Synthesis, Radiolabeling, and in Vitro and in Vivo Evaluation of \(^{18}\text{F}\)ENL30: A Potential PET Radiotracer for the 5-HT\(_7\) Receptor

Elina Tampio L’Estrade, Fraser G. Edgar, Mengfei Xiong, Vladimir Shalgunov, Simone L. Baerentzen, Maria Erlandsson, Tomas G. Ohlsson, Mikael Palner, Gitte M. Knudsen, and Matthias M. Herth

INTRODUCTION

The serotonergic system with its neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is widely spread throughout the brain and modulates a variety of psychological and behavioral functions and disorders.\(^1,2\) In 1993, the 5-HT\(_7\) receptor (5-HT\(_7\)-R) was identified and became the most recent member to be added to the serotonin receptor family.\(^3-5\) The 5-HT\(_7\)-R is a G-protein-coupled receptor, positively coupled to adenylate cyclase, with activation leading to the production of cyclic adenosine monophosphate, which in turn is involved in a broad spectrum of secondary cell activation pathways.\(^2-4\) The 5-HT\(_7\)-R is abundant in the central nervous system (CNS) with the highest concentrations in thalamus (tha), hypothalamus, hippocampus, and cortex (see Table S1, Supporting Information, for further details).\(^5-10\) Preclinical studies with, e.g., 5-HT\(_7\)-R knockout mice, have associated this receptor with CNS disorders such as depression, anxiety, and schizophrenia.\(^1,11-16\) Currently, there is no clinical imaging radiotracer available to study the 5-HT\(_7\)-R in vivo.\(^1,17\) Access to such a radiotracer would enable the study of the receptor’s physiological function and its involvement in various CNS diseases. Furthermore, since the 5-HT\(_7\)-R displays the highest affinity toward serotonin of all serotonergic receptors, 5-HT\(_7\)-R neuroimaging could be a valuable tool in determining changes in the concentration of 5-HT in the synaptic cleft.\(^1\) This could significantly improve our understanding of the involvement of endogenous 5-HT in brain disorders\(^19\) and potentially provide a path for new treatment options.

Positron emission tomography (PET) is a nuclear medicine molecular imaging technique that can be used to visualize and quantify receptor physiology in vivo.\(^20-22\) Consequently, a PET tracer for the 5-HT\(_7\)-R would allow the study of this receptor system in vivo and address the aforementioned research questions. Several groups, including ours, have over the years attempted to develop a 5-HT\(_7\)-R radiotracer, although so far with limited success.\(^9,23-29\) For example, PET tracers evaluated in pigs or cats with promising outcomes, such as \(^{18}\text{F}\)2FP3 or \(^{11}\text{C}\)Cimbi-717 (Figure 1), did not produce a specific signal in nonhuman primates.\(^10,30\) Other tracers failed at even earlier evaluation stages.\(^26,28,29\)

ABSTRACT: The 5-HT\(_7\)- receptor (5-HT\(_7\)-R) is involved in a broad range of physiological conditions and disorders. Currently, there is no validated clinical positron emission tomography (PET) tracer available; however, we have recently developed a promising \(^{11}\text{C}\)-labeled candidate. In this project, we aimed to further extend our efforts and develop an \(^{18}\text{F}\)-labeled derivative, coined \(^{18}\text{F}\)ENL30. Fluorine-18 has several advantages over carbon-11 especially within the preclinical phase, where a long half-life usually increases evaluation throughput. ENL30 was successfully synthesized in a low albeit sufficient overall yield. Radiolabeling succeeded with a radiochemical yield of approximately 4.5%. Subsequent preclinical PET studies revealed that \(^{18}\text{F}\)ENL30 binds specifically to the 5-HT\(_7\)-R but suffered from affinity to \(\sigma\)-receptors. Additionally, we identified \(^{18}\text{F}\)ENL30 to be a \(P\)-gp substrate in rats. However, we believe that \(^{18}\text{F}\)ENL30 may prove to be valuable in higher species that exhibit decreased \(P\)-gp dependency. If required, \(\sigma\)-receptor binding could, in such studies, be selectively blocked potentially allowing for selective 5-HT\(_7\)-R imaging.

Supporting Information

Received: February 12, 2019
Accepted: April 12, 2019
Published: April 23, 2019
Our group has recently developed an O-methylated carbon-11-labeled derivative of the highly selective 5-HT7R antagonist SB-269970 (Figure 1). This tracer ([11C]Cimbi-701) has shown promising results in pigs, prompting us to extend this work and develop an 18F-labeled analogue. Fluorine-18 has several advantages over carbon-11 in respect to clinical translation and also preclinical work in rodents. Namely, the use of fluorine-18 can result in higher spatial resolution.

Figure 1. Schematic overview of previously evaluated PET tracers for the S-HT7R and the structure of the new potential PET tracer presented in this work, [18F]ENL30.30,31

Scheme 1. Synthetic Overview of ENL30 (15)

(A) The synthesis of (R)-4-methyl-1-(2-(pyrrolidin-2-yl)ethyl)piperidine (10), (B) its sulfonyl chloride coupling partner (14) and the final coupling to form the sulfonamide product 15 (right). Reagents and conditions: (a) (Boc)₂O, triethylamine (TEA), MeOH, Δ, 0.5 h; (b) p-TosCl, Py, dichloromethane (DCM), 0 °C—room temperature (rt), overnight; (c) potassium cyanide (KCN), dimethyl sulfoxide (DMSO), 90 °C, 4 h; (d) HCl (35%), AcOH, Δ, 6 h; (e) (Boc)₂O, NaOH (2 M), acetone, 0 °C—rt, 2.5 h; (f) borane—tetrahydrofuran (THF), THF, rt, ON; (g) (i) MeCl, Py, DCM, 0 °C—rt, 2 h; (ii) 4-methylpiperidine, acetonitrile (ACN), rt—50 °C, ON; (h) trifluoroacetic acid (TFA)/DCM (1:1), rt, 0.5 h. (i) BnBr, NaOH, MeOH, H₂O, AcOH, ON; (j) 1-bromo-2-fluoroethane, NaH, dimethylformamide (DMF), 0—60 °C, 20 h; (k) 1,3-dichloro-5,5-dimethylhydantoin, ACN, AcOH, H₂O, 0 °C, 5 h. (l) Et₂O, NaOH, 0 °C—rt, ON.
Moreover, the longer half-life of fluorine-18 (109 vs 20.4 min) ease the use for multiple evaluation experiments with a single production.11

RESULTS AND DISCUSSION

A common strategy to convert a carbon-11 tracer into a fluorine-18 analogue is to exchange a methoxy functional group for a fluorothoxy moiety. [18F]MH.MZ is one of the many examples where this strategy has been successfully applied.32–34 This attractive approach is not thought to drastically impact the pharmacological behavior of the tracer due to similar electronic, inductive, and spatial properties of the two moieties.35 In light of that, we were inspired to apply this approach to [11C]Cimbi-701 and develop an 18F-labeled derivative ([18F]ENL30). The reference compound ENL30 (15) was synthesized in a way similar to a previously reported synthesis strategy that was applied to a phenolic analogue (Scheme 1).31,35,36

A key intermediate for this synthesis route is (R)-4-methyl-1-(2-(pyrrolidin-2-yl)ethyl)piperidine (10), which we initially tried to synthesize with a procedure described by Lovell et al.35 However, the necessary intermediate tert-butyl-2-(((methylsulfonyl)oxy)methyl)pyrrolidine-1-carboxylate (3) and its subsequent transformation suffered from poor yields (Tables 1 and 2). As such, other leaving groups and reaction conditions were employed. The use of tosyl chloride and pyridine in DCM resulted in sufficient yields of the tosylate (4), which could then be satisfactorily transformed to the nitrile (5) in DMSO. This led to an optimized and satisfying yield of approximately 63% over those two steps (Tables 1 and 2).31,35,36

In the next step, radiolabeling of [18F]ENL30 ([18F]15) was attempted applying a two-step labeling procedure starting from the commercially available precursor SB-269970 (3-([(2R)-2-[2-(4-methyl-1-piperidinyl)ethyl]-1-pyrrolidinyl]sulfonyl)-phenol, monohydrochloride) and the routinely produced synthon, 2-[18F]fluoroethyl tosylate ([18F]FETos). Using this strategy, [18F]15 could successfully be radiolabeled in a radiochemical yield (RCY) ranging between 1.2 and 15% (decay corrected, n = 8), with satisfactory molar activities [108–197 GBq/µmol (n = 3)] and radiochemical purities of >98% (Scheme 2). The total synthesis time including separation and formulation took less than 180 min. A maximum amount of 0.9 GBq was isolated using this approach. Importantly, it was necessary to form the phenolate before starting the labeling procedure. Adding the base 40 min prior to initiating the reaction at 100 °C resulted in the highest RCY.

Encouraged by these results, we performed autoradiographic studies on coronal rat brain slices, containing thalamus, a high 5-HT-R density region (Figure 2a–c).6–10 These studies were conducted to determine the affinity and selectivity of [18F]15 toward the 5-HT-R. A Kᵣᵢ,D₂ of 0.75 ± 0.5 nM for the 5-HT-R could be determined in a saturation assay (Figure 2d). Recently, a close analogues of [18F]15 displayed affinity toward σ-receptors when subjected to competition assays, so we decided to evaluate the selectivity of [18F]15 toward these receptors by performing autoradiographic blocking studies with the 5-HT-R selective antagonist SB-269970 (Kᵣᵢ,D₁ = 1.26 nM, Kᵣᵢ,D₂ = 32 nM, and Kᵣᵢ,D₃ = 158 nM)31,41 as well as with haloperidol as a σ-receptor-blocking agent (Kᵣᵢ,D₁ = 2 nM, Kᵣᵢ,D₂ = 4 nM, Kᵣᵢ,D₃ = 14 nM, Kᵣᵢ,D₄ = 1 nM, Kᵣᵢ,D₅ = 15 nM, Kᵣᵢ,D₆ = 70 nM, and Kᵣᵢ,D₇ = 780 nM).42–44 The results are displayed in Figure 2e. We found a dose-dependent blocking with both ligands, 13% blockage using a 50 nM solution of SB-269970 and 10.5% blockage using a 50 nM solution of

Table 1. Incorporation of a Suitable Leaving Group

<table>
<thead>
<tr>
<th>Leaving group (LG)</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMe</td>
<td>THF</td>
<td>rt</td>
<td>2</td>
<td>29.6</td>
</tr>
<tr>
<td>OMe</td>
<td>DCM</td>
<td>cat. DMAP</td>
<td>rt</td>
<td>17.8</td>
</tr>
<tr>
<td>OTos</td>
<td>DCM</td>
<td>TEA, pyridine</td>
<td>rt overnight</td>
<td>76.8</td>
</tr>
</tbody>
</table>

Table 2. Optimization of Nitrile Introduction

<table>
<thead>
<tr>
<th>Leaving group (LG)</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>XCN yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMe</td>
<td>DCM</td>
<td>100</td>
<td>6</td>
<td>NaCN 33.4</td>
</tr>
<tr>
<td>OMe</td>
<td>EtOH</td>
<td>reflux overnight</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>OTos</td>
<td>DMSO</td>
<td>90</td>
<td>4</td>
<td>KCN 81.9</td>
</tr>
</tbody>
</table>
higher species. Motivated by this, we investigated whether brain uptake by the rat brain, they have su

transporter substrates. Although these tracers showed poor well-established PET tracers are

Keeping that in mind, we started to evaluate another o

determinable in vitro, even though more lipophilic tracers tend to have higher nonspecific binding. Target affinity, off-target binding, and \(B_{\text{max}} \) values can be determined in binding assays and have to be evaluated in respect to \(B_{\text{max}} \) over \(K_D \), and their according theoretical, observed binding ratios of the target to another off-target (tB target/off-target). Values more than 5 are considered suitable in these calculations. For 15, these values are of concern for the tB-S-HT,R/-receptors even in high S-HT,R density areas. This is because 15 displays a specific \(\sigma \)-receptor binding component (Figure 2) and \(\sigma \)-receptors are 5-fold more prevalent than the S-HT,Rs in the highest binding region (thalamus). Therefore, a specific \(\sigma \)-receptor block may be needed to enable selective S-HT,R imaging with [\(^{18}\)F]15. Keeping that in mind, we started to evaluate [\(^{18}\)F]15 in PET experiments.

At first, in vivo evaluation in rats was performed at baseline conditions (Figure 3a,e,f); however, only low brain uptake was observed. Sylvånen et al. showed in 2009 that in rodents several well-established PET tracers are \(P \)-glycoprotein (\(P \)-gp) efflux transporter substrates. Although these tracers showed poor brain uptake by the rat brain, they have sufficient brain uptake in higher species. Motivated by this, we investigated whether [\(^{18}\)F]15 is also a \(P \)-gp transporter substrate to potentially explain the low brain uptake. Inhibition of the \(P \)-gp efflux transporter with elacridar\(^\text{19} \) led to increased brain uptake (Figure 3b,e,f), and thus [\(^{18}\)F]15 was confirmed to be a \(P \)-gp efflux transporter substrate in rats. Next, we tested whether the uptake of [\(^{18}\)F]15 in the brain after \(P \)-gp inhibition represented specific binding to the S-HT,R. Brain distribution of [\(^{18}\)F]15 was imaged in rats that were injected with elacridar and a specific S-HT,R antagonist: the highly S-HT,R-selective SB-269970\(^\text{11} \) or the structurally different antagonist Cimbi-717.\(^\text{7} \) Thalamus (tha) and cerebellum (cb) were chosen as the brain regions of interest due to the high abundance of S-HT,R in thalamus and the low abundance in cerebellum.\(^\text{6-9} \) We found that both compounds reduced the area under the time-activity curves (TACs) (SB-269970: tha = 21.6%, cb = 25.5%; Cimbi-717: tha = 38.5%, cb = 35.9%) (Figure 3c-g). The reduction in the thalamus was expected since this is a high S-HT,R density region. However, the reduction in the cerebellum was to a certain degree unexpected since it is a low S-HT,R density region.\(^\text{6-9} \) Off-target binding of [\(^{18}\)F]15 could explain this observation and since [\(^{18}\)F]15 displayed \(\sigma \)-receptor affinity, we investigated whether \(\sigma \)-receptor binding contributed to the observed PET signal. For this purpose, we imaged [\(^{18}\)F]15 distribution in rat brain under \(P \)-gp inhibition with elacridar and sigma receptor blockade with either the subtype-unselective \(\sigma \)-receptor antagonist haloperidol (1 mg/kg) or the \(\sigma - 1 \) selective antagonist SA4503 (1.5 mg/kg).\(^\text{55} \) We saw a reduction in the area under the time-activity curves in thalamus and cerebellum both with haloperidol (Figure 3f,g, tha = 24.1% and cb = 16.2%) and with SA4503 (Figure 3g, tha = 13.5% and cb = 12.7%). Accordingly, we conclude that in rats the observed PET signal stems from both S-HT,R and \(\sigma \)-receptor affinities. This could explain the larger reduction in the PET signal seen in thalamus after pretreatment with Cimbi-717 compared to SB-269970 since Cimbi-717 also displays high affinity for the \(\sigma \)-receptors. A biodistribution study was conducted, concluding that the major excretion pathway was through the kidneys in both situations and with the major difference of distribution seen in brain uptake (Table 3). Full time-activity curves can be found in the Supporting Information (Figure S2).
CONCLUSIONS

18F]ENL30 (18F]15) was successfully synthesized using a convergent synthesis method. In rat brain slices in vitro, 18F]15 showed low nanomolar affinity toward 5-HT$_7$R ($K_D = 0.75$ nM). In vivo 18F]15 displayed specific binding to 5-HT$_7$R but also to σ-receptors. To which extent this will translate into higher species will need to be determined, but it is likely that the P-gp dependency of 18F]15 will present less of a problem. Even if the in vivo PET signal of 18F]15 also turns out to represent specific binding to σ-receptors in higher species, specific blocking of σ-receptors could potentially enable PET imaging of the 5-HT$_7$-R system.

EXPERIMENTAL SECTION

General Information. Solvents and reagents were purchased from Sigma-Aldrich (Merck, Darmstadt, Germany) or Thermo Fisher Scientific and used as received unless otherwise noted. The precursors for the radiosynthesis, ethylene di(p-toluenesulphonate) (Merck, Darmstadt, Germany) and SB-269970 (Tocris Bioscience, Abingdon, U.K.), were commercially available.

Table 3. Biodistribution of 18F]ENL30 in Female Long-Evans Rats (% ID/mL)a

<table>
<thead>
<tr>
<th>organ</th>
<th>5 min</th>
<th>20 min</th>
<th>40 min</th>
<th>60 min</th>
<th>120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>liver</td>
<td>0.72 ± 0.15</td>
<td>0.43 ± 0.07</td>
<td>0.39 ± 0.05</td>
<td>0.36 ± 0.04</td>
<td>0.39 ± 0.03</td>
</tr>
<tr>
<td>kidneys</td>
<td>1.76 ± 0.17</td>
<td>1.24 ± 0.15</td>
<td>1.04 ± 0.15</td>
<td>0.96 ± 0.15</td>
<td>0.82 ± 0.15</td>
</tr>
<tr>
<td>bladder</td>
<td>0.49 ± 0.14</td>
<td>1.43 ± 0.48</td>
<td>1.89 ± 0.06</td>
<td>1.81 ± 0.22</td>
<td>2.00 ± 0.45</td>
</tr>
<tr>
<td>brain (baseline)</td>
<td>0.21 ± 0.02</td>
<td>0.21 ± 0.02</td>
<td>0.22 ± 0.02</td>
<td>0.23 ± 0.02</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>brain (elacridar)</td>
<td>0.90 ± 0.31</td>
<td>0.78 ± 0.29</td>
<td>0.68 ± 0.25</td>
<td>0.62 ± 0.21</td>
<td>0.56 ± 0.16</td>
</tr>
</tbody>
</table>

aData are presented as the mean ± standard deviation of four animals at 5, 20, 40, 60, and 120 min after intravenous injection of 18F]ENL30.

Figure 3. Results from the in vivo evaluation of 18F]15 in rats. Horizontal PET images of 18F]15 evaluated in rats (a–d); all summed images are from 5 to 120 min of a dynamic scan obtained in a high-resolution research tomography (HRRT) scanner. (a) Summed PET image of 18F]15 at baseline. (b) Summed PET image of 18F]15 after pretreatment with elacridar (5 mg/kg). (c) Summed PET image of 18F]15 after pretreatment with elacridar (5 mg/kg) and SB-269970 (3 mg/kg). (d) Summed PET image of 18F]15 after pretreatment with elacridar (5 mg/kg) and Cimbi-717 (3 mg/kg). Time-activity curves (TACs) from PET evaluation of 18F]15 in rats (e, f). (e) Thalamus (Tha) TACs of 18F]15 in the baseline condition, after pretreatment with elacridar (5 mg/kg). (f) Thalamus (Tha) TACs of 18F]15 after pretreatment with elacridar (5 mg/kg), both elacridar (5 mg/kg) and SB-269970 (3 mg/kg) and elacridar (5 mg/kg) and haloperidol (1 mg/kg). (g) Calculated area under the curve (AUC) for all TACs displayed as a grouped barplot also indicating percentage AUC reduction above the blocking agent bars. All TACs are normalized to injected radioactivity and animal weight to generate the standard uptake value (SUV). Used dose for SA4503 experiments was 1.5 mg/kg.
NMR (1H, 13C) spectra were recorded on a 600 MHz Bruker Avance III HD or a 400 MHz Bruker Avance II at room temperature. Chemical shift (δ) is expressed in parts per million and referenced to the residual solvent peak. The resonance multiplicity is abbreviated as follows or combinations thereof: s (singlet), d (doublet), t (triplet), p (quintet), and m (multiplet). The analysis of the NMR spectra was performed using the software MestReNova v12.0.0 (Mestrelab Research S.L.). Thin-layer chromatography (TLC) was run on silica-plated aluminum sheets (Silica gel 60 F254) from Merck. The spots were visualized by ultraviolet light at 254 nm, and the fraction of radioactivity on the TLC plates was measured with an instrument from Packard. Flash column chromatography was carried out manually on silica gel 60 (0.040–0.063 mm). Analytical high-performance liquid chromatography (HPLC) was performed on a Dionex system consisting of a P680A pump, a UV/Vis detector, and a Scansys radiodetector. The HPLC system was controlled by Chromleon 6.8 software.

Synthesis of ENL30 (15). The reference compound ENL30 ((R)-1-(2-((3-(fluoroethoxy)phenyl)sulfonyl)pyrrolidin-2-yl)-ethyl)-4-methylpiperidine (15) was synthesized by a multistep reaction with the final step being the deprotection of tert-butyl-(R)-2-((4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-carboxylate (8) to (R)-4-methyl-1-((2-(pyrrolidine-2-yl)ethyl)-4-methylpiperidine (9) and subsequent coupling with its sulfonyl chloride coupling partner 3-(2-fluoroethoxy)benzenesulfonyl chloride (13). (8) see the Supporting Information. The synthesis of (13) and the final reaction step are described below.

3-(Benzyllthio)phenol (12). Benzyl bromide (0.52 mL, 4.4 mmol) was added to a solution of 3-mercaptophenol (0.4 mL, 3.96 mmol) and sodium hydroxide (175.9 mg, 4.4 mmol) in methanol (10 mL). The mixture was stirred overnight at room temperature and was then diluted with water (20 mL) and acetic acid (10 mL). The resultant mixture was then concentrated to remove organic solvents. Also, the resultant precipitate was collected by filtration and washed with water to yield the pure product (558.1 mg, 58.6%). 1H NMR (400 MHz, methanol-d4) δ 7.35–7.20 (m, 5H), 7.07 (t, J = 7.7 Hz, 1H), 6.82–6.77 (m, 2H), 6.66 (dd, J = 8.1, 2.3, 1.0 Hz, 1H), 4.14 (s, 2H). Figure S21. Rf = 0.78 (73:Hept/EtOAc).

Benzyl(3-(2-fluoroethoxy)phenyl)sulfane (13). To a solution of sodium hydride (61.89 mg, 2.58 mmol) in anhydrous DMF (10 mL) under a nitrogen atmosphere was added a solution of 12 (558.1 mg, 2.58 mmol) in anhydrous DMF (7 mL) under cooling at 0 °C. The solution was allowed to stir for 30 min, after which, with the solution still at 0 °C, 1-bromo-2-fluoroethane (0.2 mL, 2.58 mmol) was slowly added. The mixture was stirred for a further 20 h at 0 °C. Then, the solvent was removed in vacuo. The residue was then redissolved in ethyl acetate, washed with water and brine, dried over MgSO4 and concentrated. The crude product was then purified by flash chromatography (125.4 mg, 18.6%). 1H NMR (400 MHz, methanol-d4) δ 7.36–7.22 (m, 5H), 7.19 (t, J = 8.0 Hz, 1H), 6.94 (dd, J = 7.8, 1.8, 0.9 Hz, 1H), 6.89 (dd, J = 2.5, 1.7 Hz, 1H), 6.79 (dd, J = 8.3, 2.5, 0.9 Hz, 1H), 4.78–4.73 (m, 1H), 4.66–4.61 (m, 1H), 4.20–4.17 (m, 1H), 4.16 (s, 2H), 4.13–4.10 (m, 1H). Figure S22. Rf = 0.51 (73:Hept/EtOAc).

3-(2-Fluoroethoxy)benzenesulfonyl Chloride (14). To an ice-cold solution of 13 (125.4 mg, 0.36 mmol) in a mixture of acetonitrile (3.6 mL), water (0.1 mL), and acetic acid (0.15 mL), 2,4-dichloro-5,5-dimethylhydantoin (141.8 mg, 0.72 mmol) was added portion wise. The reaction mixture was stirred at 0 °C while monitoring the consumption of starting material by TLC. Upon consumption of the starting material, the solution was concentrated to near dryness in vacuo. The crude product was then diluted with DCM (4.5 mL), and the solution was cooled once more to 0 °C. The solution was then diluted further with an aqueous 5% NaHCO3 solution. The mixture was stirred for a further 15 min. The lower organic layer was then washed with an aqueous 10% brine solution, and the resultant organic layer was dried over MgSO4 and concentrated in vacuo to give an acceptably pure product (125.4 mg, 0.36 mmol) while still at 0 °C. No-carrier-added aqueous Na2HCO3 (3 × 5 mL) and then saturated aqueous NaHCO3 (3 × 5 mL) and then saturated aqueous Na2HCO3 (3 × 5 mL). 1H NMR (600 MHz, chloroform-d) δ 7.45–7.43 (m, 2H), 7.37–7.36 (m, 1H), 7.15 (td, J = 4.5, 2.6 Hz, 1H), 4.84–4.81 (m, 1H), 4.74 (dd, J = 4.7, 3.5 Hz, 1H), 4.30 (td, J = 3.5, 1.2 Hz, 1H), 4.27–4.24 (m, 1H), 3.73 (p, J = 6.7 Hz, 1H), 3.40 (dd, J = 10.5, 7.2, 4.7 Hz, 1H), 3.19 (dt, J = 10.5, 7.3 Hz, 1H), 3.15–2.98 (m, 2H), 2.26–2.18 (m, 1H), 2.12–1.98 (m, 2H), 1.84–1.48 (m, 5H), 1.46–1.18 (m, 6H), 0.95 (d, J = 6.2 Hz, 3H). 13C NMR (151 MHz, chloroform-d) δ 158.90, 130.42, 128.89, 128.03, 120.44, 119.64, 113.26, 82.40, 81.26, 77.37, 67.65, 49.09, 43.96, 31.09, 29.85, 24.19, 14.27. Figures S25 and S26. HPLC [Luna, 5 μm, 250 × 22 mm; 0.1% TFA in acetonitrile/water (10:90) over 15 min; 2 mL/min–r = 6.7 mm].

Radiochemistry. Production of Fluoride-18. [18F]Fluoride was produced via the (p,n) reaction in a cyclotron (CTI Siemens and Scanditronix, Rigshospitalet, Denmark) by irradiating [18O]H2O with a 11 MeV proton beam.

Radiosynthesis of [18F]ENL30 ([18F]FETos). The radiosynthesis of [18F]ENL30 ([18F]FETos), which thereafter was used to [18F]fluoroalkylate the commercially available precursor SB-269970, as shown in Scheme 1. No-carrier-added aqueous 18F-fluoride from the target was collected at a nonconditioned, activated (10 mL ethanol, 20 mL water, and dried with air) QMA anion-exchange cartridge (Sep-Pak Accell Plus QMA Plus Light, chloride form, Waters). A solution of 20 mg of 1,10-diaza-4,7,13,16,21,24-hexaazacyclononae[8.8.8]hexacosane (Kryptofix-222) and 3.3 mg of K2CO3 in 0.65 mL of 97% aqueous methanol was used to elute the [18F]fluoride off the cartridge. The elute was thereafter
dried by evaporation at first 110 °C under nitrogen and then dried twice again with 1 mL of acetonitrile; during the last step, the temperature was lowered to 80 °C. To the dried Kryptofix-222/[18F]fluoride complex, 4 mg (0.011 mmol) of the precursor ethylene di(p-toluenesulfonate), dissolved in 1 mL of MeCN, was added, and the mixture was further heated for 3 min.

[18F]FETos was isolated using semipreparative HPLC [Luna 5 μm C-18(2) 100 Å column (Phenomenex Inc. 250 × 10 mm), H2O/MeCN (40:60), at a flow rate of 6 mL/min]. The retention times were 330 s for [18F]FETos and 150 s for ethylene di(p-toluenesulfonate). The HPLC fraction containing the [18F]FETos was thereafter diluted with water (60 mL), and the product was loaded on a Sep-Pak C-18 Plus Short Cartridge, Waters. The cartridge was dried with nitrogen before the [18F]FETos was eluted off with 1 mL of DMSO into a vial containing 3 mg of SB-269970 (0.008 mmol) and 5 μL of NaOH 2N, dissolved in 300 μL of DMSO and preheated at 100 °C for the start of synthesis (40 min). The reaction mixture was further heated at 100 °C for 25 min before the final isolation of [18F]FETos, using semipreparative HPLC [Luna 5 μm C-18(2) 100 Å column (Phenomenex Inc. 250 × 10 mm), EtOH/0.1% phosphoric acid in water (25:75), at a flow rate of 3 mL/min]. The final product had a retention time of 1200 s and was collected in a sterile 20 mL vial and diluted with phosphate-buffer (4 mL, 100 mM, and pH 7). The retention times of [18F]FETos and SB-269970 were 300–400 and 550 s, respectively.

Determination of Radiochemical Purity and Molar Activity. The preparation of the final product was visually inspected for clarity and absence of color and particles. Chemical and radiochemical purities were evaluated by analytical HPLC [Luna, 5 μm, C-18(2) 100 Å column (Phenomenex Inc. 150 × 4.6 mm); 0.1% TFA in acetonitrile/water (0–100%) over 15 min; 2 mL/min; retention times for [18F]FETos = 7.4 min, [18F]SB-269970 = 5 min, and [18F]F− = 1–2 min]. TLC analyses were also carried out to see the final content of [18F]fluoride (SiO2-TLC: eluent: EtOAc, Rf [18F]FETos: 0.25 and Rf [18F]fluoride ion: 0.0). The total synthesis time was 2.5 h, and the product could be produced with molar activities between 108 and 197 GBq/μmol (n = 3) and radiochemical purities above 98%.

Animals. All procedures were conducted in accordance with the FELASA guidelines for animal research and with approval from The Danish Animal Experiments Inspectorate (license number: 2017-15-0201-01283) as well as the Department of Experimental Medicine, University of Copenhagen. In both the in vitro and in vivo studies, we used 200–250 g female Long-Evans WT rats, which were housed in groups of 2–4 animals per cage in a climate-controlled rodent facility with a 12 h dark/12 h light cycle. For the PET experiments, the rats were transported to the scanner at least 1 h before starting the experiment and they were all fed ad libitum and had free access to water.

In Vitro [18F]15 Autoradiography. After decapitation of three female Long-Evans WT rats, the brains were quickly removed, rinsed in ice-cold water, and frozen using dry ice. After storage at −80 °C, the brains were cut with a cryostat (Microme HM 500 OM) and 20 μm coronal sections were collected on glass slides (Thermo Scientific Superfrost Plus), starting at bregma −1.8 mm to around −4 mm to get slices containing thalamus. The brain sections were stored at −80 °C until the day of the experiment.

In Vitro Autoradiography for KD and Bmax Determination. On the day of the experiment, the sections were thawed for 1–2 h prior to the start and thereafter preincubated for 30–60 min in assay buffer (Tris–HCl 50 mM, pH 7.4, rt). The sections were then incubated for 60 min at room temperature in assay buffer modified by the addition of [18F]15 to the final concentrations of 0.1, 0.3, 0.7, 1, and 2 nM. For every second section, SB-269970 (10 μM) was added to both the preincubation and incubation buffer to determine the non-specific binding. The incubation was thereafter terminated by washing twice for 5 min in ice-cold assay buffer. The sections were quickly rinsed in ice-cold water for 20 s and then rapidly dried under a gentle stream of air before exposure to an imaging plate (BAS-MS 2040, Fujiﬁlm) overnight.

After obtaining the images using the BAS-1800 plate reader (Fujiﬁlm), ImageJ v1.52i was used for image analysis and GraphPad Prism 7 for calculations and statistics. KD and Bmax were determined in the thalamus, by calculating the speciﬁc binding (SB) by subtraction of the nonspeciﬁc binding from the total binding, after drawing a region of interest containing thalamus on all brain slices (as deﬁned in Figure 1). A calibration curve of [18F]15 solutions applied on a TLC plate and exposed together with the slices was used to recalculate the intensity into concentrations in nanomolar. A one-sited (speciﬁc binding) nonlinear regression was used to acquire the KD and Bmax values.

In Vitro Autoradiography: Blocking Study. On the day of the experiment, the sections were thawed for 1–2 h prior to start and thereafter preincubated for 30–60 min in assay buffer (Tris–HCl 50 mM, pH 7.4, rt). The sections were then incubated for 60 min at room temperature in assay buffer modiﬁed by the addition of [18F]15 to the ﬁnal concentration of 5 nM. Either SB-269970 (1, 10, 50, or 100 nM), Haloperidol (1, 10, 50, or 100 nM, Janssen-Cilag, Birkeroed, Denmark), or SA4503 (1, 10, 50, or 100 nM, Merck, Darmstadt, Germany) was added to both the preincubation and incubation buffer to determine whether a dose-dependent blocking effect could be seen in thalamus. The incubation was thereafter terminated by washing two times for 5 min in ice-cold assay buffer. The sections were quickly rinsed in ice-cold water for 20 s and then rapidly dried under a gentle stream of air before being exposed to an imaging plate (BAS-MS 2040, Fujiﬁlm) for 60 min. After obtaining the images using the BAS-1800, ImageJ v1.52i was used for image analysis and GraphPad Prism 7 for the statistical calculations and presentation.

PET Evaluation in Rats. Anesthesia was induced at 3–3.5% isoflurane in oxygen and maintained at 2–2.5% during scans. The PET tracers were given as intravenous (iv) bolus injections in tail vein catheters at the start of the scan, with the injected doses being between 15 and 25 MBq. The rats were subsequently scanned in a high-resolution research tomography (HRRT) scanner (Siemens AG, Munich, Germany), first for a 120 min dynamic PET scan followed by a point source transmission scan. The scans were performed using a homemade 2 × 2 rat insert, which enabled the possibility of scanning four rats simultaneously. The animals were scanned at baseline and after receiving iv pretreatment of either elacridar29 (5 mg/kg, Carbsynth, Compton, U.K.) and/or either SB-269970 (3 mg/kg), Cimbi-717 (3 mg/kg, synthesized in house), haloperidol (1 mg/kg), or SA4503 (1.5 mg/kg) 15–30 min before tracer injection. SB-269970, Cimbi-717, and SA4503 were initially dissolved in DMSO and then added to a 10% β-cyclodextrin solution (Merck, Darmstadt, Germany). Haloperidol was diluted to the desired concentration with sterile water.

Reconstruction and Processing of PET Data. The 120 min list-mode PET data was reconstructed using the three-
dimensional-ordered subset expectation maximization algorithm with attenuation and scatter correction, into 45 dynamic frames (6 × 10, 6 × 20, 6 × 60, 8 × 120, and 19 × 300 s), and the images consisted of 207 planes of 256 × 256 voxels of 1.22 × 1.22 × 1.22 mm³. Using Pmrod, an averaged picture of all frames, except for the first 5 min, were reconstructed for each rat and used for co-registration to a standardized MRI-based rat brain atlas (Swartz). Volumes of interest (VOIs) containing the organs of interest and visualized as TACs barplot. For the biodistribution study, VOIs were manually drawn containing the organs of interest and visualized as TACs (SUV). GraphPad Prism 7 was used for calculating uptake values (SUV). Corrected for the weight of the animal yielding standardized activity curves (TACs) was calculated as radioactive concentration (Bq/mL).

ACKNOWLEDGMENTS

The authors wish to thank the staff at the PET and Cyclotron unit at Rigshospitalet, Copenhagen, Denmark, for expert technical assistance.

REFERENCES

ACS Omega

