108246

Abstract

The risk of overweight or obesity in association with early exposure of antibiotics remains an important public issue for health-care of children. Low-dose antibiotics (LDA) have been widely used to enhance growth rate of pigs, providing a good animal model to study the underlying mechanism. In present study, 28 female piglets, weaned at 21 d, were randomly classified into two groups, receiving either a control diet or a diet supplemented with LDA for 4 weeks. The total bacterial load and intestinal microbiota were determined by qPCR and 16S rRNA amplicon sequencing. UPLC-QTRAP-MS/MS and RNA-seq were further used to determine the colonic SCFAs and transcriptomes. Results showed that LDA significantly increased growth rate and food intake. The F/B index, bacterial load and intestinal microbiota were determined by qPCR and 16S rRNA amplicon sequencing. UPLC-QTRAP-MS/MS and RNA-seq were further used to determine the colonic SCFAs and transcriptomes. Results showed that LDA significantly increased growth rate and food intake. The F/B index, Methanosphaera species, and the pathway of "carbohydrate metabolism" were improved by LDA exposure, indicating the better carbohydrate degradation and energy utilization. Furthermore, correlation analysis indicated the microbial community contributing to SCFAs production was enriched upon LDA exposure, associating with increased concentrations of short-chain and branched-chain fatty acids (caproate, 2-methyl butyrate and 4-methyl valerate). A multivariate linear fitting model analysis highlighted that caproate was positively correlated with two genera (Faecalibacterium and Allisonella) and four differentially expressed genes (ZNF134, TBX5, NEU4 and SEMA6D), which were all significantly increased upon LDA exposure. Collectively, our study indicates that the growth-promoting effect of LDA exposure in early life is associated with the shifts of colonic microbiota to increase utilization of carbohydrates and energy, enhanced SCFAs production and colonic functions.

© 2019. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2.3. Bacterial load by quantitative PCR (qPCR) software and processed using the MultiQuant 1.2 software (AB Sciex, USA). All the range of m/z 100 to 1.7 mm). The UPLC-MS/MS was operated in the negative-ion mode with a detection in-solution chemical stability. Agilent 1100 UPLC system (Agilent, USA) coupled to a Qubit 3.0 Fluorometer. Each PCR reaction mixture (20 μl) contained 5 μl of template DNA, 10 μl SuperReal PreMix Plus (SYBR Green, TIANGEN, FP200), and 1.5 μl of each primer (10 μM; Forward: 5′-CTACCGCGGCTGCTGGCAC-3′; Reverse: 5′-TTACCGCGGCTGCTGGCAC-3′). The qPCR reactions were performed in triplicate under thermal cycle conditions of 15 min at 95°C, and 30 cycles of 10 s at 95°C, 30 s at 55°C and 32 s at 72°C in a CFX Connect Real-Time PCR Detection System (BioRad). All results were normalized and calculated using the ΔΔCT method.

2.4. DNA extraction, PCR amplification of 16S rRNA gene, amplicon sequence and sequence data processing

Full genomic DNA was extracted from contents of ileum and colon using CTAB/SDS method. DNA concentration was measured by Qubit 3.0 Fluorometer and purity were checked using the NanoPhotometer spectrophotometer (IMPLEN, CA, USA). RNA concentration was measured using Qubit RNA Assay Kit in Qubit 2.0 Flurometer (Life Technologies, CA, USA), RNA integrity was assessed using the RNA 6000 Nano Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A total amount of 1.5 μg RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext UltraTM Directional RNA Library Prep Kit for Illumina (NEB, USA) following manufacturer’s recommendations. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNaseH-). Second strand cDNA synthesis was subsequently performed using DNA Polymease I and RNase H. In the reaction buffer, dNTPs with dTTP were replaced by dUTP. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After denaturation of 3′ ends of DNA fragments, NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select CDNA fragments with right length, the library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was used with size-selected, adapter-ligated cDNA at 37°C for 15 min followed by 5 min at 95°C before PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer. At last, products were purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system. From these libraries, 150-bp paired-end and strand-specific sequence reads were produced with Illumina HiSeq X Ten System (Illumina, San Diego, CA). Then, paired-end reads were merged and filtered. After quality checking, the genome sequence during the Illumina HiSeq X Ten System was retrieved batch-wise from raw reads using the BWA Aligner. Reads with no overlap to the reference genome were discarded. The alignment results were then annotated against the KEGG and COG databases. The feature table, rooted phylogenetic tree, representative sequences and taxa were obtained by QIIME2 (v2.1.3). Significant correlations were indicated with an absolute Pearson’s correlation coefficient above 0.50 and a P-value under 0.05. After 28 days exposure of LDA, the beta diversity was calculated using Bray-Curtis distance and Weighted UniFrac distance by the R package VEGAN (V2.5-3) [23], respectively. Differences in beta diversity were identified using Analysis of Similarity (ANOSIM) and effect size was indicated by an R-value (between 0 and 1) with a value of 0 representing the null hypothesis [24], and PERMANOVA test leveraged by stress and effect size R2 between 0 and 1. Community structure difference based on beta diversity was visualized using principal coordinate analysis (PCoA) by R package ape and non-metric multi-dimensional scaling (NMDS) method by R package VEGAN. Significantly different biomarkers including p-value and genus levels were identified using STAMP (v2.1.3) [25]. Significant correlations were indicated with an absolute Pearson’s correlation coefficient above 0.50 and a P-value under 0.05. A self-developed Perl script was used to depict the links between genera and SCFAs with significant correlations. The co-occurrence networks were then visualized using Cytoscape 2.8.3. The PICRUSt was employed to predict community functional structure in our study [26], and the significantly different biomarkers including KEGG pathway and genes were identified by LEfSe [27], using selection criteria of alpha value for the factorial Kruskal-Wallis test of 0.05 and the linear discriminant analysis score of > 2.5. The statistical significance for all analysis was set as P = 0.05.

2.5. Validation of DEG expression by real-time PCR

2.6. RNA isolation, quantification, library preparation, sequencing and transcriptome analysis of intestinal tissues

Total RNAs of colon tissues were extracted by QIAGEN RNeasy Protect Animal Blood Kit (Qiagen, Germany). RNA degradation and contamination were monitored on 1% agarose gels. RNA purity was checked using the NanoPhotometer spectrophotometer (IMPLEN, CA, USA). The co-occurrence networks were then visualized using Cytoscape 2.8.3. The PICRUSt was employed to predict community functional structure in our study [26], and the significantly different biomarkers including KEGG pathway and genes were identified by LEfSe [27], using selection criteria of alpha value for the factorial Kruskal-Wallis test of 0.05 and the linear discriminant analysis score of > 2.5. The statistical significance for all analysis was set as P = 0.05.

2.5. Validation of DEG expression by real-time PCR

The total RNA was reversely transcribed by using PrimeScript RT reagent kit with gDNA Eraser (Takara). Real-time PCR reaction mixture (10 μl) included 2× Premix Ex TaqII (5 μl), ROX Reference Dye II (0.2 μl), the primers (2 μl) and cDNA (2.8 μl). Real-time PCR reactions were performed as follows: one cycle (42°C 5 min); one cycle (95°C 10 s); forty cycles (95°C 5 s, 60°C 34 s); one cycle (95°C 15 s, 60°C 1 min and 95°C 15 s). The standard curve of each gene was run in duplicate and three times for obtaining reliable amplification efficiency values. The correlation coefficients (r) of all the standard curves were 0.99, and the amplification efficiency values were between 90 and 110%. All RT-PCR target gene expression was normalized to the expression of β-actin and the relative quantification of gene expression was analyzed using the 2−ΔΔCt method. The sequences of primers, length of the products and GenBank accession were presented in Table S3.
3. Results

3.1. Growth performance and nutrients digestibility

After 4 weeks of treatment, the growth-promoting effect of LDA was observed, as indicated by the increased ADG ($P=0.026$) and ADFI ($P=0.001$). Meanwhile, the significantly increased nutrient digestibility such as DMD, ED, CPD and CFD (all $P<0.001$), but decreased DS value (0.41 vs. 0.64, $P<0.001$) were observed in the LDA group (Fig. 1a). In addition, the relative and absolute weights of kidney were increased in LDA groups (Supplementary file 3: Fig. S1).

3.2. SCFAs and SBCFAs

Regardless of LDA treatment, there were significantly higher ($P<0.001$) levels of SCFAs and SBCFAs, such as acetate, propionate, isobutyrate, butyrate, isovalerate and valerate in the content of colon than in ileum (Supplementary file 3: Fig. S2). A principal component analysis (PCA) on both SCFAs and SBCFAs showed the considerable divergence between CON and LDA-treated piglets, regardless of intestinal sections (Fig. 1b). Particularly, the concentrations of SCFAs including caproate, 2-methyl butyrate and 4-methyl valerate were significantly increased in the LDA group relative to CON group (two-sided independent t-test $P<0.05$, Fig. 1c).

3.3. Bacteria load and microbial diversity

To determine the effect of LDA on the gut microbiota, the total bacterial load was analyzed by qPCR for both ileum and colon contents. The significantly higher quantity of bacterial load was revealed in the colon content than in the ileum content (Supplementary file 3: Fig.S3). Relative to CON group, the LDA group had significantly reduced total bacterial load in ileum content (2.59×10^{11} vs. 8.85×10^{11} 16S rRNA copies per gram), but not in colon contents (4.42×10^{13} vs. 4.23×10^{13} 16S rRNA copies per gram). We then employed SSU rRNA amplicon sequencing to analyze their microbial diversity. After quality-filtering, 7,287,313 high quality reads were acquired from 56 samples, enabling an average coverage of more than 0.12 million effective reads for each sample with a standard deviation of 6180 reads (Supplementary file 1: Table S4). A total of 4214 features were then identified according to DADA2 algorithm using QIIME2 (Supplementary file 1: Table S5). Alpha diversity analysis was performed for each group to compare the species diversity within each microbial community. As the Shannon index and observed OTUs index box plots showed, the diversity of bacterial OTUs in colon content was significantly greater ($P<0.001$) than that in ileum content (Fig. 2a-b). However, no clear difference of alpha diversity was observed between the LDA and CON groups for either the colon or ileum content (Fig. 2a-b). Beta diversity analysis using both Nonmetric Multidimensional Scaling (NMDS) method, based on Bray-Curtis distance and Principal Coordinate Analysis (PCoA), as well as Weighted Unifrac distance of Features across samples, showing the significant shift of microbiota between ileum and colon contents (ANOSIM $R=0.642, P=0.001$; PERMANOVA $R^2=0.262, P=0.001$) (Fig. 2c-d). Similarly, beta diversity analysis showed the microbiota differences between colon and ileum content within group were more remarkable than that between LDA and CON group.

3.4. Bacterial abundance and functional implication

We examined the bacterial abundance at different taxonomic levels. The Firmicutes was the dominant phylum both in colon and ileum contents. However, the Bacteroidetes was dominant in colon, while Proteobacteria was dominant in ileum (Fig. 3a). At the genus level, most of the annotated features belonged to Lachnospiraceae spp., Lactobacillus, Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-002 and Clostridium_sensu_stricto_1 in colon, while the dominant genera were Clostridium_sensu_stricto_1, Actinobacteri, Escherichia-Shigella, Turicibacter and Lactobacillus in ileum (Supplementary file 3: Fig.S4). In the ileum content, the relative abundances at the genus level were less changed upon LDA exposure. The abundance of Sarcina was significantly decreased ($P=0.047$), whereas the abundance of Anaerovibrio was increased ($P=0.038$) in the ileum content of LDA group (Supplementary file 3: Fig.S5a). In contrast, the abundance of Firmicutes and Actinobacteria were significantly increased ($P=0.023$ & $P=0.006$, respectively), while the abundance of Bacteroidetes was decreased ($P<0.001$) in the colon content of LDA group in comparison with CON group (Supplementary file 3: Fig. S5b). Consequently, the Firmicutes/Bacteroidetes value (F/B index) was significantly increased ($P=0.009$) in colon content of LDA group (Fig. 3b). At the genus level, a total of 28 significantly different genera with average relative abundance >0.01% at least in one group was identified in the colon contents (Supplementary file 1: Table S6). Among these genera, 16 genera were significantly increased, while 12 genera were decreased (two-sided Welch’s t-test $P<0.05$) in the LDA group compared with CON group (Fig. 3c).

To further predict the functional changes of microbiota due to genera shifts upon LDA exposure, we then applied PICRUSt on our 16S rRNA data to compute the relative abundance of KEGG pathways. The enrichment of two level-2 KEGG pathways were significantly elevated upon LDA exposure (Fig. 3d, Supplementary file 3: Fig. S6a-b, Supplementary file 1: Table S7), including “carbohydrate metabolism” and “membrane transporters”. Among these pathways, the pathway of “membrane transporters” was comprised of three level-3 pathways (Supplementary file 1: Table S8), including the “phosphotransferase system (PTS)”, “ATP-binding cassette (ABC) transporters” and “transporters”. The 28 genera that were markedly changed in colon upon LDA exposure, the contribution degrees of Collinsella, Blautia, Faecalibacterium, Phascolarctobacterium and Eubacterium for the above pathways were profoundly improved (Fig. 3e).

3.5. Alteration of SCFAs production associates with gut microbiota shift

We further examined the correlation between microbiota abundance (Supplementary file 1: Table S9) and SCFAs production. As a result, the markedly changed SCFAs (2-methyl butyrate, 4-methyl valerate and caproate) in colon had significant correlations (absolute Pearson’s coefficients >0.50 and $P<0.05$) with the abundance of each genus (Fig. 4, Supplementary file 1: Tables S10/ S11). Both in the CoCA and CoCC group, all related genera (Prevotella_2, Lachnospiraceae_UCG-010, Lachnospiraceae_AC2044_group, Methanobrevibacter, et al.) were positively correlated with the three SCFAs. However, LDA exposure shifted the genera to highly correlate with the three SCFAs, as illustrated by the co-occurrence networks (Fig. 4). In the control group, the positively correlated genera were mainly comprised of Prevotellaceae, Saprochaetaeaceae and Methanobacteriaceae, whereas the genera of Prevotellaceae and Saprochaetaeaceae were not obviously correlated with those three SCFAs in the LDA group (Fig. 4b), probably due to their significant decrease of abundance upon LDA exposure. In contrast, the relative abundance of Methanobrevibacter was relatively increased upon LDA exposure (Fig. 4c) and the correlation between the Methanobrevibacter abundance and three SCFAs were strengthened from lowly positive to highly positive correlation (Fig. 4a-b). In addition, the positive correlation of Ruminococcaceae and Lachnospiraceae genera to SCFAs were strengthened upon LDA exposure, despite their abundances were not significantly changed. As indicated in the co-occurrence network (Fig. 4a-b), there were 11 genera positively correlating...
Fig. 1. The changes of host phenotype and SCFAs concentrations under LDA exposure. (a) The differential analysis of phenotype indexes using two-sided independent t-test method. ADG: average daily gain of body weight; ADFI: the average daily feed intake; DR: diarrhea rate; DMD: dry matter digestibility; ED: energy digestibility; CPD: crude protein digestibility; CFD: crude fatty digestibility. (b) Principal component analysis of four subgroups using all 9 SCFAs concentrations. (c) Boxplots showed the concentrations of three SCFAs (2-methyl butyrate, 4-methyl valerate and caproate) that were significantly different between LDA and CON groups either in the colon or the ileum contents. The P of two-sided independent t-test method was displayed, with *P<.05 stands for statistical significance. One-asterisks stands for P=.01 Double-asterisks stands for P=.001, while triple asterisks stand for P=.001. CoCC: Colon content of CON group; CoCA: Colon content of LDA group; ICC: Ileum content of CON group; ICA: Ileum content of LDA group.
with butyrate in LDA group, while only *Faecalibacterium, Butyricicoccus* and *Agathobacter* were positively correlating with butyrate in control group.

3.6 Gut microbiota shift and SCFAs alteration associate with colonic gene expressions

Considering the role of SCFAs on gene transcription, we further performed transcriptome analysis on the colonic tissues. We obtained 45.41 ± 7.89 million clean reads per sample, of which $76.65 \pm 5.19\%$ could be aligned to the pig reference genome (Supplementary file 1: Table S12). Fifty-two DEGs were identified (FC ≥ 2, $P < .05$), in which 49 were up-regulated upon LDA exposure (Supplementary file 1: Table S13). GO enrichment analysis indicated 16 DEGs were involved in biological process of "cell proliferation or normal development", "immune response", "nervous system". (Supplementary file 1: Table S14, Fig. 5a). In the "cell proliferation" category, the transcriptions of all enriched genes were significantly up-regulated upon LDA exposure, including *FGF18, TBX5, NR6A1* and *NRG1* (Fig. 5b). Five genes were involved in the "immune response" category, including up-regulated gene expressions of *CXCL10, BPI, C6* and *MX1*, and down-regulated gene expressions of *CD200*. In addition, we found the up-regulated genes in relation with neuron cells, including *FGF14, NRG1, NTRK2* and *EFNA5* (Fig. 5b). Multivariate Linear Fitting Model analysis was further performed across SCFAs, gut microbes and DEGs. As a result, acetate, propionate, butyrate and caproate showed complex

Fig. 2. Analysis of microbiota diversity in the ileum and colon contents between LDA and CON groups. (a) Alpha diversity analysis of all subgroups using Shannon index. (b) Alpha diversity analysis of all subgroups using observed OTUs index. (c) Beta diversity analysis of all subgroups using PCoA analysis based on Weighted UniFrac distance of Features. PERMANOVA test leveraged by stress and effect size R^2 between 0 and 1. (d) Beta diversity analysis of all subgroups using NMDS analysis based on Bray-Curtis distance of Features. Analysis of Similarity (ANOSIM) and effect size was indicated by an R-value (between -1 and $+1$, with a value of 0 representing the null hypothesis). The numbers between groups in (a) and (b) mean P value. CoCC: Colon content of CON group; CoCA: Colon content of LDA group; ICC: Ileum content of CON group; ICA: Ileum content of LDA group.
Fig. 3. LDA exposure altered the structure and function of the microbial community in colon content. (a) Stacked column chart on the relative abundance of microbial phylum in CoCC, CoCA, ICC and ICA subgroups. (b) Firmicutes/Bacteroidetes value (F/B index) between CoCC and CoCA subgroups. (c) Significantly different genera (two-sided Welch’s t-test P < 0.05) in the colon content between LDA and CON groups, based on SILVA database annotation. (d) LEfSe analysis using the abundances of the PICRUSt-predicted KEGG orthologs (KO) functions. The significant pathways were selected based on both the Kruskal-Wallis test (alpha value < 0.05) and the linear discriminant analysis score of greater than 2.5. (e) The stacked plot of relative abundance for contributing genera with functions enriched in the Phosphotransferase system (PTS), ABC transporters, Transporters and Carbohydrate Metabolism in the colon content for CoCC and CoCA subgroups. Double-asterisks stands for 0.001 < P < 0.01. CoCC: Colon content of CON group; CoCA: Colon content of LDA group.
Fig. 4. LDA exposure changed main contributors to the production of 2-methyl butyrate, 4-methyl valerate, caproate, acetate, propionate and butyrate in the colon content. (a) Co-occurrence network analysis between microbe genera and the SCFAs for the colon contents without LDA exposure. (b) Co-occurrence network analysis between microbe genera and the SCFAs for the colon contents with LDA exposure.
correlation networks with DEGs and gut microbes (Fig. 5c). Especially, caproate was positively correlated with two genera (*Fae
calibacterium* and *Allisonella*) and 4 DEGs (ZNF134, TBX5, NEU4 and SEMA6D), which were all significantly increased upon LDA exposure (Fig. 5c). A qPCR validation was then performed on the expression of 9 DEGs that also displayed significant correlation with the changed SCFAs and genera (Supplementary file 1: Table S15). Two genes (ZNF134 and NR6A1) were confirmed with significant up-regulation (P < 0.05), while the rest genes also showed the same tendency of increased expression upon antibiotics exposure (Supplementary file 1: Table S16).

4. Discussion

The early exposure to antibiotics has been shown to increase risk of overweight or obesity later in childhood [3,31,32], but the causal role of this exposure is not clear. We proposed that the changing intestinal microbiota by antibiotics may influence intestinal function and host metabolism and the related phenotypes. The growth-promoting effect of LDA in pig model mimics the similar consequences in human-being, in which infants grow faster with increasing risks of overweight or obesity when receiving antibiotics treatment in early life [33]. In this study, we did find the sub-therapeutic use of antibiotics markedly increased the food intake and growth rate of pigs. Furthermore, we found LDA markedly decreased the total bacterial load in ileum but not in colon, probably due to that the total bacterial load in the colon content is much higher than in the ileum content and LDA was not sufficient to change the absolute numbers of bacterial cells. Despite of that, although the bacterial load of ileum content was significantly reduced, neither SCFA production nor ileum gene expression (data not shown) was affected. In contrast, the altered structure of the colonic microbiota is associated with changes of the SCFA production and colonic gene expression. These results highlighted the significance of colon as a major organ for the nutritional effects of microbiota, as indicated by the markedly increased F/B index and the members of the *Firmicutes* and *Actinobacteria phyla* include species degrading the dietary carbohydrates [34,35]. Likewise, the increased *Methanosphaera* species in colon upon LDA exposure has been associated with obesity [36] and host energy extraction from indigestible polysaccharides [37], explaining the higher digestibility of DM in this study.

In addition, the increased abundances of *Bla
tia*, *Collinsella*, *Eubacterium*, *Fae
calibacterium* and *Phascolarctobacterium* in colon upon LDA exposure enhanced pathways such as “carbohydrate metabolism”, “phosphotransferase system (PTS)” and “ATP-binding cassette transporters”, based on the PICRUSt prediction on functional changes. PTS is related to the uptake and phosphorylation of multiform carbohydrates and involved in microbial degradation of carbohydrates in *Firmicutes* and *Actinobacteria*, enhancing cells to import simple sugars over carbohydrates [38]. Meanwhile, the ATP-binding cassette transporters were suggested to increase the transport of lipids and be overrepresented in obese children. These results implied LDA exposure induced the functional changes of microbiota for improving carbohydrates utilization and energy metabolism, and being beneficial for host growth. In addition, the role of gut microbiota in influencing host food intake has been proposed [39], in this study, the increased food intake by LDA exposure may also be related to the changing microbiota, particularly the decreased abundance of *Pre

tellaceae* upon LDA exposure has been shown to negatively correlate with ghrelin [40], a GIT neuropeptide acting on hypothalamic brain cells to increase appetite, gastric acid secretion and gastrointestinal motility [41].

As key bacterial metabolites by gut bacteria, SCFAs play crucial role in linking microbiota composition and various biological effects [12]. The quantitative correlation between microbiota abundance and SCFAs levels revealed the stronger correlation of *Ruminococcaceae*, *Lachnospiraceae* and *Methanobrevibacter*, less correlation of *Prevotella*, *Prevotella* and *Sphaerochaeta* with 2-methyl butyrate, 4-methyl valerate and caproate, which were significantly increased in the colon content of piglets upon LDA exposure. The members of *Ru
minococcaceae* are associated with fermenting indigestible polysaccharides into SCFAs, the increase in these taxa led to more calorie uptake through increasing the availability of SCFAs [40]. In addition, LDA exposure shifted more genera to be positively correlated to acetate, propionate and butyrate, including *Fae
calibacterium*, *Lachnospi
racea* group and *Clostridium* that are well-known SCFAs producing bacteria belonging to the *Firmicutes phylum* [42–44]. Therefore, the microbial community in colon contributing to SCFAs production was enriched upon LDA exposure.

Considering the crucial role of SCFAs in gut health and immunology [45,46], we further performed Multivariate Linear Fitting Model analysis among the altered SCFAs, gut microbiota and DEGs. Caproate, as one of the SCFAs in reducing pathogenic colonization in the gut [47], showed a complex correlation network with DEGs and gut microbiota. LDA exposure significantly up-regulated the immunity-related expressions of genes such as CCL110, BPI, C6 and MX1 for the host immunity [48,49] and antiviral effect [50,51], also genes (FGF14, FGF18, NRG1, TBX5, NR6A1, NTRK2 and ENF5) related to cell proliferation and nervous development. These results on transcription alteration indicate the LDA exposure influences the gut signaling and function, which could be ascribed to the shifting of microbiota structure and changes of fermentation metabolites in the colon caused by LDA, interacting with local tissue and cell functions.

In summary, the growth-promoting effect of LDA exposure in early life could be related to the increasing food intake and digestibility of nutrients, which are associated with microbiota shifts for SCFA production and better energy utilization, as well as host–microbe interactions. These findings reveal the potential mechanism on the risk of childhood overweight caused by antibiotic exposure in early life.

Acknowledgements

This work is funded by Central Public-interest Scientific Institution Basal Research Fund (No. Y2017JC26), the Agricultural Science and Technology Innovation Program Cooperation and Innovation Mission (CAAS-XTCX2016), Fundamental Research Funds for Central Non-Profit Scientific Institution (No. Y2017JC26) and the National Key Research and Development Program of China (grant number 2016YFD0501204).

Data Availability Statements

The datasets generated and analyzed during the current study are available in the NCBI Sequence Read Archive (SRA) repository. The 16S SCFAs for the colon contents with LDA exposure. Circle nodes represent microbe genera and diamond nodes denote SCFAs. Each co-occurring pair between genus and SCFAs had an absolute Pearson correlation above 0.50 [blue thin line indicates general positive correlation (0.50 ≤ R < 0.70); blue thick line indicates strong positive correlation (R = 0.70); red thin line indicates general negative correlation (−0.7 ≤ R < −0.50)] with a significance level under 0.05. Circles with distinct color represent the genera from the different families. Edge lines with distinct color are in direct proportion to the direction of correlation (red means negative correlation–NC; blue means positive correlation–PC). The width of edge line represents the strength of correlation. (c) The relative abundances of related genera between CoCC and CoCA. Asterisk stands for statistical significance (P < 0.05). CoCC: Colon content of CON group; CoCA: Colon content of LDA group.
rRNA amplicon data is linked to SRP118553, accession numbers SRR6058541, SRR6058555, SRR6058585-SRR6058593, SRR6058597, SRR6058602-SRR6058603, SRR6058605-SRR6058608, SRR6058610, SRR6058624, SRR6058626, SRR6058628, SRR6058631-SRR6058639, SRR6058641-SRR6058646, SRR6058653- SRR6058671. The strand-specific RNA-seq data is linked to accession numbers SRR6746572 -SRR6746582.

Declarations

Ethics approval and consent to participate

All animal work of this study was approved by the Sichuan Agricultural University animal welfare committee and carried out in accordance with the National Research Council's Guide for the Care and Use of Laboratory Animals.

Authors' contributions

FG, LC, DC, DW and QH designed the study; RW, ZF, YL, SX and BF collected samples and performed animal experiments; CL performed qPCR experiment; QH, DZ, YZ, RW and GX processed and analyzed data; QH, FG and LC interpreted data and wrote the manuscript. All authors approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Appendix A. Supplementary data

The Supplementary material for this article can be found at the Journal of Nutritional Biochemistry website. Supplementary data to this article can be found online at https://doi.org/10.1016/j.jnubio.2019.108246.

References

[34] Sangild PT. Gut responses to enteral nutrition in preterm infants and animals Exp Biol med (Maywood), 231 (2006), pp; 1695-1711.