Observation of Light-by-Light Scattering in Ultraperipheral Pb + Pb Collisions with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 11 April 2019; published 31 July 2019)

This Letter describes the observation of the light-by-light scattering process, $\gamma\gamma \rightarrow \gamma\gamma$, in Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb$^{-1}$, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_T > 3$ GeV and pseudorapidity $|\eta| < 2.4$, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 ± 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is $78 \pm 13\text{(stat)} \pm 7\text{(syst)} \pm 3\text{(lumi)}$ nb.

DOI: 10.1103/PhysRevLett.123.052001

Light-by-light scattering, $\gamma\gamma \rightarrow \gamma\gamma$, is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics [1,2]. In the standard model (SM), the $\gamma\gamma \rightarrow \gamma\gamma$ reaction proceeds at one-loop level at order α_{EM}^4 (where α_{EM} is the fine-structure constant) via virtual box diagrams involving electrically charged fermions (leptons and quarks) or W^\pm bosons. However, in various extensions of the SM, extra contributions are possible, making the measurement of $\gamma\gamma \rightarrow \gamma\gamma$ scattering sensitive to new physics. Relevant examples are magnetic monopoles [3], vectorlike fermions [4], and axionlike particles [5,6]. The light-by-light cross section is also sensitive to the effect of possible non-SM operators in an effective field theory [7–9]. Light-by-light scattering graphs with electron loops also contribute to the anomalous magnetic moment of the electron and muon [10,11].

Strong evidence for this process in relativistic heavy-ion (Pb + Pb) collisions at the Large Hadron Collider (LHC) has been reported by the ATLAS [12] and CMS [13] collaborations with observed significances of 4.4 and 4.1 standard deviations, respectively. Exclusive light-by-light scattering can occur in these collisions at impact parameters larger than about twice the radius of the ions, as demonstrated for the first time in Ref. [14]. The strong interaction becomes less significant and the electromagnetic (EM) interaction becomes more important in these ultraperipheral collision (UPC) events. In general, this allows us to study processes involving nuclear photoexcitation, photoproduction of hadrons, and two-photon interactions [15,16]. The EM fields produced by the colliding Pb nuclei can be described as a beam of quasireal photons with a small virtuality of $Q^2 < 1/R^2$, where R is the radius of the charge distribution, and so, $Q^2 < 10^{-3}$ GeV2 [17,18]. The cross section for the elastic reaction Pb + Pb($\gamma\gamma$) → Pb + Pb$\gamma\gamma$ can then be calculated by convolving the appropriate photon flux with the elementary cross section for the process $\gamma\gamma \rightarrow \gamma\gamma$. Since the photon flux associated with each nucleus scales with the square of the number of protons, the cross section is strongly enhanced relative to proton-proton (pp) collisions.

The $\gamma\gamma \rightarrow \gamma\gamma$ reaction has also been measured in photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [19–22] and in the photon-splitting process [23]. A related process, in which initial photons fuse to form a pseudoscalar meson that subsequently decays into a pair of photons, has been studied at electron-positron colliders [24–27].

The previous ATLAS and CMS measurements were based on the Pb + Pb dataset of 0.4 nb$^{-1}$ recorded in 2015 at a nucleon-nucleon (NN) center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV [12,13]. The present Letter describes a new measurement exploiting 1.73 nb$^{-1}$ of Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, recorded in November 2018 with the ATLAS detector at the LHC. The analysis follows the approach originally proposed in Ref. [14], which was the basis of the initial ATLAS measurement.

The ATLAS detector [28] is a multipurpose particle detector that covers nearly the entire solid angle around the interaction point (IP) [29]. It consists of an inner detector...
The photon particle identification (PID) in this analysis is based on a selection of these shower-shape variables, optimized for the signal events. Only photons with E_T > 3 GeV and $|\eta| < 2.37$, excluding the calorimeter transition region $1.37 < |\eta| < 1.52$, are considered. This allows for good separation between prompt photons and fake signatures due to calorimeter noise, cosmic-ray muons, or nonprompt photons originating from the decay of neutral hadrons. The photon PID is based on a neural network trained on background photons extracted from data and on photons from the signal MC sample. The selection of background photons follows the procedure established in Ref. [12].

Selected events are required to have exactly two photons satisfying the above selection criteria, with a diphoton invariant mass ($m_{\gamma\gamma}$) greater than 6 GeV. In order to suppress the $\gamma\gamma \rightarrow e^+e^-$ background, events are rejected if they have a charged-particle track with $p_T > 100$ MeV, $|\eta| < 2.5$, and at least six hits in the pixel and microstrip detectors, including at least one pixel hit. To further suppress $\gamma\gamma \rightarrow e^+e^-$ events with poorly reconstructed charged-particle tracks, candidate events are required to have no “pixel tracks” matched to a photon candidate within $|\Delta\eta| < 0.5$. Pixel tracks are reconstructed using information from the pixel detector only. They are required to have $p_T > 50$ MeV, $|\eta| < 2.5$, and at least three hits in the pixel detector. According to the MC simulation, these requirements reduce the fake photon background from the dielectron final state by a factor of 10^4, while being 93% efficient for $\gamma\gamma \rightarrow \gamma\gamma$ signal events.
To reduce other fake-photon backgrounds, such as cosmic-ray muons, the transverse momentum of the diphoton system ($p_T^{\gamma\gamma}$) is required to be below 1 GeV for $m_{\gamma\gamma} < 12$ GeV and below 2 GeV for $m_{\gamma\gamma} > 12$ GeV. To reduce prompt-photon background from CEP $gg \rightarrow \gamma\gamma$ reactions, an additional requirement on the reduced acoplanarity, $A_\phi = (1 - |\Delta \phi_{Tr2}|/\pi) < 0.01$, is used, which is expected to have (86 ± 1)% selection efficiency for the signal. This efficiency is estimated using simulated signal events, and the uncertainty is due to modeling of the photon angular resolution in simulation. The above requirements define the fiducial region for the signal measurement.

Exclusive dielectron pairs from the reaction Pb+Pb($\gamma\gamma$) → Pb($^{+}+$)→Pb($^{+}+$) $e^{+}e^{-}$ are used for various aspects of the analysis, in particular, to validate the EM calorimeter energy scale and resolution [44]. To select $\gamma\gamma \rightarrow e^{+}e^{-}$ candidates, events are required to pass the same trigger as for the diphoton selection. Each electron is reconstructed from an EM energy cluster in the calorimeter matched to a track in the ID [45]. The $\gamma\gamma \rightarrow e^{+}e^{-}$ events are selected by requiring exactly two oppositely charged electrons, no further charged-particle tracks coming from the interaction region, and dielectron reduced acoplanarity, $A_\phi < 0.01$. The observed $\gamma\gamma \rightarrow e^{+}e^{-}$ event yield in data is compatible with that expected from simulation.

The level-1 trigger efficiency is estimated with $\gamma\gamma \rightarrow e^{+}e^{-}$ events passing an independent trigger. The level-1 trigger efficiency as a function of the electron EM cluster transverse energy sum, $E_T^{\text{cluster}}_{1} + E_T^{\text{cluster}}_{2}$, reaches 60% at 5 GeV and 75% at 6 GeV, with the fully efficient plateau reached at around 10 GeV, as shown in Fig. 1(a). The measured efficiency is parametrized and used to correct the trigger response in the simulation. To test the stability of the results, the analysis is repeated using tighter or looser dielectron event selection criteria, and the resulting differences are taken as a systematic uncertainty. The FCAL veto efficiency is estimated using $\gamma\gamma \rightarrow e^{+}e^{-}$ events selected with a dedicated control trigger without involving the FCAL requirement. It is estimated to be (99.1 ± 0.6)%.

Because of the high hit-reconstruction efficiency and relatively low conversion probability of signal photons in the pixel detector, the inefficiency of the pixel veto requirement at the trigger level is found to be negligible.

The photon reconstruction efficiency is extracted from data using $\gamma\gamma \rightarrow e^{+}e^{-}$ events, where one of the electrons emits a hard bremsstrahlung photon due to interaction with the material of the detector. The analysis is performed for events with exactly one identified electron and exactly two reconstructed charged-particle tracks, and a tag-and-probe method is used as described in Ref. [12]. The resulting photon reconstruction efficiency is shown in Fig. 1(b). It rises from about 60% at $E_T = 2.5$ GeV to 90% at $E_T = 6$ GeV and is used to derive simulation-to-data correction factors.

High-p_T exclusive dilepton production ($\gamma\gamma \rightarrow \ell^{+}\ell^{-}$, where $\ell = e, \mu$) with final-state radiation (FSR) is used to measure the photon PID efficiency, defined as the probability for a reconstructed photon to satisfy the identification criteria. Events with exactly two oppositely charged tracks with $p_T > 0.5$ GeV are selected from UPC triggered events. In addition, a requirement to reconstruct a photon candidate with $E_T > 2.5$ GeV and $|\eta| < 1.37$ or $1.52 < |\eta| < 2.37$ is imposed. A photon candidate is required to be separated from each track by fulfilling $\Delta R > 0.3$ [29] to avoid leakage between the photon and the electron clusters. The FSR event candidates are required to have $p_T^{\ell\ell} < 1$ GeV requirement, where $p_T^{\ell\ell}$ is the transverse momentum of the three-body system consisting of the two tracks and the photon candidate. Figure 1(c) shows the photon PID efficiency as a function of reconstructed photon E_T, where the measurement from data is compared with the one extracted from the signal MC sample. Based on these studies, MC events are corrected using photon E_T-dependent simulation-to-data correction factors. The systematic uncertainty on the photon reconstruction and PID efficiencies is estimated by parametrizing the correction factors as a function of the photon η instead of the photon E_T.
The two electrons exhibit balanced transverse momentum with an unbalance, $|P_T^e - P_T^\gamma|$, expected to be below 30 MeV. This is much smaller than the EM calorimeter energy resolution, which, thus, can be measured by the difference $E_T^{\text{cluster}1} - E_T^{\text{cluster}2}$. Below 10 GeV electron E_T, the relative energy resolution is found to be between 8% and 10% and is well reproduced by the MC simulation. The EM energy scale is validated using the ratio of the electron cluster E_T^e to the electron track p_T^e.

The $\gamma\gamma \rightarrow e^+e^-$ process can be a source of fake diphoton events, since misidentification of electrons as photons can occur when the electron track is not reconstructed or the electron emits a hard bremsstrahlung photon. The $\gamma\gamma \rightarrow e^+e^-$ yield in the signal region is evaluated using a data-driven method. Two control regions (CRs) are defined with exactly two photons passing the signal selection but also requiring one or two associated pixel tracks. The event yield observed in these two CRs is extrapolated to the signal region using the probability to miss the electron pixel track if the electron track is not reconstructed (p_T^{mistag}). It is measured in a region with exactly one charged-particle track and two photons with $A_\phi < 0.01$. In order to verify the stability of the p_T^{mistag} evaluation method, the A_ϕ requirement is dropped and the difference with the nominal selection is taken as a systematic uncertainty. This leads to $p_T^{\text{mistag}} = (47 \pm 9)\%$. The number of $\gamma\gamma \rightarrow e^+e^-$ events in the signal region is estimated to be $7 \pm 1\text{(stat)} \pm 3\text{(syst)}$, where the uncertainty accounts for the CR statistical uncertainty, the p_T^{mistag} uncertainty, and the difference found between the two CRs.

The $A_\phi < 0.01$ requirement significantly reduces the CEP $gg \rightarrow \gamma\gamma$ background. Its remaining contribution is evaluated from a control region defined by applying the same selection as for the signal region, but inverting the A_ϕ requirement to $A_\phi > 0.01$ [see Fig. 2(a)], and correcting the measured event yield for the expected signal and $\gamma\gamma \rightarrow e^+e^-$ contributions. The CEP and $\gamma\gamma \rightarrow e^+e^-$ processes exhibit a significantly broader A_ϕ distribution than the $\gamma\gamma \rightarrow \gamma\gamma$ process. In the CEP process gluons recoil against the Pb nucleus which then dissociates. The shape of the A_ϕ distribution for $\gamma\gamma \rightarrow e^+e^-$ events is mainly due to the curvature of the trajectory of the electrons in the detector magnetic field before they emit hard photons in their interactions with the ID material.

The estimated uncertainty in the CEP $gg \rightarrow \gamma\gamma$ background takes into account the statistical uncertainty of the number of events in the $A_\phi > 0.01$ control region (17%) as well as experimental and modeling uncertainties. It is found that all experimental uncertainties have negligible impact on the normalization of the CEP $gg \rightarrow \gamma\gamma$ background. The impact of the MC modeling of the A_ϕ shape is estimated using an alternative SUPERCHIC MC sample with no absorptive effects [46]. These effects reflect the absence of secondary particle emissions, which can take place in addition to the $gg \rightarrow \gamma\gamma$ process. After applying the data-driven normalization procedure, this leads to a 25% change in the CEP background yield in the signal region, which is taken as a systematic uncertainty. An additional check is done by varying the gluon parton distribution function (PDF). The differences between the MMHT 2014 [47], CT14 [48], and NNPDF3.1 [49] PDF sets have negligible impact on the shape of the CEP diphoton A_ϕ distribution.

The background due to the CEP $gg \rightarrow \gamma\gamma$ process in the signal region is estimated to be 4 ± 1 events. In addition, the energy deposition in the ZDC, which is sensitive to dissociation of Pb nuclei, is studied for events before the A_ϕ selection is imposed. Good agreement is observed between the normalized CEP expectation from MC simulation and the observed events with a signal corresponding to at least one neutron in the ZDC.

The background contribution from $\gamma\gamma \rightarrow q\bar{q}$ production is estimated using MC simulation based on HERWIG++ and is found to be negligible. Exclusive two-meson production can be a potential source of background for light-by-light scattering events, mainly due to their similar back-to-back
topology. Mesons can fake photons either by their intermediate decay into photons (neutral mesons: π^0, η, η') or by misreconstructed charged-particle tracks (charged mesons: for example π^+, π^- states). Estimates for such contributions are reported in Refs. [14,50–53] and these contributions are considered to be negligible in the signal region.

The background from other fake diphoton events (mainly those induced by cosmic-ray muons) is estimated using a control region with at least one track reconstructed in the muon system and further studied using the reconstructed photon-cluster time distribution. After imposing the p_T^γ requirements, this background is found to be negligible. Background from the $\gamma\gamma \rightarrow e^+e^-\gamma\gamma$ reaction is evaluated using the MADGRAPH5_AMC@NLO MC generator [54] and the Pb + Pb photon flux from STARLIGHT. This contribution is estimated to be below 1% of the expected signal and, therefore, has negligible impact on the results. The contribution from bottomonia production (for example, $\gamma\gamma \rightarrow \eta_b \rightarrow \gamma\gamma$ or $\gamma\mathrm{Pb} \rightarrow \Upsilon \rightarrow \gamma\eta_b \rightarrow 3\gamma$) is calculated using parameters from Refs. [55,56] and considered to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated using calculations from Ref. [57]. The cross section for single-bremsstrahlung photon production from a Pb ion in the fiducial region of the measurement is calculated to be below 10^{-4} pb so that the coincidence of two such occurrences is considered to be negligible.

After applying the signal selection, 59 events are observed in the data where 30 ± 4(stat) signal events and 12 ± 1(stat) background events are expected. The probability that the data are compatible with the background-only hypothesis was evaluated in a narrower range $0 < A_\phi < 0.005$ which, in studies using simulated data, was found to be most sensitive. In this region, 42 events are observed in the data where 25 ± 3(stat) signal events and 6 ± 1(stat) background events are expected. The data excess is quantified by calculating the background-only p value using a profile likelihood-ratio test statistic [58], resulting in an observed (expected) statistical significance of 8.2 (6.2) standard deviations. Photon kinematic distributions for events satisfying all selection criteria are shown in Figs. 2(b)–2(c). A further cross check of energy deposits in the ZDC for events in the signal region is performed. The activity in the ZDC agrees with the signal-plus-background expectation. The analysis is also repeated with a lower minimum photon E_T requirement of 2.5 GeV, yielding more signal events but also an increased relative background contribution. Consistent results were found using this relaxed signal selection.

The cross section for the $\gamma\gamma \rightarrow \gamma\gamma$ process is measured in a fiducial phase space, defined by a set of requirements on the diphoton final state, reflecting the selection at reconstruction level [59]. Experimentally, the fiducial cross section is given by $\sigma_{\text{fid}} = (N_{\text{data}} - N_{\text{bkg}})/\langle C \times \int L dt \rangle$, where N_{data} is the number of selected events in data, N_{bkg} is the number of background events, $\int L dt = 1.73 \pm 0.07$ nb$^{-1}$ is the integrated luminosity of the data sample, and C is an overall correction factor that accounts for efficiencies and resolution effects. The C factor is defined as the ratio of the number of selected MC signal events passing the selection and after applying data/MC correction factors to the number of generated MC signal events satisfying the fiducial requirements. It is found to be $C = 0.350 \pm 0.024$.

The uncertainty in C is estimated by varying the data/MC correction factors within their uncertainties, as well as using an alternative signal MC sample based on calculations from Ref. [33]. The probability of additional inelastic interactions in the same bunch crossing is estimated to be 0.3% and has negligible impact on the signal efficiency. The overall uncertainty is dominated by uncertainties in the photon reconstruction efficiency (4%) and the trigger efficiency (2%). The uncertainty of the integrated luminosity is derived, following a methodology similar to that detailed in Ref. [60], from a calibration of the luminosity scale using x-y beam-separation scans performed in November 2018.

The measured fiducial cross section is 78 ± 13(stat) ± 7(syst) ± 3(lumi) nb, which can be compared with the predicted values of 45 ± 5 nb from Ref. [14], 51 ± 5 nb from Ref. [33], and 50 ± 5 nb from SUPERCHIC 3.0 MC simulation [32]. The experiment-to-prediction ratios are 1.73 ± 0.40, 1.53 ± 0.33, and 1.56 ± 0.33, respectively.

In summary, this Letter reports the observation of light-by-light scattering in quasireal photon interactions from ultraperipheral Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV recorded in 2018 by the ATLAS experiment. After applying all selection criteria, 59 data events are observed in the signal region, while 12 ± 3 background events are expected. The dominant background processes, i.e., CEP $gg \rightarrow \gamma\gamma$, $\gamma\gamma \rightarrow e^+e^-$ as well as other fake-photon backgrounds, are estimated from data. The statistical significance against the background-only hypothesis is found to be 8.2 standard deviations.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCUK, Norway; MNiSW and NCN, Poland; FCT, Portugal;
MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC, and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Harkakleitos, Thales, and Aristeia Programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INPN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [61].

[29] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). The distance between two objects in η–φ space is ΔR = √((Δη)2 + (Δφ)2). Transverse momentum is defined by pT = p sin θ.
[37] M. Klusek-Gawenda, W. Schäfer, and A. Szczurek, Two-gluon exchange contribution to elastic $\gamma\gamma \rightarrow \gamma\gamma$ scattering and production of two-photons in ultraperipheral ultra-relativistic heavy ion and proton-proton collisions, Phys. Lett. B 761, 399 (2016).
[38] T. Aaltonen et al. (CDF Collaboration), Observation of Exclusive $\gamma\gamma$ Production in pp Collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 108, 081801 (2012).
[59] Two photons at particle level with $|\eta'| < 2.4, p_T > 3$ GeV, $m_{\gamma\gamma} > 6$ GeV, $p_T^{\gamma\gamma} < 1$ GeV and $A_\phi < 0.01$.

(ATLAS Collaboration)

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, New York, USA
3 Department of Physics, University of Alberta, Edmonton Alberta, Canada
4 Department of Physics, Ankara University, Ankara, Turkey
5 Istanbul Aydin University, Istanbul, Turkey
6 Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
8 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9 Department of Physics, University of Arizona, Tucson, Arizona, USA
10 Physics Department, National and Kapodistrian University of Athens, Zografou, Greece
11 Department of Physics, University of Texas at Austin, Austin, Texas, USA
12 Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
13 Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 School of Physics and Technology, University of Bergen, Bergen, Norway
20 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
21 High Energy Physics Division, Argonne National Laboratory, Chicago, USA
22 Instituto de Fisica d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
23 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
24 Department of Physics, Tsinghua University, Beijing, China
25 Institute of Physics, University of Belgrade, Belgrade, Serbia
26 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
27 National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
28 Department of Nuclear Physics, University of Bucharest, Bucharest, Romania
29 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, University of Cape Town, Cape Town, South Africa
32 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
33 School of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
34 Florida State University, Tallahassee, Florida, USA
35 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
36 Department of Mechanical Engineering Science, University of California, Irvine, California, USA
37 Physics Department, Tsinghua University, Beijing, China
38 Physics Department, University of Cape Town, Cape Town, South Africa
39 Physics Department, University of Michigan, Ann Arbor, Michigan, USA
40 Physics Department, University of Wisconsin-Madison, Madison, Wisconsin, USA
41 Physics Department, University of Arizona, Tucson, Arizona, USA
42 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
43 Physics Department, University of Texas at Austin, Austin, Texas, USA
44 Physics Department, University of Texas at Austin, Austin, Texas, USA
45 Physics Department, University of Texas at Austin, Austin, Texas, USA
46 Physics Department, University of Texas at Austin, Austin, Texas, USA
47 Physics Department, University of Texas at Austin, Austin, Texas, USA
48 Physics Department, University of Texas at Austin, Austin, Texas, USA
49 Physics Department, University of Texas at Austin, Austin, Texas, USA
50 Physics Department, University of Texas at Austin, Austin, Texas, USA
51 Physics Department, University of Texas at Austin, Austin, Texas, USA
52 Physics Department, University of Texas at Austin, Austin, Texas, USA
53 Physics Department, University of Texas at Austin, Austin, Texas, USA
54 Physics Department, University of Texas at Austin, Austin, Texas, USA
55 Physics Department, University of Texas at Austin, Austin, Texas, USA
56 Physics Department, University of Texas at Austin, Austin, Texas, USA
57 Physics Department, University of Texas at Austin, Austin, Texas, USA
58 Physics Department, University of Texas at Austin, Austin, Texas, USA
59 Physics Department, University of Texas at Austin, Austin, Texas, USA
60 Physics Department, University of Texas at Austin, Austin, Texas, USA
61 Physics Department, University of Texas at Austin, Austin, Texas, USA
62 Physics Department, University of Texas at Austin, Austin, Texas, USA
63 Physics Department, University of Texas at Austin, Austin, Texas, USA
64 Physics Department, University of Texas at Austin, Austin, Texas, USA
65 Physics Department, University of Texas at Austin, Austin, Texas, USA
66 Physics Department, University of Texas at Austin, Austin, Texas, USA
67 Physics Department, University of Texas at Austin, Austin, Texas, USA
68 Physics Department, University of Texas at Austin, Austin, Texas, USA
69 Physics Department, University of Texas at Austin, Austin, Texas, USA
70 Physics Department, University of Texas at Austin, Austin, Texas, USA
Department of Physics, Carleton University, Ottawa, Ontario, Canada
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies—Université Hassan II, Casablanca, Morocco
Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
Faculté des sciences, Université Mohammed V, Rabat, Morocco
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Dipartimento di Fisica, Università della Calabria, Rende, Italy
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
Department of Physics, Stockholm University, Sweden
Oskar Klein Centre, Stockholm, Sweden
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
II. Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Dipartimento di Fisica, Università di Genova, Genova, Italy
INFN Sezione di Genova, Italy
II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
Tsung-Dao Lee Institute, Shanghai, China
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Department of Physics, University of Hong Kong, Hong Kong, China
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
Department of Physics, Indiana University, Bloomington, Indiana, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
INFN Sezione di Lecce, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
INFN Sezione di Pavia, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
111Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
112Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia
113Novosibirsk State University Novosibirsk, Russia
114Department of Physics, Texas A&M University, College Station, Texas, USA
115Department of Physics and Astronomy, Arizona State University, Tempe, Arizona, USA
116Department of Physics, Technion, Haifa, Israel
117Department of Physics, Imperial College London, London, United Kingdom
118Department of Physics, University of Oxford, Oxford, United Kingdom
119Department of Physics, University of California, Berkeley, California, USA
120Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
121Graduate School of Science, Osaka University, Osaka, Japan
122Graduate School of Science, Kyushu University, Fukuoka, Japan
123Graduate School of Science, Tohoku University, Sendai, Japan
124Graduate School of Science, Nagoya University, Nagoya, Japan
125Graduate School of Science, Okayama University, Okayama, Japan
126Division of Physics and Astronomy, Osaka University, Osaka, Japan
127Faculty of Science, Okayama University, Okayama, Japan
128Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
129Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
130Palacký University, Faculty of Science, Olomouc, Czech Republic
131Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
132LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
133Graduate School of Science, Osaka University, Osaka, Japan
134Department of Physics, University of Oslo, Oslo, Norway
135Department of Physics, Oxford University, Oxford, United Kingdom
136LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
137Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
138Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
139Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
140Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Portugal
141Department of Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
142Department of Física, Universidade de Coimbra, Coimbra, Portugal
143Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
144Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
145Department of Physics, University of Washington, Seattle, Washington, USA
146Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
147Department of Physics, Pontifica Universidad Católica de Chile, Santiago, Chile
148Department of Physics, University of Washington, Seattle, Washington, USA
149Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
150Department of Physics, Shinshu University, Nagano, Japan
151Department Physik, Universität Siegen, Siegen, Germany
152Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
153SLAC National Accelerator Laboratory, Stanford, California, USA
154Physics Department, Royal Institute of Technology, Stockholm, Sweden
155Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
156Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
157School of Physics, University of Sydney, Sydney, Australia
158Institute of Physics, Academia Sinica, Taipei, Taiwan
159E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
160High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
161Department of Physics, Technion, Haifa, Israel
162Department of Physics, Technion, Haifa, Israel
163Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
164International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
165Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
166Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
167Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
168Tomsk State University, Tomsk, Russia
169Department of Physics, University of Toronto, Toronto, Ontario, Canada
170Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
171Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
172Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
173Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia
174Department of Physics, New York University, New York, New York, USA
175Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
176The Ohio State University, Columbus, Ohio, USA
177Faculty of Science, Okayama University, Okayama, Japan
178Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
179Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
180A. Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
181Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
182LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
183Graduate School of Science, Osaka University, Osaka, Japan
184Department of Physics, University of Oslo, Oslo, Norway
185Department of Physics, Oxford University, Oxford, United Kingdom
186LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
187Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
188Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
189Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
190Department of Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
191Department of Física, Universidade de Coimbra, Coimbra, Portugal
192Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
193Universidad de Granada, Granada (Spain), Spain
194Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
195Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
196Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
197IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
198Department of Physics and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
199Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
200Department of Physics, University of Amsterdam, Amsterdam, Netherlands
201Physics Institute, University of São Paulo, São Paulo, Brazil
202Department of Physics, University of Sydney, Sydney, Australia
203Physics Department, National Taiwan University, Taipei, Taiwan
204Department of Physics, University of Tokyo, Tokyo, Japan
205Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
206Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
207Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
208Faculty of Science, Okayama University, Okayama, Japan
209Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
210Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
211A. Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic
212Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA
213LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
214Graduate School of Science, Osaka University, Osaka, Japan
215Department of Physics, University of Oslo, Oslo, Norway
216Department of Physics, Oxford University, Oxford, United Kingdom
217LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
218Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
219Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
220Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
221Department of Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
222Department of Física, Universidade de Coimbra, Coimbra, Portugal
223Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
224Universidad de Granada, Granada (Spain), Spain
225Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
226Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
227Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
228IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
229Department of Physics and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
230Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
231Czech Technical University in Prague, Prague, Czech Republic
232Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
233Department of Physics, Shinshu University, Nagano, Japan
234Department Physik, Universität Siegen, Siegen, Germany
235Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
236SLAC National Accelerator Laboratory, Stanford, California, USA
237Physics Department, Royal Institute of Technology, Stockholm, Sweden
238Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
239Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
240School of Physics, University of Sydney, Sydney, Australia
241Institute of Physics, Academia Sinica, Taipei, Taiwan
242E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
243High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
244Department of Physics, Technion, Haifa, Israel
245Department of Physics, Technion, Haifa, Israel
246Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
247Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
248International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
249Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
250Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
251Tomsk State University, Tomsk, Russia
252Department of Physics, University of Toronto, Toronto, Ontario, Canada
253TRIUMF, Vancouver, British Columbia, Canada
254Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
255Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
256Department of Physics, The Ohio State University, Columbus, Ohio, USA
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

Yerevan Physics Institute, Yerevan, Armenia

*Deceased.

†Also at Department of Physics, King’s College London, London, United Kingdom.
‡Also at Istanbul University, Department of Physics, Istanbul, Turkey.
§Also at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.
∥Also at TRIUMF, Vancouver, British Columbia, Canada.
¶Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
††Also at Physics Department, An-Najah National University, Nablus, Palestine.
‡‡Also at Department of Physics, California State University, Fresno, USA.
§§Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
∥∥Also at Physics Dept, University of South Africa, Pretoria, South Africa.
¶¶Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
†††Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
∥∥∥Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
¶¶¶Also at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
††††Also at Università di Napoli Parthenope, Napoli, Italy.
∥∥∥∥Also at Institute of Particle Physics (IPP), Canada.
¶¶¶¶Also at Department of Physics, University of Adelaide, Adelaide, Australia.
†††††Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
∥∥∥∥∥Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
¶¶¶¶¶Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
††††††Also at Department of Physics, California State University, East Bay, USA.
∥∥∥∥∥∥Also at Institut d’Estudis Avançats i Recerca i Comunicació, ICREA, Barcelona, Spain.
¶¶¶¶¶¶Also at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
†††††††Also at LAL, Université Paris-Sud, CNRS-IN2P3, Université Paris-Saclay, Orsay, France.
∥∥∥∥∥∥∥Also at Graduate School of Science, Osaka University, Osaka, Japan.
¶¶¶¶¶¶¶Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
††††††††Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
∥∥∥∥∥∥∥∥Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
¶¶¶¶¶¶¶¶Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
†††††††††Also at CERN, Geneva, Switzerland.
∥∥∥∥∥∥∥∥∥Also at Department of Physics, Stanford University, Stanford, California, USA.
¶¶¶¶¶¶¶¶¶Also at Manhattan College, New York, New York, USA.
††††††††††Also at Joint Institute for Nuclear Research, Dubna, Russia.
∥∥∥∥∥∥∥∥∥∥Also at Hellenic Open University, Patras, Greece.
¶¶¶¶¶¶¶¶¶¶Also at The City College of New York, New York, New York, USA.
†††††††††††Also at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
∥∥∥∥∥∥∥∥∥∥∥Also at Department of Physics, California State University, Sacramento, USA.
¶¶¶¶¶¶¶¶¶¶¶Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
††††††††††††Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
∥∥∥∥∥∥∥∥∥∥∥∥Also at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
¶¶¶¶¶¶¶¶¶¶¶¶ Also at Louisiana Tech University, Ruston, Louisiana, USA.
††††††††††††† Also at School of Physics, Sun Yat-sen University, Guangzhou, China.
∥∥∥∥∥∥∥∥∥∥∥∥∥ Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.