A 3D Intraoral Scanner Prototype Used for Caries Detection

Michou, Stavroula; Benetti, Ana Raquel; Vannahme, Christoph; Ekstrand, Kim

Publication date: 2019

Citation for published version (APA):
A 3D Intraoral Scanner Prototype Used for Caries Detection

Objectives: This study aimed to assess the in vitro performance of a 3D intraoral scanner prototype to detect occlusal caries lesions compared to DIAGNOdent and histological analysis as reference test.

Methods: Freshly extracted permanent posterior teeth (n = 34) were assessed visually and 151 sites (79 carious, 72 sound) on the occlusal surfaces were chosen for examination. The teeth were scanned with an intraoral scanner (prototype based on 3Shape TRIOS intraoral scanner, not commercially available) which emits blue light. A texture representing the fluorescent signal from the tissue was mapped onto the 3D models using specific software. Red (R) and Green (G) color components from the selected sites on the teeth were used to calculate a caries classification function f(R, G). Measurements using DIAGNOdent pen 2190 (KaVo Dental, Germany) were taken on the same selected sites. Histological analysis was conducted independently for each site by applying the following scale: D0, sound; D1, enamel lesion; D2, lesion into 1/3 of dentin; D3, lesion into 2/3 of dentin; D4, lesion into 3/3 of dentin. Sensitivity (SE), Specificity (SP) and area under the ROC curve (Az) were assessed for the different histological levels. For the intraoral scanner system, the optimal cut-off values were used, while for DIAGNOdent, the cut-off values suggested by the manufacturer.

Results: The intraoral scanner system showed SE, SP above 0.73 and Az > 0.85 for the histological levels D1 – D3. DIAGNOdent resulted in similar values for levels D1 and D2; level D3 was not assessed as no cut-off for this histological level was provided by the manufacturer. No SE, SP and Az were calculated for D4 level due to a limited number of lesions.

Conclusions: In conclusion, the two methods showed comparable in vitro performance with high SE, SP and Az measures for detection of caries lesions at different stages. Further studies with larger sample size, in particular for dentin lesions, are needed to establish and validate definite cut-offs for the intraoral scanner system.

Division: IADR/AADR/CADR General Session
Meeting: 2019 IADR/AADR/CADR General Session (Vancouver, BC, Canada)
Location: Vancouver, BC, Canada
Year: 2019
Final Presentation
ID: 2899

Authors
◦ Michou, Stavroula (University of Copenhagen, Copenhagen N, Copenhagen N, Denmark)
◦ Benetti, Ana (University of Copenhagen, Copenhagen N, Copenhagen N, Denmark)
◦ Vannahme, Christoph (3Shape TRIOS A/S, Copenhagen, Copenhagen, Denmark)
◦ Ekstrand, Kim (University of Copenhagen, Copenhagen N, Copenhagen N, Denmark)

Support Funding Agency/Grant Number: Innovation Fund Denmark (no. 8053-00005B) and 3Shape TRIOS A/S, Denmark

Financial Interest Disclosure: This project is supported by Innovation Fund Denmark (no. 8053-00005B). Stavroula Michou’s salary is partly covered by 3Shape TRIOS A/S, Denmark according to an industrial PhD agreement with the University of Copenhagen. Christoph Vannahme is employed at

SESSION INFORMATION
Oral Session
Keynote Address; Detection, Risk Assessment & Others I
Saturday, 06/22/2019, 08:00AM - 09:30AM