Unravelling the Threads of the Nubian Openworks

Yvanez, Elsa; Mokdad, Ulrikka

Publication date: 2019

Citation for published version (APA):
UNRAVELLING THE THREADS OF THE NUBIAN OPENWORK

Elsa Yvanez & Ulrikka Mokdad

A unique textile tradition

Along the course of the Nile, in today's Sudan and Nubia, the inhabitants of the Meroitic kingdom (c. 350 BCE – 350 CE) developed a rich textile tradition, melting artistic influences from Pharaonic and Hellenistic Egypt to the local Kushite heritage. Among the characteristics of Meroitic textiles, one technique has a particularly strong visual impact: the openwork borders, which appear by the hundreds in the numerous and well-preserved textile assemblage from Nubia. They consist of a portion of open lattice created along the lower border of the weave, measuring between 1 and 5 cm. Prevalent on natural-colour cotton fabrics, they sometimes also incorporate blue wool or cotton threads, leading to bi-colour geometric patterns. The borders are finished by a row of tasseled fringes, usually quite thick, or rarely by circular "bobbles". The geometric lattice patterns and the long fringes are an important motif of Meroitic costumes, represented in the iconography of members of the royalty and nobility, as well as in religious scenes. Archaeological examples frequently exhibit traces of reuse, indicating the high value of these borders.

Particularly well-preserved in the Qasr Ibrim corpus, openwork borders drew the attention of the two pioneers of Nubian textile studies: Elisabeth Crowfoot and Nettie K. Adams. They stressed the antiquity of textile lattices in Nubia and showed the great diversity of patterns and the mastery achieved at Qasr Ibrim. However, after reading their description and observing many specimen myself, several technical aspects did not make sense to me. I enlisted the help of hand-weaver and art historian Ulrikka Mokdad, who quickly encouraged us to "think with our hands".

Unravelling the technique: “thinking with my hands”

The hypothetic reason behind this technique is the creative use of the long lengths of warp threads left hanging from the fabric when weaving on the warp-weighted loom. After dissecting several specimen, Elisabeth Crowfoot reconstructed the different steps of a complex chain opérateur, which entails two removals of the loom weights, the braiding of two flat braids with the warp threads, the reinstallation of the warps as a single shed on the loom weights, and the wrapping of groups of warps starting in the reverse direction (from the bottom to the top).

In our eyes, this reconstruction poses a major problem: it requires the removal of the loom weights, not once but twice, and complicated manipulations of the warps. As every weaver would know, it would have been very hard to keep the threads under enough tension to weave the braids, and in good order to then reassemble the shed for weaving. It seems to negate the purpose of the technique itself: if openwork borders were in fact made to use the left-over warp lengths, then surely it would have been easier to leave them under tension through the whole process.

It became our working hypothesis: could we reconstruct a lattice using a wrapping method on a fixed warp? Ulrikka started "thinking with her hands", testing different methods on a small tapestry loom. Without the possibility to unravel the archaeological textiles, and faced with very "fuzzy" specimen, it is difficult to ascertain the exact path followed by the threads. However, Ulrikka's weaving hands found a much-easier route than the one proposed by E. Crowfoot, straight forward and more efficient in execution, and which final result highly resembles the ancient pieces.

A step-by-step hypothesis

1. Weave on a warp-weighted loom (attested by many loom weights found on settlement sites).
2. Bring the 2 sheds together: remove the heddles, bring the 2 sheds in front of a low bar.
3. Interlace weft threads on a few rows, in compact 2-strands “countered” and “reversed” weft-twining, grouping the warps in small groups.
4. Install long threads for wrapping: a long end, passed through the twining every 2 warp groups, repeated along the entire width.
5. Wrap the extra thread, each length around 1 warp-group. Group the warps and wrap them together to form the middle of the cross (X) pattern. To tighten this central part, the extra threads can be knotted. Separate the warp groups and wrap them separately. Repeat until the end, using the other lengths of thread as more ground is covered.
6. Leave all the threads hanging and secure everything with several rows of twining.
7. Detach the loom weights
8. Form and attach the fringed tassels.

Perspectives: experimental archaeology

This project is a first test on our way to unravel the technique of the Nubian openworks. It shows the benefit of interdisciplinary research in textile studies, mixing the study of archaeological pieces with the experience and technical know-hows of a weaver. Our hypothesis remains to be thoroughly tested during a true experimental protocol on a warp-weighted loom.

References:

Elsa Yvanez: Marie Skłodowska Curie Fellow (GA n°743420), Centre for Textile Research, University of Copenhagen. ORCID 0000-0002-0934-8367. elsa.yvanez@gmail.com / www.texmeroe.com / @texmeroe

Ulrikka Mokdad: Guest researcher, Centre for Textile Research, University of Copenhagen. umokdad@gmail.com / http://kunstnerportal.bkf.dk/ulrikka-mokdad

Copenhagen. ORCiD 0000-0002-0934-8367. elsa.yvanez@gmail.com / www.texmeroe.com / @texmeroe

Cahiers de Recherche de l'Institut de Papyrologie et d'Egyptologie de Lille. ORCiD 0000-0002-0934-8367. elsa.yvanez@gmail.com / www.texmeroe.com / @texmeroe

Elsa Yvanez

Marie Skłodowska Curie Fellow (GA n°743420), Centre for Textile Research, University of Copenhagen. ORCID 0000-0002-0934-8367. elsa.yvanez@gmail.com / www.texmeroe.com / @texmeroe

Ulrikka Mokdad: Guest researcher, Centre for Textile Research, University of Copenhagen. umokdad@gmail.com / http://kunstnerportal.bkf.dk/ulrikka-mokdad