Observation of Light-by-Light Scattering in Ultraperipheral Pb plus Pb Collisions with the ATLAS Detector
ATLAS Collaboration

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.123.052001

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
https://doi.org/10.1103/PhysRevLett.123.052001
Observation of Light-by-Light Scattering in Ultraperipheral Pb + Pb Collisions with the ATLAS Detector

G. Aad et al. (ATLAS Collaboration)

(Received 11 April 2019; published 31 July 2019)

This Letter describes the observation of the light-by-light scattering process, $\gamma\gamma \rightarrow \gamma\gamma$, in Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The analysis is conducted using a data sample corresponding to an integrated luminosity of 1.73 nb$^{-1}$, collected in November 2018 by the ATLAS experiment at the LHC. Light-by-light scattering candidates are selected in events with two photons produced exclusively, each with transverse energy $E_T > 3$ GeV and pseudorapidity $|\eta| < 2.4$, diphoton invariant mass above 6 GeV, and small diphoton transverse momentum and acoplanarity. After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 ± 3 events. The observed excess of events over the expected background has a significance of 8.2 standard deviations. The measured fiducial cross section is 78 ± 13 (stat) ± 7 (syst) ± 3 (lumi) nb.

DOI: 10.1103/PhysRevLett.123.052001

Light-by-light scattering, $\gamma\gamma \rightarrow \gamma\gamma$, is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics [1,2]. In the standard model (SM), the $\gamma\gamma \rightarrow \gamma\gamma$ reaction proceeds at one-loop level at order α_E^4 (where α_E is the fine-structure constant) via virtual box diagrams involving electrically charged fermions (leptons and quarks) or W^\pm bosons. However, in various extensions of the SM, extra contributions are possible, making the measurement of $\gamma\gamma \rightarrow \gamma\gamma$ scattering sensitive to new physics. Relevant examples are magnetic monopoles [3], vectorlike fermions [4], and axionlike particles [5,6]. The light-by-light cross section is also sensitive to the effect of possible non-SM operators in an effective field theory [7–9]. Light-by-light scattering graphs with electron loops also contribute to the anomalous magnetic moment of the electron and muon [10,11].

Strong evidence for this process in relativistic heavy-ion (Pb + Pb) collisions at the Large Hadron Collider (LHC) has been reported by the ATLAS [12] and CMS [13] collaborations with observed significances of 4.4 and 4.1 standard deviations, respectively. Exclusive light-by-light scattering can occur in these collisions at impact parameters larger than about twice the radius of the ions, as demonstrated for the first time in Ref. [14]. The strong interaction becomes less significant and the electromagnetic (EM) interaction becomes more important in these ultraperipheral collision (UPC) events. In general, this allows us to study processes involving nuclear photoexcitation, photoproduction of hadrons, and two-photon interactions [15,16]. The EM fields produced by the colliding Pb nuclei can be described as a beam of quasi-real photons with a small virtuality of $Q^2 < 1/R^2$, where R is the radius of the charge distribution, and so, $Q^2 < 10^{-3}$ GeV2 [17,18]. The cross section for the elastic reaction Pb + Pb($\gamma\gamma$) → Pb + Pbγγ can then be calculated by convolving the appropriate photon flux with the elementary cross section for the process $\gamma\gamma \rightarrow \gamma\gamma$. Since the photon flux associated with each nucleus scales with the square of the number of protons, the cross section is strongly enhanced relative to proton-proton (pp) collisions.

The $\gamma\gamma \rightarrow \gamma\gamma$ reaction has also been measured in photon scattering in the Coulomb field of a nucleus (Delbrück scattering) [19–22] and in the photon-splitting process [23]. A related process, in which initial photons fuse to form a pseudoscalar meson that subsequently decays into a pair of photons, has been studied at electron-positron colliders [24–27].

The previous ATLAS and CMS measurements were based on the Pb + Pb dataset of 0.4 nb$^{-1}$ recorded in 2015 at a nucleon-nucleon (NN) center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV [12,13]. The present Letter describes a new measurement exploiting 1.73 nb$^{-1}$ of Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, recorded in November 2018 with the ATLAS detector at the LHC. The analysis follows the approach originally proposed in Ref. [14], which was the basis of the initial ATLAS measurement.

The ATLAS detector [28] is a multipurpose particle detector that covers nearly the entire solid angle around the interaction point (IP) [29]. It consists of an inner detector...
(ID) for charged-particle tracking in the pseudorapidity region $|\eta| < 2.5$, EM and hadronic calorimeters that provide energy measurements up to $|\eta| = 4.9$, and a muon spectrometer that covers $|\eta| < 2.7$. Forward calorimeters (FCAL) cover the range of $3.2 < |\eta| < 4.9$. The zero-degree calorimeters (ZDC), located along the beam axis at 140 m from the IP on both sides, detect neutral particles, including neutrons emitted from the nucleus.

The final-state signature of interest is the exclusive production of two photons, $\text{Pb} + \text{Pb}(\gamma\gamma) \rightarrow \text{Pb}^{(*)} + \text{Pb}^{(*)}\gamma\gamma$, where the diphoton final state is measured in the central detector, and the incoming Pb ions survive the EM interaction, with a possible EM excitation [30], denoted by $(*)$. Hence, the final state consists of two low-energy photons and no further activity in the detector and, in particular, no reconstructed charged-particle tracks originating from the IP.

A two-level trigger system was used to select events online [31]. It consists of a level-1 trigger implemented using a combination of custom electronics and programmable logic, and a software-based high-level trigger (HLT). Candidate diphoton events were recorded using a dedicated trigger for events with moderate activity in the calorimeter but little additional activity in the detector. At level 1, a logical OR of two conditions was required: at least one EM cluster with $E_T > 1$ GeV in coincidence with a total E_T of 4–200 GeV measured in the calorimeter, or at least two EM clusters with $E_T > 1$ GeV with total E_T measured in the calorimeter below 50 GeV. The upper bound on the total E_T was optimized to be fully efficient for signal events while allowing the rejection of events from nonperipheral Pb + Pb collisions. At the HLT, the total FCAL E_T on each side of the IP was required to be consistent with noise (FCAL veto), and the number of hits in the pixel detector (part of the ID) was required to be at most, 15.

Simulated $\gamma\gamma \rightarrow \gamma\gamma$ signal events were generated using the SUPERCHIC 3.0 Monte Carlo (MC) generator [32]. This program takes into account box diagrams with charged leptons, quarks, and W^{\pm} bosons. An alternative signal sample was generated using calculations from Ref. [33]. These calculations were then folded with the Pb + Pb photon flux taken from the STARLIGHT 2.0 MC generator [34]. The theoretical uncertainty of the cross section is computed by combining the Pb + Pb photon flux with the leading-order formula for $\gamma\gamma \rightarrow e^+e^-$. Two-photon production of quark-antiquark pairs, with their subsequent decay into multiple hadrons, was modeled using HERWIG++ 2.7.1 [39], where the initial photon fluxes from pp collisions are implemented. The sample was then normalized to cover the differences in the photon fluxes between Pb + Pb and pp collisions. All simulated events make use of a detector simulation [40] based on GEANT4 [41] and are reconstructed with the standard ATLAS reconstruction software.

Photons are reconstructed from EM clusters in the calorimeter [42] and tracking information provided by the ID, which allows us to identify photon conversions [43]. An energy calibration specifically optimized for photons [44] is applied to account for energy loss before the calorimeter and both lateral and longitudinal shower leakage. Photons in MC samples are corrected [43] for known mismodeling of quantities that describe the properties (“shapes”) of the associated EM showers.

The photon particle identification (PID) in this analysis is based on a selection of these shower-shape variables, optimized for the signal events. Only photons with $E_T > 3$ GeV and $|\eta| < 2.37$, excluding the calorimeter transition region $1.37 < |\eta| < 1.52$, are considered. This allows for good separation between prompt photons and fake signatures due to calorimeter noise, cosmic-ray muons, or nonprompt photons originating from the decay of neutral hadrons. The photon PID is based on a neural network trained on background photons extracted from data and on photons from the signal MC sample. The selection of background photons follows the procedure established in Ref. [12].

Selected events are required to have exactly two photons satisfying the above selection criteria, with a diphoton invariant mass ($m_{\gamma\gamma}$) greater than 6 GeV. In order to suppress the $\gamma\gamma \rightarrow e^+e^-$ background, events are rejected if they have a charged-particle track with $p_T > 100$ MeV, $|\eta| < 2.5$, and at least six hits in the pixel and microstrip detectors, including at least one pixel hit. To further suppress $\gamma\gamma \rightarrow e^+e^-$ events with poorly reconstructed charged-particle tracks, candidate events are required to have no “pixel tracks” matched to a photon candidate within $|\Delta\eta| < 0.5$. Pixel tracks are reconstructed using information from the pixel detector only. They are required to have $p_T > 50$ MeV, $|\eta| < 2.5$, and at least three hits in the pixel detector. According to the MC simulation, these requirements reduce the fake photon background from the dielectron final state by a factor of 10^4, while being 93% efficient for $\gamma\gamma \rightarrow \gamma\gamma$ signal events.
To reduce other fake-photon backgrounds, such as cosmic-ray muons, the transverse momentum of the diphoton system ($p_T^γγ$) is required to be below 1 GeV for $m_{γγ} < 12$ GeV and below 2 GeV for $m_{γγ} > 12$ GeV. To reduce prompt-photon background from CEP $gg → γγ$ reactions, an additional requirement on the reduced acoplanarity, $A_φ = (1 - |ΔΦ_{j,k}|/π) < 0.01$, is used, which is expected to have $(86 ± 1)\%$ selection efficiency for the signal. This efficiency is estimated using simulated signal events, and the uncertainty is due to modeling of the photon angular resolution in simulation. The above requirements define the fiducial region for the signal measurement.

Exclusive dielectron pairs from the reaction $Pb + Pb(γγ) → Pb^{(++)} + Pb^{(+-)} e^+ e^-$ are used for various aspects of the analysis, in particular, to validate the EM calorimeter energy scale and resolution [44]. To select $γγ → e^+ e^-$ candidates, events are required to pass the same trigger as for the diphoton selection. Each electron is reconstructed from an EM energy cluster in the calorimeter matched to a track in the ID [45]. The $γγ → e^+ e^-$ events are selected by requiring exactly two oppositely charged electrons, no further charged-particle tracks coming from the interaction region, and dielectron reduced acoplanarity, $A_φ < 0.01$. The observed $γγ → e^+ e^-$ event yield in data is compatible with that expected from simulation.

The level-1 trigger efficiency is estimated with $γγ → e^+ e^-$ events passing an independent trigger. The level-1 trigger efficiency as a function of the electron EM cluster transverse energy sum, $E_{T}^{cluster} + E_{T}^{cluster^2}$, reaches 60% at 5 GeV and 75% at 6 GeV, with the fully efficient plateau reached at around 10 GeV, as shown in Fig. 1(a). The measured efficiency is parametrized and used to correct the trigger response in the simulation. To test the stability of the results, the analysis is repeated using tighter or looser dielectron event selection criteria, and the resulting differences are taken as a systematic uncertainty. The FCAL veto efficiency is estimated using $γγ → e^+ e^-$ events selected with a dedicated control trigger without involving the FCAL requirement. It is estimated to be $(99.1 ± 0.6)\%$.

Because of the high hit-reconstruction efficiency and relatively low conversion probability of signal photons in the pixel detector, the inefficiency of the pixel veto requirement at the trigger level is found to be negligible. The photon reconstruction efficiency is extracted from data using $γγ → e^+ e^-$ events, where one of the electrons emits a hard bremsstrahlung photon due to interaction with the material of the detector. The analysis is performed for events with exactly one identified electron and exactly two reconstructed charged-particle tracks, and a tag-and-probe method is used as described in Ref. [12]. The resulting photon reconstruction efficiency is shown in Fig. 1(b). It rises from about 60% at $E_T = 2.5$ GeV to 90% at $E_T = 6$ GeV and is used to derive simulation-to-data correction factors.

High-p_T exclusive dilepton production ($γγ → ℓ^+ ℓ^-$, where $ℓ = e, µ$) with final-state radiation (FSR) is used to measure the photon PID efficiency, defined as the probability for a reconstructed photon to satisfy the identification criteria. Events with exactly two oppositely charged tracks with $p_T > 0.5$ GeV are selected from UPC triggered events. In addition, a requirement to reconstruct a photon candidate with $E_T > 2.5$ GeV and $|η| < 1.37$ or $1.52 < |η| < 2.37$ is imposed. A photon candidate is required to be separated from each track by fulfilling $ΔR > 0.3$ [29] to avoid leakage between the photon and the electron clusters. The FSR event candidates are required to have $p_T^{FSR} < 1$ GeV requirement, where p_T^{FSR} is the transverse momentum of the three-body system consisting of the two tracks and the photon candidate. Figure 1(c) shows the photon PID efficiency as a function of reconstructed photon E_T, where the measurement from data is compared with the one extracted from the signal MC sample. Based on these studies, MC events are corrected using photon E_T-dependent simulation-to-data correction factors. The systematic uncertainty on the photon reconstruction and PID efficiencies is estimated by parametrizing the correction factors as a function of the photon $η$ instead of the photon E_T.

FIG. 1. (a) Measured level-1 trigger efficiency as a function of the reconstructed transverse energy in $γγ → e^+ e^-$ events, (b) photon reconstruction efficiency as a function of the photon E_T (approximated with $E_{T,1}^{\text{trk2}}$, where trk2 denotes the track of the second leading electron), and (c) photon particle-identification efficiency as a function of the photon E_T.

052001-3
The two electrons exhibit balanced transverse momentum with an unbalance, |p_T^e - p_T^\gamma\gamma|, expected to be below 30 MeV. This is much smaller than the EM calorimeter energy resolution, which, thus, can be measured by the difference E_T^{\gamma\gamma1} - E_T^{\gamma\gamma2}. Below 10 GeV electron E_T, the relative energy resolution is found to be between 8% and 10% and is well reproduced by the MC simulation. The EM energy scale is validated using the ratio of the electron cluster E_e to the electron track p_T^{ek}.

The γγ → e^+e^- process can be a source of fake diphoton events, since misidentification of electrons as photons can occur when the electron track is not reconstructed or the electron emits a hard bremsstrahlung photon. The γγ → e^+e^- yield in the signal region is evaluated using a data-driven method. Two control regions (CRs) are defined with exactly two photons passing the signal selection but also requiring one or two associated pixel tracks. The event yield observed in these two CRs is extrapolated to the signal region using the probability to miss the electron pixel track if the electron track is not reconstructed (p_{mistag}). It is measured in a region with exactly one charged-particle track and two photons with A_ϕ < 0.01. In order to verify the stability of the p_{mistag} evaluation method, the A_ϕ requirement is dropped and the difference with the nominal selection is taken as a systematic uncertainty. This leads to p_{mistag} = (47 ± 9)% . The number of γγ → e^+e^- events in the signal region is estimated to be 7 ± 1(stat) ± 3(syst), where the uncertainty accounts for the CR statistical uncertainty, the p_{mistag} uncertainty, and the difference found between the two CRs.

The A_ϕ < 0.01 requirement significantly reduces the CEP gg → γγ background. Its remaining contribution is evaluated from a control region defined by applying the same selection as for the signal region, but inverting the A_ϕ requirement to A_ϕ > 0.01 [see Fig. 2(a)], and correcting the measured event yield for the expected signal and γγ → e^+e^- contributions. The CEP and γγ → e^+e^- processes exhibit a significantly broader A_ϕ distribution than the γγ → γγ process. In the CEP process gluons recoil against the Pb nucleus which then dissociates. The shape of the A_ϕ distribution for γγ → e^+e^- events is mainly due to the curvature of the trajectory of the electrons in the detector magnetic field before they emit hard photons in their interactions with the ID material.

The estimated uncertainty in the CEP gg → γγ background takes into account the statistical uncertainty of the number of events in the A_ϕ > 0.01 control region (17%) as well as experimental and modeling uncertainties. It is found that all experimental uncertainties have negligible impact on the normalization of the CEP gg → γγ background. The impact of the MC modeling of the A_ϕ shape is estimated using an alternative SUPERCHIC MC sample with no absorptive effects [46]. These effects reflect the absence of secondary particle emissions, which can take place in addition to the gg → γγ process. After applying the data-driven normalization procedure, this leads to a 25% change in the CEP background yield in the signal region, which is taken as a systematic uncertainty. An additional check is done by varying the gluon parton distribution function (PDF). The differences between the MMHT 2014 [47], CT14 [48], and NNPDF3.1 [49] PDF sets have negligible impact on the shape of the CEP diphoton A_ϕ distribution.

The background due to the CEP process in the signal region is estimated to be 4 ± 1 events. In addition, the energy deposition in the ZDC, which is sensitive to dissociation of Pb nuclei, is studied for events before the A_ϕ selection is imposed. Good agreement is observed between the normalized CEP expectation from MC simulation and the observed events with a signal corresponding to at least one neutron in the ZDC.

The background contribution from γγ → q\bar{q} production is estimated using MC simulation based on HERWIG++ and is found to be negligible. Exclusive two-meson production can be a potential source of background for light-by-light scattering events, mainly due to their similar back-to-back...
topology. Mesons can fake photons either by their intermediate decay into photons (neutral mesons: \(\pi^0, \eta, \eta'\)) or by misreconstructed charged-particle tracks (charged mesons: for example \(\pi^+, \pi^-\) states). Estimates for such contributions are reported in Refs. [14,50–53] and these contributions are considered to be negligible in the signal region.

The background from other fake diphoton events (mainly those induced by cosmic-ray muons) is estimated using a control region with at least one track reconstructed in the muon system and further studied using the reconstructed photon-cluster time distribution. After imposing the \(p_T^{\gamma\gamma}\) requirements, this background is found to be negligible. Background from the \(\gamma\gamma \rightarrow e^+e^-\gamma\gamma\) reaction is evaluated using the MADGRAPH5_AMC@NLO MC generator [54] and the Pb + Pb photon flux from STARLIGHT. This contribution is estimated to be below 1% of the expected signal and, therefore, has negligible impact on the results. The contribution from bottomonia production (for example, \(\gamma\gamma \rightarrow J/\psi \rightarrow \gamma\gamma\) or \(\gamma\gamma \rightarrow \Upsilon \rightarrow \gamma\eta_b \rightarrow 3\gamma\)) is calculated using parameters from Refs. [55,56] and considered to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated to be negligible. The contribution from UPC events where both nuclei emit a bremsstrahlung photon is estimated to be negligible.

After applying the signal selection, 59 events are observed in the data where \(30 \pm 4\) (stat) signal events and \(12 \pm 1\) (stat) background events are expected. The probability that the data are compatible with the background-only hypothesis was evaluated in a narrower range which, in studies using simulated data, was found to be most sensitive. In this region, 42 events are observed in the data where \(25 \pm 3\) (stat) signal events and \(6 \pm 1\) (stat) background events are expected. The data excess is quantified by calculating the number of background events, \(\int L dt = 1.73 \pm 0.07 \text{ nb}^{-1}\) is the integrated luminosity of the data sample, and \(C\) is an overall correction factor that accounts for efficiencies and resolution effects. The \(C\) factor is defined as the ratio of the number of selected MC signal events passing the selection and after applying data/MC correction factors to the number of generated MC signal events satisfying the fiducial requirements. It is found to be \(C = 0.350 \pm 0.024\). The uncertainty in \(C\) is estimated by varying the data/MC correction factors within their uncertainties, as well as using an alternative signal MC sample based on calculations from Ref. [33]. The probability of additional inelastic interactions in the same bunch crossing is estimated to be 0.3% and has negligible impact on the signal efficiency. The overall uncertainty is dominated by uncertainties in the photon reconstruction efficiency (4%) and the trigger efficiency (2%). The uncertainty of the integrated luminosity is derived, following a methodology similar to that detailed in Ref. [60], from a calibration of the luminosity scale using \(x-y\) beam-separation scans performed in November 2018.

The measured fiducial cross section is \(78 \pm 13\) (stat) \(\pm 7\) (syst) \(\pm 3\) (lumi) \(\text{ nb}\), which can be compared with the predicted values of \(45 \pm 5\) \(\text{ nb}\) from Ref. [14], \(51 \pm 5\) \(\text{ nb}\) from Ref. [33], and \(50 \pm 5\) \(\text{ nb}\) from SUPERCHIC 3.0 MC simulation [32]. The experiment-to-prediction ratios are \(1.73 \pm 0.40, 1.53 \pm 0.33, \) and \(1.56 \pm 0.33\), respectively.

In summary, this Letter reports the observation of light-by-light scattering in quasireal photon interactions from ultraperipheral Pb + Pb collisions at \(\sqrt{s_{NN}} = 5.02\) \(\text{ TeV}\) recorded in 2018 by the ATLAS experiment. After applying all selection criteria, 59 data events are observed in the signal region, while 12 \(\pm 3\) background events are expected. The dominant background processes, i.e., \(\text{CEP} \quad gg \rightarrow \gamma\gamma\), \(\gamma\gamma \rightarrow e^+e^-\gamma\gamma\) as well as other fake-photon backgrounds, are estimated from data. The statistical significance against the background-only hypothesis is found to be 8.2 standard deviations.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal;
Union; Investissements d'computing resources are listed in Ref. [61].

non-WLCG resource providers. Major contributors of and BNL (USA), the Tier-2 facilities worldwide and large
(Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK)
GridKA (Germany), INFN-CNAF (Italy), NL-T1

The crucial computing support from all WLCG partners is
Royal Society and Leverhulme Trust, United Kingdom.
and the Greek NSRF, Greece; BSF-NSF and GIF, Israel;
CERCA Programme Generalitat de Catalunya, Spain; The
Royal Society and Leverhulme Trust, United Kingdom.
The crucial computing support from all WLCG partners is
acknowledged gratefully, in particular from CERN, the
ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF
(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/
GridKA (Germany), INFN-CNAF (Italy), NL-T1
(Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK)
and BNL (USA), the Tier-2 facilities worldwide and large
non-WLCG resource providers. Major contributors of
computing resources are listed in Ref. [61].

Dirac’s theory, Naturwissenschaften 23, 246 (1935).

[2] W. Heisenberg and H. Euler, Consequences of Dirac’s

[3] I. F. Ginzburg and A. Schiller, Search for a heavy magnetic
monopole at the Fermilab Tevatron and CERN LHC, Phys.

Saimpert, Light-by-light scattering with intact protons at the
LHC: From standard model to new physics, J. High Energy
Phys. 01 (2013) 119.

Axionlike Particles with Ultraperipheral Heavy-Ion Collisions,

[8] P. N. Akmansoy and L. G. Medeiros, Constraining non-
linear corrections to Maxwell electrodynamics using γγ

[9] V. A. Kostelecky and Z. Li, Gauge field theories with
Lorentz-violating operators of arbitrary dimension, Phys.

[10] S. Laporta and E. Remiddi, The analytical value of the
electron light-light graphs contribution to the muon (g − 2)

477, 1 (2009).

in heavy-ion collisions with the ATLAS detector at the

and searches for axion-like particles in ultra peripheral
PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B (to
be published).

Light Scattering at the Large Hadron Collider, Phys. Rev.
Lett. 111, 080405 (2013); Erratum, Phys. Rev. Lett. 116,
129901(E) (2016).

ultra-peripheral nuclear collisions, Annu. Rev. Nucl. Part.

[16] A. J. Balz et al., The physics of ultra peripheral collisions at

[17] E. Fermi, On the theory of collisions between atoms and
electrically charged particles, Nuovo Cimento 2, 143
(1925).

[18] E. J. Williams, Nature of the high energy particles of
penetrating radiation and status of ionization and radiation

[19] R. R. Wilson, Scattering of 1.33 MeV Gamma-Rays by an
Electric Field, Phys. Rev. 90, 720 (1953).

Willutzki, and G. G. Winter, Measurement of Delbrück
scattering and observation of photon splitting at high

[21] M. Schumacher, I. Borchert, F. Smend, and P. Rullhusen,
Delbrück scattering of 2.75 MeV photons by lead, Phys.

[22] S. Z. Akhmadaliev et al., Delbrück scattering at energies of

[23] S. Z. Akhmadaliev et al., Experimental Investigation of

[24] JADE Collaboration, A measurement of the η radiative
width $\Gamma_{\eta \rightarrow \gamma \gamma}$, Phys. Lett. 158B, 511 (1985).

[25] TPC/Two-Gamma Collaboration, Study of η formation in

[26] Crystal Ball Collaboration, Formation of the pseudoscalars
π^0, η, and η' in the reaction $\gamma \gamma \rightarrow \gamma \gamma$, Phys. Rev. D 38, 1365
(1988).

[27] KLOE Collaboration, Measurement of η meson production
in $\gamma \gamma$ interactions and $\Gamma(\eta \rightarrow \gamma \gamma)$ with the KLOE

[28] ATLAS Collaboration, The ATLAS experiment at the

[29] ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point (IP) in the center
of the detector and the z axis along the beam pipe. The
x axis points from the IP to the center of the LHC ring, and
the y axis points upward. Cylindrical coordinates (r, ϕ)
are used in the transverse plane, ϕ being the azimuthal
angle around the z axis. The pseudorapidity is defined in
terms of the equation $\eta = -\ln \tan(\theta/2)$. The distance
between two objects in $\eta-\phi$ space is $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. Transverse
momentum is defined by $p_T = p \sin \theta$.

052001-6

[37] M. Klusek-Gawenda, W. Schäfer, and A. Szczurek, Two-gluon exchange contribution to elastic $\gamma\gamma \rightarrow \gamma\gamma$ scattering and production of two-photons in ultraperipheral ultra-relativistic heavy ion and proton-proton collisions, Phys. Lett. B 761, 399 (2016).

[38] T. Aalten et al. (CDF Collaboration), Observation of Exclusive $\gamma\gamma$ Production in pp Collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. 108, 081801 (2012).

[59] Two photons at particle level with $|\eta'| < 2.4$, $p_T > 3$ GeV, $m_{\gamma\gamma} > 6$ GeV, $p_T^{\gamma\gamma} < 1$ GeV and $A_\phi < 0.01$.

(ATLAS Collaboration)

1. Department of Physics, University of Adelaide, Adelaide, Australia
2. Physics Department, SUNY Albany, Albany, New York, USA
3. Department of Physics, University of Alberta, Edmonton Alberta, Canada
4. Department of Physics, Ankara University, Ankara, Turkey
5. Istanbul Aydin University, Istanbul, Turkey
6. Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7. LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
8. High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9. Department of Physics, University of Arizona, Tucson, Arizona, USA
10. Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
11. Department of Physics, University of Texas at Austin, Austin, Texas, USA
12. Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
13. Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
14. Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
15. Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
16. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
17. Physics Department, Tsinghua University, Beijing, China
18. Department of Physics, Nanjing University, Nanjing, China
19. Physics Department, University of Belgrade, Belgrade, Serbia
20. Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
21. Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
22. School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
23. INFN Bologna and Universita' di Bologna, Dipartimento di Fisica, Italy
24. INFN Sezione di Bologna, Italy
25. Department of Physics, Boston University, Boston, Massachusetts, USA
26. Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27. Transilvania University of Brasov, Brasov, Romania
28. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
29. Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30. Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31. California State University, California, USA
32. Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
33. Department of Physics, University of Cape Town, Cape Town, South Africa
34. Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
35. School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia
Novosibirsk State University Novosibirsk, Russia

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia

Department of Physics, New York University, New York, New York, USA
Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan

The Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Portugal

Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade de Coimbra, Coimbra, Portugal

Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Universidad de Granada, Granada (Spain), Spain

Dep Física y CEFITEC de Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Czech Technical University in Prague, Prague, Czech Republic

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile

Department of Physics, University of Washington, Seattle, Washington, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Department Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada

SLAC National Accelerator Laboratory, Stanford, California, USA

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia

High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Tomsk State University, Tomsk, Russia

Department of Physics, University of Toronto, Toronto, Ontario, Canada

TRIUMF, Vancouver, British Columbia, Canada

Department of Physics and Astronomy, York University, Toronto, Ontario, Canada

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana, Illinois, USA
Instituto de Fisica Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
Department of Physics, Yale University, New Haven, Connecticut, USA
Yerevan Physics Institute, Yerevan, Armenia

aDeceased.
bAlso at Department of Physics, King’s College London, London, United Kingdom.
cAlso at Istanbul University, Department of Physics, Istanbul, Turkey.
dAlso at Instituto de Física Teorica, IFT-UAM/CSIC, Madrid, Spain.
eAlso at TRIUMF, Vancouver, British Columbia, Canada.
fAlso at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
gAlso at Physics Department, An-Najah National University, Nablus, Palestine.
hAlso at Department of Physics, California State University, Fresno, USA.
iAlso at Department of Physics, University of Fribourg, Fribourg, Switzerland.
jAlso at Physics Dept, University of South Africa, Pretoria, South Africa.
kAlso at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.
Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
lAlso at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.
mAlso at Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
Also at Universita di Napoli Parthenope, Napoli, Italy.
nAlso at Institute of Particle Physics (IPP), Canada.
oAlso at Department of Physics, University of Adelaide, Adelaide, Australia.
pAlso at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
qAlso at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
rAlso at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa.
sAlso at Department of Physics, California State University, East Bay, USA.
tAlso at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
uAlso at Department of Physics, University of Michigan, Ann Arbor, Michigan, USA.
wAlso at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
xAlso at Graduate School of Science, Osaka University, Osaka, Japan.
yAlso at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
bAlso at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands.
cAlso at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
dAlso at CERN, Geneva, Switzerland.
eAlso at Department of Physics, Stanford University, Stanford, California, USA.
fAlso at Manhattan College, New York, New York, USA.
gAlso at Joint Institute for Nuclear Research, Dubna, Russia.
hAlso at Hellenic Open University, Patras, Greece.
iAlso at The City College of New York, New York, New York, USA.
jAlso at Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
kAlso at Department of Physics, California State University, Sacramento, USA.
lAlso at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
mAlso at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
nAlso at Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom.
oAlso at Louisiana Tech University, Ruston, Louisiana, USA.
pAlso at School of Physics, Sun Yat-sen University, Guangzhou, China.
qAlso at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah, United Arab Emirates.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
Also at National Research Nuclear University MEPhI, Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France.
Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.