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Abstract: Via a challenging field-theory computation, we confirm a supergravity prediction

for the non-supersymmetric D3-D7 probe-brane system with probe geometry AdS4×S2×S2,

stabilized by fluxes. Supergravity predicts, in a certain double-scaling limit, the value

of the one-point functions of chiral primaries of the dual defect version of N = 4 SYM

theory, where the fluxes translate into SO(3)×SO(3)-symmetric, Lie-algebra-valued vacuum

expectation values for all six scalar fields. Using a generalization of the technique based

on fuzzy spherical harmonics developed for the related D3-D5 probe-brane system, we

diagonalize the resulting mass matrix of the field theory. Subsequently, we calculate the

planar one-loop correction to the vacuum expectation values of the scalars in dimensional

reduction and find that it is UV finite and non-vanishing. We then proceed to calculating

the one-loop correction to the planar one-point function of any single-trace scalar operator

and explicitly evaluate this correction for a 1/2-BPS operator of length L at two leading

orders in the double-scaling limit, finding exact agreement with the supergravity prediction.
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1 Introduction and summary

Introducing defects such as boundaries or interfaces in conformal field theories (CFTs)

does not only make these theories more adapt to experimental situations in condensed

matter systems but also constitutes a natural step in exploring the limits of applicability of

modern approaches to quantum field theory such as duality, integrability and the conformal

bootstrap program, see e.g. [1]. From the latter perspective, various defect versions of the

four-dimensional maximally supersymmetric Yang-Mills (N = 4 SYM) theory constitute

particularly interesting arenas for investigation.

An example of such a defect CFT is the field theory dual to the D3-D5 probe-brane

setup with k units of background gauge-field flux [2, 3], see [4] for a review. The presence

of the flux translates into the rank of the gauge group of the defect field theory being

different on the two sides of a codimension-one defect placed at x3 = 0 and three of the

scalar fields of N = 4 SYM theory carrying vacuum expectation values (vevs) given by the

generators of a k-dimensional irreducible representation of su(2) for x3 > 0. This setup

partly breaks conformal symmetry as well as supersymmetry. Conformal symmetry is

reduced from SO(4, 2) to SO(3, 2) and the supersymmetry is reduced to three-dimensional

N = 4 [5, 6]. The presence of the defect implies that operators can acquire non-vanishing

one-point functions of the form [7]

〈O∆〉(x) =
C

x∆
3

, (1.1)

with ∆ denoting the conformal dimension, and due to the vevs this can happen already at

tree level for certain scalar operators. Using the language of integrability, it was possible to

express in one compact formula the tree-level one-point functions of all bulk single-trace

scalar operators of the defect CFT [8–11]. Furthermore, by a rather demanding field-theory

calculation involving the diagonalization of the highly non-trivial mass matrix using fuzzy

spherical harmonics, it was possible to extend the compact formula for one-point functions

to one-loop order in the SU(2) sector of the theory [12–14]. What is more, the one-loop

computation allowed for a comparison with a prediction originating from supergravity [15]

and despite the partial breaking of both conformal and supersymmetry a perfect match

was found [12, 13]. More precisely, the supergravity computation involved taking the

double-scaling limit [16]1

λ→∞, k →∞, λ

k2
fixed, (1.2)

where λ is the ’t Hooft coupling, and performing a perturbative expansion in λ/k2. From

the result of this computation, a prediction for the ratio of the one-loop and the tree-level

value of the one-point function of the chiral primary trZL in the double-scaling limit could

be inferred [12].

1This double-scaling limit is reminiscent of the Berenstein-Maldacena-Nastase limit [17], which breaks

down at four-loop order [18–20]. While the present double-scaling limit breaks down for non-protected

operators already at one-loop order, it holds for protected operators such as trZL to at least (L− 1)-loop

order [14].
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Figure 1. Brane configuration in string theory (left) and the dual field-theory picture (right) with

different gauge groups on each side of the defect at x3 = 0.

A similar prediction can be extracted from a supergravity computation performed

in a closely related but completely non-supersymmetric setup, namely that of a D3-D7

probe-brane system [21]. The D3-D7 probe-brane system has two configurations which are

of relevance for us, namely one where the geometry of the D7 brane is AdS4 × S2 × S2

and one where the geometry is AdS4 × S4. In both cases, the configuration has to be

stabilized by adding either fluxes k1 and k2 on the two S2’s [22] or a non-trivial instanton

bundle on the S4 [23]. These flux-stabilized configurations have interesting applications

from the condensed matter perspective giving rise to strongly coupled Dirac fermions in

2+1 dimensions, see e.g. [22–29]. The former configuration has a dual defect CFT where

all six scalar fields of N = 4 SYM theory are assigned vevs in the form of generators of

the (k1 × k2)-dimensional irreducible representation of su(2) × su(2) on one side of the

defect; see figure 1. In the latter case, only five out of the scalar fields are assigned vevs

and these transform in an irreducible SO(5) representation. For both cases, it is possible to

introduce a double-scaling parameter and to evaluate the one-point function as an expansion

in this parameter [21]. Furthermore, in both cases the system is stable if the double-scaling

parameter is sufficiently small. Reference [21] gives the leading order result of this evaluation

and the higher orders can be extracted by a straightforward extension of this work. For

the AdS4 × S2 × S2 symmetric configuration, the double-scaling limit is introduced as

follows [21]:

λ→∞, k1, k2 →∞,
λ

(k2
1 + k2

2)
fixed. (1.3)

Keeping also the ratio k1/k2 finite and assuming (k1 − k2) to be of the same order as k1

and k2, the supergravity prediction for the one-point function of the unique SO(3)× SO(3)-

symmetric chiral primary of (even) length L reads

〈OL〉
〈OL〉tree

= 1 +
λ

4π2(k2
1 + k2

2)

1

(L− 1)(k2
1 + k2

2)2

(
4(k1k2)2 + (L3 + 3L− 2)(k4

1 + k4
2)

+ 2(L− 1)(L+ 2)k1k2(k2
1 − k2

2) cot[(L+ 2)ψ0]

)
+O

(
λ2

(k2
1 + k2

2)2

)
,

(1.4)
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where ψ0 = arctan(k1/k2). Notice that the prediction carries over to any other chiral

primary with a non-trivial projection on an SO(3) × SO(3)-symmetric one, such as e.g.

trZL. For the AdS4 × S4 configuration, supergravity also gives a prediction for the one-

point function, however, with less structure as only one parameter is involved. In the

remainder of this paper, we shall demonstrate how the rather intricate prediction (1.4) can

be reproduced via a solid field-theory calculation. The major challenge of the computation

is the diagonalization of the mass matrix of the theory, which requires a significant further

development of the technique based on fuzzy spherical harmonics introduced in [12, 13].

The challenge is even bigger in the case of the SO(5)-symmetric vevs. Our refined method

works for that case as well but with considerably more effort. We plan to return to this

case in a future publication [30]. With the present work, we do not only provide a detailed

positive test of AdS/dCFT in a situation where supersymmetry is completely broken; we

also set up a perturbative framework which makes possible the evaluation of numerous

other quantities in the defect CFT in question.

Our paper is structured as follows. In section 2, we diagonalize the highly non-trivial

mass matrix that arises due to the vevs. In section 3, we determine the resulting propagators

of the mass eigenstates, which take the form of AdS4 propagators, and subsequently the

propagators of the fields occurring in the action. Having thus set up the framework for

calculating quantum corrections in this defect CFT, we calculate the first quantum correction

to the classical solution in section 4, which we find to be non-vanishing. We proceed to

calculate the one-loop correction to the one-point function of general single-trace operators,

and in particular to trZL, in section 5. In section 6, we conclude with an outlook on possible

future directions and interesting problems our perturbative framework can be applied to.

Several appendices contain our conventions (appendix A) as well as details on technical

parts of the calculations (appendices B–D).

2 Mass matrix

In this section, we diagonalize the mass matrix that arises due to the scalar vevs. Following

the strategy of [12, 13], we begin by expanding the action around the classical solution in

section 2.1. We then proceed to diagonalize the mass matrices for the bosons and fermions

in sections 2.2 and 2.3, respectively. We summarize the result in section 2.4.

2.1 Expansion of the action

The defect CFT we study contains two types of fields: the ones of N = 4 SYM theory

transforming in the adjoint of the gauge group and the fundamental fields living on the

three-dimensional defect. However, the fields living on the defect will not contribute to the

one-loop one-point functions of bulk2 operators as explained in [13], and we accordingly

neglect the corresponding part of the action. The action for the bulk fields is the one of

2Note that ‘bulk’ refers to four-dimensional Minkowski space without the defect; it should not be confused

with the bulk of the dual AdS5.

– 4 –
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standard N = 4 SYM theory in four dimensions,

SN=4 =
2

g2
YM

∫
d4x tr

(
− 1

4
FµνF

µν − 1

2
DµφiD

µφi +
i

2
ψ̄γµDµψ (2.1)

+
1

4
[φi, φj ][φi, φj ] +

1

2

3∑
i=1

ψ̄Gi[φi, ψ] +
1

2

6∑
i=4

ψ̄Gi[φi, γ5ψ]

)
.

We describe in appendix A our field-theory conventions, which follow the ones of [13]. In

particular, we explicitly give the matrices Gi (i = 1, . . . , 6), which arise in the reduction

from ten- to four-dimensional SYM theory. The ψi for i = 1, . . . , 4 are four-dimensional

Majorana fermions, and all these fields transform in the adjoint of U(N),

Dµφi = ∂µφi − i[Aµ, φi], Dµψi = ∂µψi − i[Aµ, ψi]. (2.2)

The classical equations of motion of (2.1) are

∇2φcl
i =

[
φcl
j ,
[
φcl
j , φ

cl
i

]]
, i = 1, . . . , 6, (2.3)

where we are setting the fermions and gauge fields to zero classically, and are looking for

time-independent solutions for the scalars. A solution to the equations of motion for the six

scalar fields with SO(3)× SO(3) symmetry is [21]3

φcl
i (x) = − 1

x3

(
tk1i ⊗ 1k2

)
⊕ 0N−k1k2 for i = 1, 2, 3,

φcl
i (x) = − 1

x3

(
1k1 ⊗ t

k2
i−3

)
⊕ 0N−k1k2 for i = 4, 5, 6.

(2.4)

Here the matrices tkai constitute the ka-dimensional irreducible representation of su(2);

thus, the solution has su(2)× su(2) symmetry. In the case k1 = 1 or k2 = 1, the vevs (2.4)

reduce to the ones in the supersymmetric D3-D5 setup [13]; hence, we will always assume

k1, k2 ≥ 2. The classical solution (2.4) applies for x3 > 0 and is responsible for breaking

the gauge group from U(N) to U(N − k1k2) for x3 > 0. All other fields vanish classically

in this region. For x3 < 0, all fields have gauge group U(N − k1k2) and the vevs for these

fields vanish.

We expand the action around the classical solution as

φi(x) = φcl
i (x) + φ̃i(x). (2.5)

The gauge fixing is implemented by introducing fermionic ghost fields c and c̄ transforming

as Lorentz scalars, following [13, 32]. The terms in the expanded action that are linear in

3The prefactor 1
x3

ensures scale invariance of the defect field theory and is important for the dual

probe-brane interpretation. A set-up where the classical fields were similar but not carrying the 1
x3

prefactor

was studied in [31], where in order to stabilize the system extra mass and interaction terms were added to

the N = 4 SYM action.

– 5 –
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φ̃i vanish by the classical equations of motion. All fields have a canonically normalized

(quadratic) kinetic term,

Skin =
2

g2
YM

∫
d4x tr

(
1

2
Aµ∂ν∂

µAν +
1

2
φ̃i∂ν∂

ν φ̃i +
i

2
ψ̄γµ∂µψ + c̄∂µ∂

µc

)
. (2.6)

The mass term for the bosons becomes

Sm,b =
2

g2
YM

∫
d4x tr

(
− 1

2
φ̃j [φ

cl
i , [φ

cl
i , φ̃j ]]− φ̃i[[φcl

i , φ
cl
j ], φ̃j ]

− 1

2
Aµ[φcl

i , [φ
cl
i , A

µ]] + 2i[Aµ, φ̃i]∂µφ
cl
i

)
,

(2.7)

while the mass term for the four Majorana fermions ψi and the ghosts c and c̄ is

Sm,f =
2

g2
YM

∫
d4x tr

(
1

2

3∑
i=1

ψ̄Gi[φcl
i , ψ] +

1

2

6∑
i=4

ψ̄Gi[φcl
i , γ5ψ]−

6∑
i=1

c̄[φcl
i , [φ

cl
i , c]]

)
. (2.8)

The expanded action also contains cubic and quartic interaction vertices between the

different fields. The cubic interactions are given by

Scubic =
2

g2
YM

∫
d4x tr

(
i[Aµ, Aν ]∂µAν + [φcl

i , φ̃j ][φ̃i, φ̃j ] + i[Aµ, φ̃i]∂µφ̃i + [Aµ, φ
cl
i ][Aµ, φ̃i]

+
1

2
ψ̄γµ[Aµ, ψ] +

1

2

3∑
i=1

ψ̄Gi[φ̃i, ψ] +
1

2

6∑
i=4

ψ̄Gi[φ̃i, γ5ψ] + i(∂µc̄)[Aµ, c]− c̄[φcl
i , [φ̃i, c]]

)
.

(2.9)

The quartic interaction vertices are identical to the quartic vertices present in the action (2.1).

They do not play a role for the one-loop correction to the one-point functions of bulk

operators, starting to contribute only at two-loop order [13].

The mass terms (2.7) and (2.8) are not diagonal, neither in flavor nor in color, and

have to be diagonalized in order to obtain the mass spectrum of the theory and thus

the propagators. Moreover, note that unlike actual mass terms, the terms (2.7) and (2.8)

depend on the inverse distance to the defect via the vevs (2.4). This dependence can be

understood in terms of an effective AdS4 space, as was found in [13, 16] and is discussed in

detail in section 3.

In the remainder of the paper, we will use Euclidean signature.

2.2 Boson mass matrix

In this section, we will treat the mass term for the bosons, while the mass term for the

fermions will be treated in section 2.3.

– 6 –
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Inserting the classical solution (2.4) into the mass term (2.7) for the bosons, the latter

can be written as

Sm,b =
2

g2
YM

∫
d4x

1

x2
3

tr

(
− 1

2

6∑
j=1

φ̃j

[
(L(1))2 + (L(2))2

]
φ̃j −

1

2
Aµ

[
(L(1))2 + (L(2))2

]
Aµ

+ i
3∑

i,j,k=1

εijkφ̃iL
(1)
j φ̃k + i

3∑
i,j,k=1

εijkφ̃i+3L
(2)
j φ̃k+3

+ i
3∑
i=1

[
φ̃iL

(1)
i A3 −A3L

(1)
i φ̃i

]
+ i

3∑
i=1

[
φ̃i+3L

(2)
i A3 −A3L

(2)
i φ̃i+3

])
. (2.10)

The operators L
(1)
i and L

(2)
i for i = 1, 2, 3 are defined as the adjoint of the classical solution,

L
(1)
i ≡ ad

[(
tk1i ⊗ 1k2

)
⊕ 0N−k1k2

]
, L

(2)
i ≡ ad

[(
1k1 ⊗ t

k2
i

)
⊕ 0N−k1k2

]
, (2.11)

where as usual (adA)B ≡ [A,B]. They satisfy the commutation relations of su(2)× su(2),[
L

(1)
i , L

(1)
j

]
= iεijkL

(1)
k ,

[
L

(2)
i , L

(2)
j

]
= iεijkL

(2)
k ,

[
L

(1)
i , L

(2)
j

]
= 0. (2.12)

Furthermore, we write (L(a))2 ≡
∑

i(L
(a)
i )2 for the quadratic Casimirs corresponding to

the two sectors with a = 1, 2. We will use their eigenvalues `1(`1 + 1) and `2(`2 + 1) to

label irreducible representations of su(2) × su(2) by (`1, `2). As in [13], we find that we

can distinguish two types of bosons: if their mass term is already diagonal in flavor the

fields are called “easy” bosons, while the ones for which flavor and color mix are called

“complicated”.

We rewrite (2.10) as

Sm,b =
2

g2
YM

∫
d4x

(
−1

2x2
3

)
tr

(
E†
[
(L(1))2 + (L(2))2

]
E (2.13)

+ C̃†
[
(L(1))2 + (L(2))2 − 2S̃

(1)
i L

(1)
i − 2S̃

(2)
i L

(2)
i

]
C̃

)
,

where we have grouped the fields into vectors of easy and complicated fields E and C̃

respectively,

E =

A0

A1

A2

 , C̃ =


φ̃1

...

φ̃6

A3

 . (2.14)

The seven-dimensional matrices S̃
(1)
i and S̃

(2)
i act on the flavor index while the operators

L
(1)
i and L

(2)
i act on the color part of the quantum fields. We see from (2.13) that for the

easy fields we only need to diagonalize the operator (L(1))2 + (L(2))2 in color space. The

– 7 –
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mass term for the complicated fields mixes different flavors by means of the matrices S̃
(1)
i

and S̃
(2)
i and we will have to diagonalize the color and flavor part simultaneously. Note that

compared to the solution where only three scalar fields get non-trivial SO(3)-symmetric vevs

studied in [13], all scalars φ̃i are now complicated bosons and only the three components of

the gauge fields A0, A1, A2 and the ghost field remain easy. We will denote the eigenvalues

of the matrices inside the trace in (2.13) by m2.

2.2.1 Decomposition of the color matrices and easy fields

In order to proceed with the diagonalization, we decompose the color part of a generic field

Φ in blocks:

Φ = [Φ]n,n′E
n
n′ + [Φ]n,aE

n
a + [Φ]a,nE

a
n + [Φ]a,a′E

a
a′ , (2.15)

with n, n′ = 1, . . . , k1k2 and a, a′ = k1k2 + 1, . . . , N . Here Enn′ are N ×N matrices with a

single non-vanishing entry, namely a 1 at position (n, n′). The fields [Φ]n,a and [Φ]a,n will

often be referred to as fields in the off-diagonal block.

The fields [Φ]a,a′ in the (N − k1k2)× (N − k1k2) block are massless since

L
(1)
i Eaa′ =

[(
tk1i ⊗ 1k2

)
⊕ 0N−k1k2 , E

a
a′

]
= 0, (2.16)

and similarly for L
(2)
i . One can think of this result as the statement that the indices a and

a′ are singlets under su(2)× su(2).

The matrices Ena and Ean transform in the (k1 × k2)-dimensional irreducible represen-

tation of su(2)× su(2),

L
(1)
i Ena = En

′
a[t

k1
i ⊗ 1k2 ]n′,n, L

(1)
i Ean = −[tk1i ⊗ 1k2 ]n,n′E

a
n′ ,

L
(2)
i Ena = En

′
a[1k1 ⊗ t

k2
i ]n′,n, L

(2)
i Ean = −[1k1 ⊗ t

k2
i ]n,n′E

a
n′ .

(2.17)

Equivalently, each index n transforms in the same representation as ti, namely the one

with spins `1 = k1−1
2 and `2 = k2−1

2 . It follows that the matrices Ena and Ean already

diagonalize the quadratic Casimir operators,

(L(1))2Ena =
k2

1 − 1

4
Ena, (L(1))2Ean =

k2
1 − 1

4
Ean, (2.18)

and analogously for (L(2))2. The matrices Ena and Ean transform into each other under

Hermitian conjugation, and this behavior carries over to the fields [Φ]n,a and [Φ]a,n in the

off-diagonal block:

(Ena)
† = Ean, [Φ]†n,a ≡

(
[Φ]n,a

)†
= [Φ]a,n . (2.19)

Moreover, they are orthogonal and normalized in the sense that

tr
[
(Ena)

†En
′
a′

]
= δnn

′
δaa′ , tr

[
(Ean)†En

′
a′

]
= 0,

tr
[
(Ean)†Ea

′
n′

]
= δaa

′
δnn′ , tr

[
(Ena)

†Ea
′
n′

]
= 0.

(2.20)
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For easy fields [Φ]n,a and [Φ]a,n, for which (L(1))2 + (L(2))2 is the complete mass term, we

thus find the masses

m2
easy ≡

k2
1 − 1

4
+
k2

2 − 1

4
, (2.21)

which have multiplicity 2k1k2(N − k1k2).

Finally, the matrices Enn′ contain two n indices, and therefore they transform as the

product of two (k1 × k2)-dimensional irreducible representations of su(2) × su(2). This

product is reducible and decomposes as

(
k1 − 1

2
,
k2 − 1

2

)
⊗
(
k1 − 1

2
,
k2 − 1

2

)
=

k1−1⊕
`1=0

k2−1⊕
`2=0

(`1, `2), (2.22)

where (`1, `2) is the su(2) × su(2) representation with spins `1 and `2 and dimension

(2`1 + 1)× (2`2 + 1). Note that the fields [Φ]n,a and [Φ]a,n in the off-diagonal block have

spins `1 = k1−1
2 and `2 = k2−1

2 , which appears as one of the terms in the decomposition (2.22).

Thus, any results for the masses in the off-diagonal blocks can be obtained from the result

in the k1k2 × k1k2 block by the simple replacement rule

`1 →
k1 − 1

2
and `2 →

k2 − 1

2
. (2.23)

This justifies that in the following we will mostly focus on the k1k2 × k1k2 block.

In the case of the field theory where only three scalar fields get non-trivial SO(3)-

symmetric vevs, dual to the D3-D5 probe-brane setup, the mass term for the easy bosons is

L2. In [13], it was found that the diagonalization in the corresponding k× k block could be

solved by expressing the fields in a basis of fuzzy spherical harmonics Ŷ m
` constituting an

irreducible spin-` representation of su(2). In the present case, the mass term for the easy

bosons contains the operator (L(1))2 + (L(2))2, and since (L(1))2 and (L(2))2 commute with

each other, we can diagonalize them simultaneously. The eigenstates of (L(1))2 + (L(2))2

are therefore the tensor products Ŷ m1
`1
⊗ Ŷ m2

`2
of two fuzzy spherical harmonics. We use this

basis to express the fields in the k1k2 × k1k2 block as

k1k2∑
n,n′=1

[Φ]n,n′E
n
n′ =

k1−1∑
`1=0

k2−1∑
`2=0

`1∑
m1=−`1

`2∑
m2=−`2

Φ`1,m1;`2,m2 Ŷ
m1
`1
⊗ Ŷ m2

`2
. (2.24)

The properties of the basis states Ŷ m1
`1
⊗ Ŷ m2

`2
follow from the properties of the fuzzy

spherical harmonics Ŷ m
` , which are reviewed in appendix A.2. An important property

is the behavior under Hermitian conjugation, which carries over to the field components

Φ`1,m1;`2,m2 : (
Ŷ m1
`1
⊗ Ŷ m2

`2

)†
= (−1)m1(−1)m2 Ŷ −m1

`1
⊗ Ŷ −m2

`2
,

(Φ`1,m1;`2,m2)† = (−1)m1(−1)m2Φ`1,−m1;`2,−m2 .
(2.25)
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m2 Multiplicity

`1(`1 + 1) + `2(`2 + 1) (2`1 + 1)(2`2 + 1)

(k2
1 − 1)/4 + (k2

2 − 1)/4 2k1k2(N − k1k2)

0 (N − k1k2)(N − k1k2)

Table 1. Masses for the easy bosons A0, A1 and A2 (as well as the ghosts c), including the

k1k2× k1k2, the k1k2× (N − k1k2) and the (N − k1k2)× (N − k1k2) blocks. Here `1 = 0, . . . , k1− 1

and `2 = 0, . . . , k2 − 1.

The operators L
(1)
i and L

(2)
i act on the basis states as

(L(1))2 Ŷ m1
`1
⊗ Ŷ m2

`2
= `1(`1 + 1) Ŷ m1

`1
⊗ Ŷ m2

`2
,

L
(1)
3 Ŷ m1

`1
⊗ Ŷ m2

`2
=
√
`1(`1 + 1)〈`1,m1; 1, 0|`1,m1〉 Ŷ m1

`1
⊗ Ŷ m2

`2
,

L
(1)
± Ŷ m1

`1
⊗ Ŷ m2

`2
= ∓

√
2`1(`1 + 1)〈`1,m1; 1,±1|`1,m1 ± 1〉 Ŷ m1±1

`1
⊗ Ŷ m2

`2
,

(2.26)

with the ladder operators L
(1)
± = L

(1)
1 ± iL

(1)
2 and analogous expressions for (L(2))2, L

(2)
3

and L
(2)
± . Here and in the following, 〈`,m`; s,ms|j,mj〉 denotes the su(2) Clebsch-Gordan

coefficient for coupling the two angular momenta ` and s to the total angular momentum j.

For the case s = 1 and j = ` in (2.26), they are

〈`,m; 1,±1|`,m± 1〉 = ∓
√
`(`+ 1)−m(m± 1)√

2`(`+ 1)
, 〈`,m; 1, 0|`,m〉 =

m√
`(`+ 1)

. (2.27)

Furthermore, the basis states are orthogonal and normalized such that

tr

[(
Ŷ
m′1
`′1
⊗ Ŷ m′2

`′2

)†
Ŷ m1
`1
⊗ Ŷ m2

`2

]
= δ`′1,`1 δ`′2,`2 δm1,m′1

δm2,m′2
. (2.28)

Using this basis, we see that the mass eigenvalues of the fields Φ`1,m1;`2,m2 are

m2
easy ≡ `1(`1 + 1) + `2(`2 + 1), (2.29)

where we must take all combinations of `1 = 0, . . . , k1−1 and `2 = 0, . . . , k2−1. The multiplic-

ity is the dimension of the corresponding su(2)×su(2) representation, i.e. (2`1 + 1)(2`2 + 1).

As discussed before, the masses of the fields in the (N − k1k2)× (N − k1k2) block are zero.

Finally, the masses (2.21) in the k1k2 × (N − k1k2) and the (N − k1k2)× k1k2 blocks are

indeed obtained from (2.29) by the replacement rule (2.23). We summarize the masses of

the easy fields in table 1.

2.2.2 Complicated fields

For the complicated fields the decomposition in terms of su(2)× su(2) representations is not

sufficient, because we also need to solve the problem of flavor mixing. Since (L(1))2 + (L(2))2

commutes with S̃ · L ≡ S̃
(1)
i L

(1)
i + S̃

(2)
i L

(2)
i we can diagonalize the two terms in (2.13)

simultaneously. Thus the masses will have the form `1(`1 + 1) + `2(`2 + 1)− 2λ, where λ

are the eigenvalues of the mixing matrix S̃ · L.
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Rewriting the matrices S̃i. The seven-dimensional matrices S̃i are given in block

form by

S̃i ≡ S̃(1)
i =

 T̃i 0 R̃i
0 0 0

R̃†i 0 0

 , S̃i+3 ≡ S̃(2)
i =

0 0 0

0 T̃i R̃i

0 R̃†i 0

 , i = 1, 2, 3. (2.30)

In the previous equation, R̃j is a 3× 1 matrix that has an i in the j-th component and zeros

everywhere else, namely (R̃j)k = i δjk. On the other hand, the three-dimensional matrices

T̃i are given by

T̃1 =

0 0 0

0 0 −i
0 i 0

 , T̃2 =

 0 0 i

0 0 0

−i 0 0

 , T̃3 =

0 −i 0

i 0 0

0 0 0

 . (2.31)

These matrices form an irreducible representation of the su(2) Lie algebra, so they can be

brought into the usual form for the spin-one representation

T1 =
1√
2

0 1 0

1 0 1

0 1 0

 , T2 =
1√
2

0 −i 0

i 0 −i
0 i 0

 , T3 =

1 0 0

0 0 0

0 0 −1

 , (2.32)

using the unitary transformation

U =
1√
2

−1 0 1

−i 0 −i
0
√

2 0

 . (2.33)

Hence, the matrices S̃i can be rewritten as

S
(1)
i + S

(2)
j = V †

(
S̃

(1)
i + S̃

(2)
j

)
V =

Ti 0 Ri
0 Tj Rj

R†i R
†
j 0

 , (2.34)

with

Ti = U †T̃iU, Ri = U †R̃i, V =

U 0 0

0 U 0

0 0 1

 . (2.35)

The vector of complicated fields has to be transformed accordingly:

C = V †C̃ =

C(1)

C(2)

A3

 , (2.36)

where the three-dimensional vectors C(1) and C(2) are defined by

C(1) ≡

C
(1)
+

C
(1)
0

C
(1)
−

 ≡


1√
2
(−φ̃1 + iφ̃2)

φ̃3
1√
2
(+φ̃1 + iφ̃2)

 , C(2) ≡

C
(2)
+

C
(2)
0

C
(2)
−

 ≡


1√
2
(−φ̃4 + iφ̃5)

φ̃6
1√
2
(+φ̃4 + iφ̃5)

 . (2.37)
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The subscripts +,−, 0 denote the eigenvalues with respect to T3. One can also check that

R†iL
(1)
i = i

(
L

(1)
+√
2
,−L(1)

3 ,−
L

(1)
−√
2

)
, R†iL

(2)
i = i

(
L

(2)
+√
2
,−L(2)

3 ,−
L

(2)
−√
2

)
. (2.38)

After the flavor transformation (2.33), the seven-dimensional matrix that mixes the

flavors in the mass term for the complicated bosons is

S · L = S
(1)
i L

(1)
i + S

(2)
i L

(2)
i =

TiL
(1)
i 0 RiL

(1)
i

0 TiL
(2)
i RiL

(2)
i

R†iL
(1)
i R†iL

(2)
i 0

 . (2.39)

In the diagonalization of (2.39), we have to distinguish the cases where one `a is 0 and

where both `a are bigger than 0.4 For simplicity, we begin with the easier case where one `a
is 0. Note that this formally reduces the diagonalization problem to the one where only three

of the scalar fields get non-trivial SO(3)-symmetric vevs that was solved in [12, 13]. We will

now present a different solution to this diagonalization problem that has a straightforward

generalization to the classical solution with SO(3) × SO(3) symmetry considered in this

paper. In the following, we also drop all references to a.

Diagonalization of TiLi. After the flavor transformation in the previous section, the

four-dimensional matrix S · L ≡ SiLi has the form

SiLi =

(
TiLi RiLi

R†iLi 0

)
. (2.40)

It is important to realize that if we find an eigenvector of TiLi that is annihilated by R†iLi
we can obtain an eigenvector of S · L by padding it with a zero to make it four-dimensional.

We will thus first look for states Φ such that

TiLi Φ = λΦ Φ and R†iLi Φ = 0. (2.41)

This does not yield all eigenstates of S · L, but we will see that the remaining ones are

obtained by diagonalizing a simple 2 × 2 matrix.

If we define a total “angular momentum” operator Ji = Li + Ti, then

TiLi =
1

2

(
J2 − L2 − T 2

)
=

1

2

(
J2 − L2 − 2

)
. (2.42)

Hence, the diagonalization of the term TiLi reduces to the problem of finding a set of

common eigenstates for J2, J3 and L2. This is the well-known problem of addition of angular

momentum, which can be solved using Clebsch-Gordan coefficients. The matrices Ti form

the three-dimensional (spin-one) representation of su(2) and the matrices Li form the spin-`

representation. Thus, the fields (Cms)`m in (2.37) have well-defined quantum numbers `, m

and ms for L2, L3 and T3 respectively. The fields with total angular momentum j, magnetic

4The case where `1 = `2 = 0 is trivial as the corresponding fields are massless.
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quantum number mj and angular momentum ` are found in terms of Clebsch-Gordan

coefficients 〈`,m; s,ms|j,mj〉 by

Bj,mj ;` =

+1∑
ms=−1

∑̀
m=−`

δm+ms,mj 〈`,m; 1,ms|j,mj〉 (Cms)`m. (2.43)

Here the total angular momentum can in general take the three values j = `, `± 1. For the

case ` = 0, however, there is only one total angular momentum j = 1; this necessitates the

aforementioned distinction between `a = 0 and `a 6= 0. The dependence on ` will generally

be dropped, and we will use the notation (Bα)j,mj ≡ Bj,mj ;`=j−α. For example, the state

B+ has total angular momentum j = `+ 1 and mj = −`− 1, . . . , `+ 1. Using this notation

and summing explicitly over m, (2.43) becomes

(Bα)j,mj =
+1∑

ms=−1

〈`− α,mj −ms; 1,ms|j,mj〉 (Cms)`−α,mj−ms . (2.44)

We can write out the basis states corresponding to (2.43) in vector form. Since the 3 × 3

matrices Ti are the standard spin-one representation of su(2), cf. (2.32), we have

T3 êms = ms êms with ê+1 =

1

0

0

 , ê0 =

0

1

0

 , ê−1 =

0

0

1

 . (2.45)

The basis states that are eigenstates of J2, J3 and L2 can thus be written as

Ŷj,mj ;` ≡
+1∑

ms=−1

〈`,mj −ms; 1,ms|j,mj〉 Ŷ
mj−ms

` ⊗ êms

=

〈`,mj − 1; 1,+1|j,mj〉 Ŷ
mj−1
`

〈`,mj ; 1, 0|j,mj〉 Ŷ
mj

`

〈`,mj + 1; 1,−1|j,mj〉 Ŷ
mj+1
`

 .

(2.46)

The Clebsch-Gordan coefficients for the case j = ` were given in (2.27). For j = ` ± 1,

we have

〈`,m; 1,±1|`+ 1,m± 1〉 =

√
(`+ 1±m)(`+ 2±m)√

2(`+ 1)(2`+ 1)
,

〈`,m; 1, 0|`+ 1,m〉 =

√
(`+ 1−m)(`+ 1 +m)√

(`+ 1)(2`+ 1)
,

〈`,m; 1,±1|`− 1,m± 1〉 =

√
(`− 1∓m)(`∓m)√

2`(2`+ 1)
,

〈`,m; 1, 0|`− 1,m〉 =

√
(`−m)(`+m)√

`(2`+ 1)
.

(2.47)
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We find three sets of eigenstates for j = `± 1 and j = ` with eigenvalues

TiLi Ŷj=`+1,mj ;` = ` Ŷj=`+1,mj ;`,

TiLi Ŷj=`,mj ;` = −Ŷj=`,mj ;`,

TiLi Ŷj=`−1,mj ;` = (−`− 1) Ŷj=`−1,mj ;`.

(2.48)

We will show below that the first and the last states satisfy the second condition in (2.41),

namely

R†iLi Ŷj,mj ; j±1 = 0. (2.49)

The fields B± can thus be made into eigenstates of S · L by padding with zeros. The

multiplicity of the corresponding eigenvalue is the dimension of the su(2) representation, i.e.

2j + 1 = 2(`± 1) + 1.

Diagonalization of the remaining 2 × 2 matrix. We can expand the complicated

scalars in the basis of total angular momentum eigenstates and A3 in the basis of fuzzy

spherical harmonics Ŷ`,m, so that the four-dimensional vector of complicated fields is

C =

∑j,mj ,`
Bj,mj ; `Ŷj,mj ;`∑

`,m(A3)`,mŶ
m
`

 . (2.50)

We know how TiLi acts on the basis states Ŷj,mj ;` obtained from the Clebsch-Gordan

procedure from (2.48). Now we will calculate how R†iLi, i.e. the last row in S · L as given

in (2.40), acts on Yj,mj ;`. Using that the ladder operators act as given in (2.26) together

with (2.38) and the completeness relation of the Clebsch-Gordan coefficients, one obtains

R†iLi Ŷj,mj ;` = −i
√
`(`+ 1)

∑
ms

〈`,mj −ms; 1,ms|j,mj〉〈`,mj −ms; 1,ms|`,mj〉 Ŷ
mj

`

= −i δj,`
√
`(`+ 1) Ŷ

mj

` . (2.51)

This vanishes unless j = `. The states Ŷj,mj ;` with j = `± 1 are thus annihilated by R†iLi
and can simply be padded with a zero block to give eigenstates of S · L as we have claimed

before. Using (2.48) and (2.51), we can find the matrix elements of both TiLi and RiLi:

tr
(
Ŷ †j′,m′;`′ TiLi Ŷj,m;`

)
= µj,` δm,m′δ`,`′δj,j′ ,

tr
(

(Ŷ m′
`′ )†R†iLi Ŷj,m;`

)
= −i δm,m′ δ`,`′ δj,`′

√
`(`+ 1),

tr
(
Ŷ †j′,m′;`′ RiLi Ŷ

m
`

)
= +i δm,m′ δ`,`′ δ`,j′

√
`(`+ 1).

(2.52)

The matrix elements µj,` in the first line are µ`+1,` = `, µ`,` = −1 and µ`−1,` = −` − 1,

cf. (2.48). The third line follows naturally from complex conjugation of the second line and

L†i = Li.
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Mass eigenstate Mass m2 Multiplicity

B+ `1(`1 − 1) 2`1 + 3

B− (`1 + 1)(`1 + 2) 2`1 − 1

D+ `1(`1 − 1) 2`1 + 1

D− (`1 + 1)(`1 + 2) 2`1 + 1

Table 2. Masses and eigenstates of the complicated bosons in the k1k2 × k1k2 block for the case

`2 = 0 and `1 = 1, . . . , k1 − 1. The case `1 = 0 and `2 = 1, . . . , k1 − 1 is obtained by relabeling. In

the case `1 = `2 = 0, the masses vanish, while the case `1 6= 0 and `2 6= 0 is shown in table 3.

We now insert the vector of complicated fields C given in (2.50) into the flavor mixing

term in the action, obtaining

tr
[
C†SiLiC

]
=
k−1∑
`=1

[
`

`+1∑
m=−`−1

(B+)†`+1,m(B+)`+1,m − (`+ 1)
`−1∑

m=−`+1

(B−)†`−1,m(B−)`−1,m

+
∑̀
m=−`

(
(B0)†`,m (A3)†`,m

)( −1 −i
√
`(`+ 1)

+i
√
`(`+ 1) 0

)(
(B0)`,m
(A3)`,m

)]
.

(2.53)

The fields B± diagonalize the full 4× 4 matrix as we discussed before. What remains to be

diagonalized is the 2× 2 matrix in the last line of the previous equation. Note in particular

that this matrix does not depend on the magnetic quantum number. The fields that achieve

the diagonalization are

D+ =
1√

2`+ 1

(
−i
√
`B0 +

√
`+ 1A3

)
,

D− =
1√

2`+ 1

(
i
√
`+ 1B0 +

√
`A3

)
,

(2.54)

with eigenvalues λ+ = ` and λ− = −`−1. Notice from this result that the masses are integer

numbers, even though from (2.53) we could have expected square roots in the spectrum.

This is actually an indication that the spectrum can be obtained in a simpler way, namely

only using Clebsch-Gordan coefficients as in [13].

This concludes the diagonalization of the 4×4 sub-block of the seven-dimensional flavor

mixing matrix, which is relevant for the case where one `a is 0. We summarize the result in

table 2. We have effectively rederived the spectrum of the bosons for the classical solution

considered in [13] where only three of the scalar fields get non-trivial SO(3)-symmetric vevs.

Our method is however different and can be extended to the present classical solution with

SO(3)× SO(3) symmetry. In particular, we will find a natural generalization of the 2 × 2

matrix in (2.53).

Full mixing matrix. Let us now diagonalize the full seven-dimensional matrix (2.39)

in the case where `1 6= 0 and `2 6= 0. Following the steps discussed for the 4 × 4 sub-

block relevant for the case where one `a = 0, we define fields B(1) and B(2) with total
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Mass eigenstate Mass m2 Multiplicity

B
(1)
+ m2

(1),+ = `1(`1 − 1) + `2(`2 + 1) (2`1 + 3)(2`2 + 1)

B
(1)
− m2

(1),− = (`1 + 1)(`1 + 2) + `2(`2 + 1) (2`1 − 1)(2`2 + 1)

B
(2)
+ m2

(2),+ = `1(`1 + 1) + `2(`2 − 1) (2`1 + 1)(2`2 + 3)

B
(2)
− m2

(2),− = `1(`1 + 1) + (`2 + 1)(`2 + 2) (2`1 + 1)(2`2 − 1)

D0 m2
0 = `1(`1 + 1) + `2(`2 + 1) + 2 (2`1 + 1)(2`2 + 1)

D+ m2
+ = `1(`1 + 1) + `2(`2 + 1)− 2λ+ (2`1 + 1)(2`2 + 1)

D− m2
− = `1(`1 + 1) + `2(`2 + 1)− 2λ− (2`1 + 1)(2`2 + 1)

Table 3. Masses and eigenstates of the complicated bosons in the k1k2 × k1k2 block in the

SO(3) × SO(3)-symmetric case. One must consider all combinations of `1 = 1, . . . , k1 − 1 and

`2 = 1, . . . , k2 − 1. The masses for the fields in the off-diagonal blocks are obtained by the

replacements `1 → k1−1
2 and `2 → k2−1

2 , while the corresponding multiplicities are obtained by the

same replacement followed by a multiplication with 2(N − k1k2).

angular momentum in each sector. As before, they are given in terms of Clebsch-Gordan

coefficients by

(B(1))j1,m1,`1;`2,m2 =
+1∑

ms=−1

〈`1,m1 −ms; 1,ms|j1,m1〉 (C(1)
ms

)`1,m1;`2,m2 , (2.55)

(B(2))`1,m1;j2,m2,`2 =

+1∑
ms=−1

〈`2,m2 −ms; 1,ms|j2,m2〉 (C(2)
ms

)`1,m1;`2,m2 . (2.56)

We can also write out the corresponding basis states explicitly:

(Ŷ (1))j1,m1,`1;`2,m2
≡ Ŷj1,m1;`1 ⊗ Ŷ

m2
`2

, (Ŷ (2))`1,m1;j2,m2,`2
≡ Ŷ m1

`1
⊗ Ŷj2,m2;`2 . (2.57)

Now using the natural generalization of the matrix elements in (2.52), one can see that the

four fields B
(1)
± and B

(2)
± diagonalize the full 7× 7 matrix (2.39). It remains to diagonalize

a 3× 3 matrix, which is a simple generalization of (2.53):

((
B

(1)
0

)† (
B

(2)
0

)† (
A3

)†) −1 0 −i
√
`1(`1 + 1)

0 −1 −i
√
`2(`2 + 1)

+i
√
`1(`1 + 1) +i

√
`2(`2 + 1) 0


B

(1)
0

B
(2)
0

A3

 . (2.58)

Here we have dropped the quantum numbers from the fields to unclutter the notation. This

matrix has eigenvalues

λ0 = −1, λ± = −1

2
±
√
`1(`1 + 1) + `2(`2 + 1) + 1

4 , (2.59)

and the corresponding diagonal fields are

D0 =
1√
N0

(
−
√
`2(`2 + 1)B

(1)
0 +

√
`1(`1 + 1)B

(2)
0

)
,

D± =
1√
N±

(
i
√
`1(`1 + 1)B

(1)
0 + i

√
`2(`2 + 1)B

(2)
0 + λ∓A3

)
,

(2.60)
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with

N± = λ∓(λ∓ − λ±)

=
1

2

(
1 + 4`1(`1 + 1) + 4`2(`2 + 1)±

√
1 + 4`1(`1 + 1) + 4`2(`2 + 1)

)
,

N0 = −λ+λ− = `1(`1 + 1) + `2(`2 + 1).

(2.61)

Since λ± contains a square root, it is clear that it is impossible to obtain the spectrum of

masses using only a Clebsch-Gordan decomposition, but a more general procedure like the

one we have presented is required.

2.3 Fermion mass matrix

Inserting the classical solution (2.4) into the mass term for the Majorana fermions (2.8),

we find

Sm,f =
2

g2
YM

∫
d4x

(
−1

2x3

)
tr

(
3∑
i=1

ψ̄j(G
(1)
i )jkL

(1)
i ψk +

3∑
i=1

ψ̄j(G
(2)
i )jkL

(2)
i (γ5ψk)

)
, (2.62)

where G
(1)
i ≡ Gi and G

(2)
i ≡ Gi+3 for i = 1, 2, 3. Since [G

(1)
i , G

(2)
j ] = 0 and [L

(1)
i , L

(2)
j ] = 0,

we can diagonalize both terms in (2.62) simultaneously. We give the form of the matrices

G
(1)
i and G

(2)
i in appendix A using the same conventions as [13]. From [13], we also know

that the matrices G
(1)
i can be transformed into block-diagonal form with

U =
1√
2


0 −i −1 0

0 1 i 0

−1 0 0 i

i 0 0 −1

 ⇒ U †G
(1)
i U = −

(
σi 0

0 σi

)
= −12 ⊗ σi. (2.63)

Here σi are the usual Pauli matrices. Acting with U on the remaining matrices G
(2)
i gives

U †G
(2)
i U = i σi ⊗ 12. (2.64)

The extra factor of i is consistent with the fact that the matrices G
(2)
i are anti-Hermitian

and it is also required to make the term with γ5 in (2.62) Hermitian. On the fermions, the

transformation U yields

U †


ψ1

ψ2

ψ3

ψ4

 =
1√
2


−ψ3 − iψ4

iψ1 + ψ2

−ψ1 − iψ2

−iψ3 − ψ4

 =


C++

C−+

C+−
C−−

 ≡ CF . (2.65)

Here the subscripts on Cms1 ,ms2
indicate that the field has spin 1

2 and magnetic quantum

number ms1 with respect to 1
212 ⊗ σ3, and spin 1

2 and magnetic quantum number ms2

with respect to 1
2σ3 ⊗ 12. The fields also have orbital angular momentum `a and magnetic

quantum number ma with respect to L(a) for a = 1, 2. This problem is closely related to
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the one studied in [13], with the difference that here we have two copies of the spin-orbit

coupling problem.

To diagonalize the mass matrix, we define the total angular momentum operators

J
(1)
i = L

(1)
i +

1

2
12 ⊗ σi, J

(2)
i = L

(2)
i +

1

2
σi ⊗ 12, (2.66)

so the terms inside the trace in (2.62) take the form

−C̄F
[
(J (1))2 − (L(1))2 − 1

2

(
1

2
+ 1

)]
CF + C̄F

[
(J (2))2 − (L(2))2 − 1

2

(
1

2
+ 1

)]
(iγ5)CF .

(2.67)

The notation C̄F means the following: transpose the four-dimensional vector of fermions

CF as given in (2.65) and take the Dirac conjugate ψ̄ ≡ ψ†γ0 of each fermion inside of it.

The explicit formula for the diagonal fields in terms of the Clebsch-Gordan coefficients is

given by

Bj1j2
`1,mj1

;`2,mj2
=

∑
ms1 ,m1
ms2 ,m2

〈`1,m1; 1
2 ,ms1 |j1,mj1〉〈`2,m2; 1

2 ,ms2 |j2,mj2〉(Cms1 ,ms2
)`1,m1;`2,m2 ,

(2.68)

where the total angular momentum is ja = `a ± 1
2 . In total, there are four combinations

from combining j1 = `1 ± 1
2 with j2 = `2 ± 1

2 in all possible ways, each with a multiplicity

of (2j1 + 1)(2j2 + 1). The eigenvalues of each term in (2.62) are

j(j + 1)− `(`+ 1)− 1

2

(
1

2
+ 1

)
=

{
` for j = `+ 1

2 ,

−`− 1 for j = `− 1
2 .

(2.69)

After the diagonalization, the quadratic part of the action for the fermions takes the

schematic form

S =
2

g2
YM

∫
d4x

∑
α

tr

[
i

2
B̄αγ

µ∂µBα −
1

2x3
B̄α (cα + i dαγ5)Bα

]
. (2.70)

Here the index α is running over all the diagonal fields B. We will now use a chiral rotation

to rewrite this action in a form where the mass term is positive and does not contain the iγ5

part. Following the procedure described in [33], one finds that the required transformation is

Bα = cos
(
θ
2

)
B′α − i sin

(
θ
2

)
γ5B

′
α, θ ≡ arg(c+ id). (2.71)

Notice that this transformation preserves the Majorana property, namely the fields B′α are

also Majorana fermions. Using this transformation, one can check that the resulting action

has the form

S =
2

g2
YM

∫
d4x

∑
α

tr

[
i

2
B̄′αγ

µ∂µB
′
α −

mα

2x3
B̄′αB

′
α

]
, (2.72)

with mα = |cα + idα| =
√
c2
α + d2

α. We list the values of cα, dα and mα along with their

multiplicities in table 4.
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Mass eigenstate c d Mass m = |c+ id| Multiplicity

B`1+
1
2 ,`2+

1
2 −`1 `2 m++ =

√
`21 + `22 (`1 + 1)(`2 + 1)

B`1+
1
2 ,`2−

1
2 −`1 −`2 − 1 m+− =

√
`21 + (`2 + 1)2 (`1 + 1)`2

B`1−1
2 ,`2+

1
2 `1 + 1 `2 m−+ =

√
(`1 + 1)2 + `22 `1(`2 + 1)

B`1−1
2 ,`2−

1
2 `1 + 1 −`2 − 1 m−− =

√
(`1 + 1)2 + (`2 + 1)2 `1`2

Table 4. Eigenvalues and eigenstates of the fermions in the SO(3)× SO(3)-symmetric case in the

k1k2×k1k2 block. One must consider all combinations of `1 = 0, . . . , k1−1 and `2 = 0, . . . , k2−1. For

the definition of c and d, see (2.70). The values for c, d and m for the fields in the off-diagonal blocks

are obtained by the replacements `1 → k1−1
2 and `2 → k2−1

2 , while the corresponding multiplicities

are obtained by the same replacement followed by a multiplication with 2(N − k1k2).

2.4 Summary of the spectrum

We have now derived the spectrum for the defect CFT with SO(3)× SO(3)-symmetric vevs.

For the easy bosons (and the ghosts), we had to diagonalize the operator (L(1))2 + (L(2))2

which was achieved by expanding the fields in the k1k2 × k1k2 block in fuzzy spherical

harmonics. The fields in the off-diagonal blocks were already eigenstates of this operator.

We list the masses and multiplicities of the easy bosons in table 1.

For the complicated bosons, the mass term reads

(L(1))2 + (L(2))2 − 2S · L, (2.73)

where the term S · L is responsible for mixing fields of different flavor. Knowing that

(L(1))2 + (L(2))2 is diagonalized by an expansion in fuzzy spherical harmonics, we have

subsequently obtained the eigenstates of S · L in two steps. Since we were coupling the

spin-` with the spin-one representation of su(2), we had to distinguish between the case

where either `1 or `2 were zero and the case where both `a were non-zero. The case `a = 0

formally reduced the diagonalization problem to the one solved in [13], which we solved

using a slightly different approach that was also applicable to the second case where both

`1 6= 0 and `2 6= 0. For this case, we first diagonalized the 3 × 3 blocks TiL
(1)
i and TiL

(2)
i

using angular momentum coupling. The eigenstates with j1 = `1 ± 1 and j2 = `2 ± 1 could

trivially be padded with zeros to give eigenstates of the full matrix and their eigenvalues

are given in (2.48). For the remaining eigenstates, we had to diagonalize the 3 × 3 matrix

in (2.58) and found D± and D0 in (2.60) with eigenvalues λ± and λ0 in (2.59). Adding

the contribution from (L(1))2 + (L(2))2, we obtain the masses shown in table 2 for the case

where one of the `a is zero and in table 3 for the general case where `1 6= 0 and `2 6= 0. Note

that we are only listing the masses and multiplicities for the fields [Φ]n,n′ in the k1k2× k1k2

block here. To obtain the masses and multiplicities of the fields in the off-diagonal block, we

use the replacement rule (2.23). The multiplicity also receives an extra factor of 2(N −k1k2)

from the size of the two blocks. Additionally there are (N − k1k2)× (N − k1k2) massless

fields [Φ]a,a′ .
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Finally, we found that the spectrum of the fermions could be obtained by simply

employing the angular momentum techniques from [13] for each sector. The only additional

step was the chiral rotation which allowed us to trade the term with iγ5 in the action for a

standard mass term. The fermion spectrum is shown in table 4.

Let us compare the spectrum for the defect CFT with SO(3)× SO(3)-symmetric vevs

dual to the D3-D7 brane system derived here to the one for the defect CFT dual to the

D3-D5 probe-brane system, where only three scalar fields get non-trivial SO(3)-symmetric

vevs, derived in [13]. In the D3-D5 system, the spectrum can be derived using Clebsch-

Gordan coefficients only, i.e. it is not necessary to employ the two-step process that we

used to rederive it here. In the D3-D7 system however, Clebsch-Gordan coefficients are

not sufficient as can be seen from the appearance of square roots in the mass eigenvalues.

Furthermore, in the D3-D5 system, supersymmetry was visible in the spectrum. Defining

ν =
√
m2 + 1

4 for the bosons and comparing it with the mass |mf | of the fermions, one could

see that the steps between these parameters were half-integers. This could be attributed

to supersymmetry in AdS4, where the conformal dimensions are given by ∆ = 3
2 + ν for

the bosons and ∆ = 3
2 + |mf | for the fermions. The conformal dimensions within one

supermultiplet however differ by 1
2 which implies the observed relation between ν and |mf |.

In the present case, we can only relate three of the masses that appear in the spectrum of

the bosons; namely, we find the relation

ν− =
√
m2
− + 1

4 = νeasy + 1, ν+ =
√
m2

+ + 1
4 = νeasy − 1. (2.74)

This is consistent with the fact that supersymmetry is broken in the D3-D7 system.

3 Propagators

In this section, we take into account the effect that the x3-dependence of the ‘masses’

has on the propagators of the scalars (subsection 3.1) and the fermions (subsection 3.2),

following [13]. We then derive the propagators of the flavor eigenstates that occur in the

action in terms of the propagators of the mass eigenstates. Thus, this section provides the

framework for doing perturbative calculations in this defect CFT.

3.1 Scalar propagators

The propagator for a generic scalar field with mass term m2

x23
is the solution to(

−∂µ∂µ +
m2

x2
3

)
Km2

(x, y) =
g2

YM

2
δ(x− y). (3.1)

As noted in [16], the propagator of a scalar with mass m2

x23
in (d+ 1)-dimensional Minkowski

space is related to the propagator of a scalar with constant mass m̃2 in AdSd+1. The

relation is explicitly given by

Km2
(x, y) =

g2
YM

2
(x3y3)−

d−1
2 Km̃2

AdS(x, y), m̃2 = m2 − d2 − 1

4
. (3.2)
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In our case, d is the dimension of the defect, i.e. d = 3. Using that m̃2 = ∆(∆ − d) in

AdSd+1, we find that the scaling dimension ∆ is

∆ =
d

2
+ ν, ν ≡

√
m2 + 1

4 . (3.3)

A closed expression for the scalar propagator in AdSd+1 using Euclidean signature can be

found e.g. in [34]:

K∆
AdS(x, y) =

Γ(∆) ξ(x, y)∆

2∆(2∆− d)πd/2Γ(∆− d
2)

2F1

(
∆
2 ,

∆+1
2 ; ∆− d

2 + 1; ξ2(x, y)
)

(3.4)

with

ξ(x, y) =
2x3y3

x2
3 + y2

3 + (x0 − y0)2 + (x1 − y1)2 + (x2 − y2)2
. (3.5)

For the Feynman-diagram calculation, we will require the propagator evaluated at x = y.

In this case, the propagator diverges (in the UV) and needs to be regularized. Our

regularization of choice is dimensional regularization (or rather dimensional reduction, as

we discuss below). Moreover, we want to keep the codimension of the defect at 1, such

that its dimension becomes d = 3− 2ε. The expression (3.4) cannot be used in this case.

Instead,

Kν(x, x) =
g2

YM

2

1

16π2x2
3

[
m2

(
− 1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(ν + 1

2)− 1

)
− 1

]
,

(3.6)

which is derived from an integral representation of (3.4), see [13]. Above, γE denotes the

Euler-Mascheroni constant and Ψ denotes the digamma function.

3.2 Fermionic propagators

After the chiral rotation, the action for the Majorana fermions takes the form

S =
2

g2
YM

∫
d4x tr

[
i

2
ψ̄′γµ∂µψ

′ − m

2x3
ψ̄′ψ′

]
, (3.7)

where the mass m > 0, cf. (2.72). The fermionic propagator is the solution to(
−iγµ∂µ +

m

x3

)
Km
F (x, y) =

g2
YM

2
δ(x− y). (3.8)

These propagators were derived in [13, 35],

Km
F (x, y) =

[
iγµ∂µ +

m

x3

] [
Kν=m− 1

2 (x, y)P− +Kν=m+ 1
2 (x, y)P+

]
, (3.9)

with P± = 1
2(1± iγ3) and Kν(x, y) being the bosonic propagator.

The fermionic propagator will later be required in the calculation of the one-loop

correction to the classical solution (section 4), where fermions can circulate in a loop. As
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all spinor indices have to be contracted in this case, we will be interested in the spinor trace

of the propagator. Using (3.6), one can show that the trace of the fermionic propagator,

regularized for x = y, is [13]

trKm
F (x, x) =

g2
YM

8π2x3
3

[
m3 +m2 − 3m− 1 (3.10)

+m(m2 − 1)

(
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(m)− 2

)]
.

It will later be convenient to have an expression for the propagators between the fermion

fields before the chiral rotation. Before the chiral rotation, the action takes the form (2.70),

S =
2

g2
YM

∫
d4x tr

[
i

2
ψ̄γµ∂µψ −

1

2x3
ψ̄(c+ idγ5)ψ

]
. (3.11)

Here ψ could be any of the fields Bα, either in the k1k2 × k1k2, the (N − k1k2)× k1k2 or

the k1k2 × (N − k1k2) block. Since the mass m is related to the parameters c and d by

m = |c+ id|, the propagators between the original fields ψ and chirally rotated fields ψ′ are〈
ψ(x)ψ̄(y)

〉
= K̃c,d

F (x, y),
〈
ψ′(x)ψ̄′(y)

〉
= K

m=|c+id|
F (x, y). (3.12)

Using the transformation (2.71), one can see that the relation between them is

K̃c,d
F = cos2

(
θ
2

)
K
|c+id|
F − sin2

(
θ
2

)
γ5K

|c+id|
F γ5 − sin

(
θ
2

)
cos
(
θ
2

)
{γ5,K

|c+id|
F }, (3.13)

where θ ≡ arg(c + id). We will always be interested in the trace of this propagator,

possibly multiplied by iγ5. Using the explicit form of the fermionic propagator (3.9) and

trigonometric identities, we find

tr K̃c,d
F =

c

|m|
trK

m=|c+id|
F , tr

(
iγ5K̃

c,d
F

)
=

d

|m|
trK

m=|c+id|
F . (3.14)

3.3 Color and flavor part of the propagators

In sections 2.2 and 2.3 we have found the mass eigenstates of the theory, and the propagators

between them can be obtained as described in sections 3.1 and 3.2. However, it will prove

convenient to also derive the propagators between the fields that originally appeared in

the action of N = 4 SYM theory, namely the six scalars, the gauge field, the Majorana

fermions and the ghosts. The reason is that it would be extremely cumbersome to rewrite

the interaction vertices (2.9) in terms of the diagonal fields. Note that we are still giving

the propagators for the color components [Φ]n,a and [Φ]a,n defined in (2.15) as well as

Φ`1,m1;`2,m2 defined in (2.24), which partially diagonalize the color part of the mixing

problem.5

5Recall that the massless fields [Φ]a,a′ have ordinary propagators. The massless fields from the k1k2×k1k2
block can only propagate for x3 > 0 and appropriate boundary conditions have to be imposed at the defect

for these fields. In the D3-D5 case, supersymmetry puts constraints on the possible choices of boundary

conditions, cf. [36, 37], but in the present case we have no such guidelines. The choice of boundary conditions

for these fields, however, will not affect the results in the large-N limit.
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To find these propagators, we express the original fields in terms of the diagonal fields.

For example, for the bosons we have to undo the three steps of the diagonalization: the

flavor transformation (2.36), the Clebsch-Gordan procedure (2.55) and the diagonalization

of the final 3× 3 matrix (2.60). The details of this calculation are shown in appendix B.

The mass term of the complicated bosons is diagonalized in terms of the fields B
(1)
± , B

(2)
± ,

D0 and D±. Thus the propagators between these fields are simply the scalar propagators

Km2
(x, y) from section 3.1 with the corresponding mass eigenvalue from table 3. The

eigenvalues λ± and normalization constants N± and N0 were given in (2.59) and (2.61),

but we repeat them here for convenience:

λ± = −1

2
±
√
`1(`1 + 1) + `2(`2 + 1) + 1

4 , N± = λ∓ (λ∓ − λ±) , N0 = −λ+λ−. (3.15)

For the matrix elements of the su(2) generators ti, we use the shorthand notation

[t
(`1)
i ]m1,m′1

≡ [t2`1+1
i ]`1−m1+1,`1−m′1+1, [t

(`2)
i ]m2,m′2

≡ [t2`2+1
i ]`2−m2+1,`2−m′2+1. (3.16)

Explicit expressions for the generators ti are given in appendix A.2. The propagators

involving easy fields are diagonal in flavor, and we find

〈(A0)`1m1;`2m2(A0)†
`′1m

′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1,m′1

δm2,m′2
Km2=`1(`1+1)+`2(`2+1)︸ ︷︷ ︸

≡Keasy

, (3.17)

where one could replace A0 with any of the other easy fields A1, A2 or c. For the propagators

involving A3 and scalars of different sectors, we find

〈(φ̃(1)i )`1m1;`2m2
(φ̃

(2)
j )†`′1m′1;`′2m′2

〉 = δ`1`′1δ`2`′2 [t
(`1)
i ]m1,m′1

[t
(`2)
j ]m2,m′2

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
︸ ︷︷ ︸

≡Kφ
opp

,

(3.18)

〈(φ̃(1)i )`1m1;`2m2
(A3)†`′1m′1;`′2m′2

〉 = −〈(A3)`1m1;`2m2
(φ̃

(1)
i )†`′1m′1;`′2m′2

〉 (3.19)

= −iδ`1`′1δ`2`′2 [t
(`1)
i ]m1m′1

δm2m′2

(
λ+
N−

Km2
− +

λ−
N+

Km2
+

)
︸ ︷︷ ︸

≡Kφ,A

,

〈(A3)`1m1;`2m2
(A3)†`′1m′1;`′2m′2

〉 = δ`1`′1δ`2`′2δm1m′1
δm2m′2

(
λ2+
N−

Km2
− +

λ2−
N+

Km2
+

)
︸ ︷︷ ︸

≡KA,A

, (3.20)

with φ̃
(1)
i ≡ φ̃i and φ̃

(2)
i ≡ φ̃i+3. For the propagator between scalars from the same sector,

we find

〈(φ̃(1)i )`1m1;`2m2(φ̃
(1)
j )†`′1m′1;`′2m′2

〉 = δ`1`′1δ`2`′2δm2m′2
(3.21)[

δijδm1m′1

(
`1 + 1

2`1 + 1
Km2

(1),+ +
`1

2`1 + 1
Km2

(1),−

)
︸ ︷︷ ︸

≡Kφ,(1)
sing

−iεijk[t
(`1)
k ]m1,m′1

(
Km2

(1),+

2`1 + 1
− Km2

(1),−

2`1 + 1

)
︸ ︷︷ ︸

≡Kφ,(1)
anti

− [t
(`1)
i t

(`1)
j ]m1,m′1

(
Km2

(1),+

(2`1+1)(`1+1)
+

Km2
(1),−

(2`1 + 1)`1
− `2(`2 + 1)

`1(`1 + 1)

Km2
0

N0
− Km2

−

N−
− Km2

+

N+

)
︸ ︷︷ ︸

≡Kφ,(1)
sym

]
.
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From (3.19) and (3.21), the propagators for the other sector are obtained by a simple

relabeling, e.g.

〈(φ̃(2)
i )`1m1;`2m2(φ̃

(2)
j )†

`′1m
′
1;`′2m

′
2
〉 = 〈(φ̃(1)

i )`2m2;`1m1(φ̃
(1)
j )†

`′2m
′
2;`′1m

′
1
〉, (3.22)

where the (implicit) dependence of the masses on `1 and `2 must be taken into account as

well. In the following, we will often use the combination of spacetime propagators Keasy,

Kφ
opp, Kφ,A, KA,A, K

φ,(a)
sing , K

φ,(a)
anti and K

φ,(a)
sym defined in (3.17)–(3.21).6

Before the chiral rotation, the quadratic part of the action for the fermions is diagonalized

by the fields B`1+
1
2 ,`2+

1
2 , B`1+

1
2 ,`2−

1
2 , B`1−1

2 ,`2+
1
2 and B`1−1

2 ,`2−
1
2 . Written in terms of

these fields, the action still contains γ5. Therefore, the propagators between them are of the

form K̃c,d
F in (3.13), where the eigenvalues c and d are given in table 4. In the calculations

in this paper, the propagators always appear inside a spinor trace, possibly multiplied by γ5,

and they can be transformed to the propagators Km
F by means of (3.14) which relates them

to the propagators after the chiral rotation. Undoing the diagonalization of the fermion

mass matrix, we find

〈(ψi)`1m1;`2m2(ψj)`′1m′1;`′2m
′
2
〉 =

δ`1`′1δ`2`′2
(2`1 + 1)(2`2 + 1)

(3.23){
+ δijδm1m′1

δm2m′2

[
`1`2 K̃

`1+1,−`2−1
F + `1(`2 + 1) K̃`1+1,`2

F

+ (`1 + 1)`2 K̃
−`1,−`2−1
F + (`1 + 1)(`2 + 1) K̃−`1,`2F

]
− [G(1)

n ]ij [t
(`1)
n ]m1m′1

δm2m′2

[
(`2 + 1)

(
K̃−`1,`2F − K̃`1+1,`2

F

)
+ `2

(
K̃−`1,−`2−1
F − K̃`1+1,−`2−1

F

) ]
− i[G(2)

n ]ij [t
(`2)
n ]m2m′2

δm1m′1

[
(`1 + 1)

(
K̃−`1,`2F − K̃−`1,−`2−1

F

)
+ `1

(
K̃`1+1,`2
F − K̃`1+1,−`2−1

F

) ]
+ i[G(1)

n1
G(2)
n2

]ij [t
(`1)
n1

]m1m′1
[t(`2)
n2

]m2m′2

[
K̃`1+1,−`2−1
F − K̃`1+1,`2

F − K̃−`1,−`2−1
F + K̃−`1,`2F

]}
.

The propagators given so far are valid for fields in the k1k2 × k1k2 block, not the fields

in the (N − k1k2)× k1k2 and k1k2 × (N − k1k2) blocks. As we argued in section 2.2.1, we

can simply replace

`1 →
k1 − 1

2
and `2 →

k2 − 1

2
(3.24)

everywhere to obtain the masses for the fields in the off-diagonal blocks. For the fields

themselves, we replace (Φ)`1m1;`2m2 → [Φ]n,a. To obtain the corresponding mass eigenstates,

6The cases where either `1 = 0 or `2 = 0 required special treatment in the diagonalization of the boson

mass matrix, see the discussion in section 2.2.2. In these cases, the spectrum reduces to the one in table 2,

which was originally found in [13]. While the boson masses in table 3 do not have the correct limit for `1 = 0

or `2 = 0, the propagators presented in this section indeed reduce to the ones found in [13].
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we have to replace the matrices Ŷ m1
`1
⊗ Ŷ m2

`2
by Ena, resulting in a replacements of the

orthonormality condition (2.28) with (2.20) and similar changes in the non-diagonal matrix

part. We find for the propagators between the easy fields,

〈[A0]n,a[A0]†n′,a′〉 = δa,a′δn,n′K
easy, (3.25)

where as above A0 could be any of the easy fields A0, A1, A2 and c. For the remaining

propagators, we find

〈[φ̃(1)
i ]n,a[φ̃

(2)
j ]†n′,a′〉 = δa,a′ [t

k1
i ⊗ t

k2
j ]n,n′K

φ
opp, (3.26)

〈[φ̃(1)
i ]n,a[A3]†n′,a′〉 = −〈[A3]n,a[φ̃

(1)
i ]†n′,a′〉 = −iδa,a′ [tk1i ⊗ 1k2 ]n,n′K

φ,A, (3.27)

〈[A3]n,a[A3]†n′,a′〉 = δa,a′δn,n′K
A,A (3.28)

and

〈[φ̃(1)
i ]n,a[φ̃

(1)
j ]†n′,a′〉 = δa,a′

[
δijδn,n′K

φ,(1)
sing − iεijk[t

k1
k ⊗ 1k2 ]n,n′K

φ,(1)
anti

− [tk1i t
k1
j ⊗ 1k2 ]n,n′K

φ,(1)
sym

]
.

(3.29)

As above, we can simply obtain the expressions for the scalars from the other sectors

from (3.27) and (3.29), e.g.

〈[φ̃(2)
i ]n,a[A3]†n′,a′〉 = −iδa,a′ [1k1 ⊗ t

k2
i ]n,n′K

φ,A. (3.30)

Note that it is understood that the replacement rule (3.24) is applied everywhere, in particu-

lar also in Keasy, Kφ
opp, Kφ,A, KA,A, K

φ,(1)
sing , K

φ,(1)
anti , and K

φ,(1)
sym defined in (3.17)–(3.21). No

new complications arise for the fermions in the off-diagonal block and it is straightforward

to obtain the propagators between them from (3.23).

4 One-loop corrections to the classical solution

With the propagators at hand, we are now able to study many different quantities perturba-

tively. In this section, we start by calculating the first quantum correction to the classical

solution, i.e. to the vevs of the scalars. While it is not observable itself, it occurs as a

part of the calculation of many observables, including the one-loop corrections to one-point

functions of scalar single-trace operators considered in the subsequent section. We find

that the first quantum correction to the scalar vevs is non-vanishing, unlike in the D3-D5

system, where the vevs of the scalars were not corrected at one-loop order [13].

The one-loop vacuum expectation value of the scalars is [13]

〈φi〉1-loop(x) = φ̃i(x)

∫
d4y

∑
Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)). (4.1)

Here, the sum of all the contractions of cubic interactions occurs where one of the fields,

which we call Φ1, remains uncontracted. The field Φ1 is then contracted with φ̃i and the

position of the interaction is integrated over to obtain 〈φi〉1-loop.7

7The only conceivable contribution of the defect fields at one-loop order is through a cubic defect vertex

V3. However, the defect fields Φ2 and Φ3 are massless in this case, resulting in a massless tadpole integral

that vanishes due to conformal symmetry.
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The calculation of (4.1) requires the evaluation of propagators at the same spacetime

points, i.e. Kν(y, y) and trKm
F (y, y). This introduces divergences which we regularize

using dimensional regularization, cf. (3.6) and (3.10). Dimensional regularization in 4 − 2ε

dimensions changes the number of components of the gauge field to nA = 4 − 2ε while

keeping the number of scalars and fermions fixed. This breaks supersymmetry and is

therefore not a convenient regularization scheme for standard N = 4 theory; for instance,

non-renormalization theorems due to supersymmetry are only applicable if supersymmetry is

preserved by the regulator. Usually, supersymmetry can be restored in dimensional reduction

by introducing additional 2ε scalars in the action [38, 39], which has been successfully

applied in N = 4 theory (see e.g. [40, 41] and references therein).8 In the defect theory,

the regularization procedure must be chosen in a way that is compatible with the theory

without the defect, i.e. with N = 4 SYM theory. The reason is that the entire UV behavior

of the theory with defect is governed by the theory without the defect. One can see this

by considering the scalar propagator (3.2) in the limit x → y, where it reduces to the

propagator for a scalar in N = 4 SYM theory in four dimensions. In the following, we will

therefore work in a version of dimensional reduction where we introduce 2ε scalars behaving

as the easy components of the gauge fields. We also note that dimensional reduction has

been applied successfully in [13] for the D3-D5 system, where it was crucial for the one-loop

correction to the vevs to vanish.

We will work in the planar limit, where N →∞ and gYM → 0, such that the ’t Hooft

coupling λ = Ng2
YM remains fixed. The computation of 〈φi〉1-loop is technically involved, so

we present it in detail in appendix C, while here we will focus on the results. We find that

the one-loop correction to the scalar vevs is〈
φ

(a)
i

〉
(x) =

〈
φ

(a)
i

〉
tree

(x) +
〈
φ

(a)
i

〉
1−loop

(x) +O(λ2)

=

(
1 +

λ

16π2
W (a)(k1, k2) +O(λ2)

)〈
φ

(a)
i

〉
tree

(x),
(4.2)

for a = 1, 2. This result is valid for arbitrary k1, k2 ≥ 2, and the functions W (1)(k1, k2) and

W (2)(k1, k2) are

W (1)(k1, k2) =− 1

2

(
3m2

easy − 4 +
16

k2
1 + k2

2 − 2

)
Ψ
(
νeasy + 1

2

)
−
(
k1 − 2

)(
k1 + 3

)
2k1

(
k1 − 1

) m2
(1),−Ψ

(
ν(1),− + 1

2

)
−
(
k2 − 2

)
2k2

m2
(2),−Ψ

(
ν(2),− + 1

2

)
−
(
k1 + 2

)(
k1 − 3

)
2k1

(
k1 + 1

) m2
(1),+Ψ

(
ν(1),+ + 1

2

)
−
(
k2 + 2

)
2k2

m2
(2),+Ψ

(
ν(2),+ + 1

2

)
−

(
1

2
+

4

k2
1 + k2

2 − 2

(
k2

2 − 1
)(

k2
1 − 1

))m2
0Ψ
(
ν0 + 1

2

)
+

1

2
− 8

k2
1 + k2

2 − 2

+

(
k1 + 1

)(
k2 − 1

)
k1k2

(
m2
−− − 1

)(
Ψ
(
m−−

)
+

1

2m−−

)
8For sufficiently high loop orders, dimensional reduction is known to become inconsistent though [42–45].

– 26 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

+

(
k1 + 1

)(
k2 + 1

)
k1k2

(
m2
−+ − 1

)(
Ψ
(
m−+

)
+

1

2m−+

)

+

(
k1 − 1

)(
k2 − 1

)
k1k2

(
m2

+− − 1
)(

Ψ
(
m+−

)
+

1

2m+−

)

+

(
k1 − 1

)(
k2 + 1

)
k1k2

(
m2

++ − 1
)(

Ψ
(
m++

)
+

1

2m++

)
(4.3)

and

W (2)(k1, k2) = W (1)(k2, k1). (4.4)

The masses and ν =
√
m2 + 1

4 are functions of k1 and k2 that are explicitly given in

tables 1, 3 and 4, where in the latter two the replacement `a → ka−1
2 is understood. While

we have suppressed this dependence in (4.3), it is understood to be taken into account

in (4.4). Note that we have used (2.74) to write Ψ
(
ν− + 1

2

)
and Ψ

(
ν+ + 1

2

)
in terms of

Ψ
(
νeasy + 1

2

)
.

On top of the planar limit, we can employ the double-scaling limit introduced in (1.3).

We find

〈
φ

(1)
i

〉
1−loop

(x) ' − λ

4π2(k2
1 + k2

2)

2k4
2

(k2
1 + k2

2)2

〈
φ

(1)
i

〉
tree

,

〈
φ

(2)
i

〉
1−loop

(x) ' − λ

4π2(k2
1 + k2

2)

2k4
1

(k2
1 + k2

2)2

〈
φ

(2)
i

〉
tree

,

(4.5)

where ' signifies that we are only keeping the leading powers in k1 and k2. Notice that the

expansion yields a result that has the desired expansion in the double-scaling parameter
λ

(k21+k22)
.

Finally, let us note that the one-loop corrections to the vevs of all other fields are

vanishing.

5 One-loop corrections to single-trace operators

In this section, we consider planar one-point functions of gauge-invariant bulk operators of

the defect CFT. We start with general single-trace operators (subsection 5.1) following [13]

and then specialize to the 1/2-BPS operator trZL (subsection 5.2). In particular, we

consider operators with well-defined scaling dimensions ∆, normalized such that in the

theory without the defect the two-point functions are9

〈Oa(x)Ob(y)〉 =
δab

|x− y|2∆a
. (5.1)

9The latter requirement is necessary for the one-point functions to be observable. In general, only

〈O〉/||O|| is observable, where the norm ||O|| is given by the two-point function far away from the defect.
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(a) Tree level (b) Tadpole (c) Lollipop

Figure 2. Diagrams that contribute at tree level (a) and one-loop order (b)-(c) to a single-trace

operator such as 〈trZL〉L=8 (in the planar limit). The black dot denotes the operator and the

crosses signify the insertion of the classical solution.

On the grounds of conformal symmetry, we know that the one-loop one-point function of

these operator in the defect CFT will be of the form

〈O∆(λ)(x)〉 =
c

x∆0+γ
3

=
c

x∆0
3

(
1 + γ log x3 + . . .

)
, (5.2)

where ∆0 is the bare and γ the anomalous conformal dimension of the operator.

5.1 General single-trace operators

We will consider a general single-trace operator built out of the scalars,

O(x) = Oi1i2...iL tr(φi1φi2 . . . φiL)(x), (5.3)

which is required to have a well-defined scaling dimension. At leading order, this requires

the operator O to be an eigenstate of the one-loop dilatation operator and hence the wave

function Oi1i2...iL to be a solution of the one-loop Bethe ansatz [46].

We can evaluate the one-point function of this operator at tree level by inserting the

classical solution (2.4) for the fields φi:

〈O〉tree(x) = Oi1i2...iL tr(φcl
i1φ

cl
i2 . . . φ

cl
iL

)(x). (5.4)

At one-loop level, there are two diagrams that contribute to the one-point function, see

figure 2. Following [12, 13], we will call them lollipop and tadpole diagram.

The lollipop diagram is one-particle reducible and describes the one-loop correction

to the classical solution. Its contribution is obtained by considering all fields φi at their

classical value φcl
i , except for the one at position ij , which is replaced by its one-loop

correction. We then sum for all possible values of j = 1, . . . L,

〈O〉lol(x) = Oi1i2...iL
L∑
j=1

tr(φcl
i1 . . . 〈φij 〉1-loop . . . φ

cl
iL

)(x). (5.5)
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For a particular O, this diagram can be evaluated using the correction to the vevs (4.2)

which we have calculated in the previous section.

The tadpole diagram is obtained by expanding the fields around the classical solution

as φi = φcl
i + φ̃i, and keeping only the quadratic terms in the quantum part φ̃i. The two

quantum fields in a particular term of this sum must be Wick contracted, and one obtains

〈O〉tad(x) =

L∑
j1,j2=1

Oi1...ij1 ...ij2 ...iL tr(φcl
i1 . . . φ̃ij1 . . . φ̃ij2 . . . φ

cl
iL

)(x)

=
L∑
j=1

Oi1...ijij+1...iL tr(φcl
i1 . . . E

n
aE

a
n′ . . . φ

cl
iL

)〈[φ̃ij ]n,a[φ̃ij+1 ]a,n′〉.

(5.6)

In the second line, we have used that in the large-N limit only contractions from neighboring

fields contribute. Moreover, propagators between fields in the off-diagonal block scale like

N − k1k2 ' N , whereas propagators from the k1k2 × k1k2 block would scale like k1k2 � N ,

so we are only keeping the former. One can a priori calculate this diagram for any particular

operator O by using the propagators in (3.26) and (3.29).

The one-point function of a general operator O can receive two additional corrections

at one-loop order. If the contribution from the tadpole diagram in (5.6) is UV-divergent,

the divergence has to be canceled by the renormalization constant Z = 1 +Z1-loop +O(λ2).

At one-loop order, the corresponding correction to 〈O〉 is

〈O〉1-loop,Z(x) = 〈Z1-loopO〉tree(x). (5.7)

The second additional correction to 〈O〉 arises from the first quantum correction to the

wave function Oi1i2...iL of the operator. Since we are considering operators with well-defined

conformal dimension at one-loop level, Oi1i2...iL is already a one-loop eigenstate found by

diagonalizing the one-loop dilatation operator. The first quantum correction therefore

comes from the two-loop eigenstate Oi1i2...iL2-loop ,

〈O〉1-loop,O(x) = Oi1i2...iL2-loop tr(φcl
i1φ

cl
i2 · · ·φ

cl
iL

)(x). (5.8)

Thus, the one-loop one-point function of a generic single-trace operator is

〈O〉1-loop(x) = 〈O〉lol(x) + 〈O〉tad(x) + 〈O〉1-loop,Z(x) + 〈O〉1-loop,O(x). (5.9)

Finally, we note that the planar one-point function of a multi-trace operator is given by the

product of the one-point functions of its single-trace factors.

5.2 One-loop one-point function of trZL

We will now particularize the results from the previous subsection for the 1/2-BPS operator

O = trZL, where Z = φ3 + iφ6. The tree-level one-point function of trZL is obtained by

replacing all fields by their classical value:

〈 trZL 〉tree = tr
[
(Zcl)L

]
' (−i)L(k2

1 + k2
2)

L
2

+1 sin [(L+ 2)ψ0]

2LxL3 (L+ 1)(L+ 2)
. (5.10)

– 29 –



J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

This and other color traces have been collected in appendix D. In the above equation, we

have defined the angle ψ0 = arctan(k1/k2). Moreover, the symbol ' is used here and in

what follows to indicate that we are only keeping the leading-order term in the limit where

k1 and k2 are large. The result vanishes unless L is even, so this will be implicitly assumed

in the following discussion.

Now we proceed to study the one-point function of trZL beyond tree level. Since

the operator trZL is 1/2-BPS, in the theory without the defect it is protected from

quantum corrections; therefore, 〈O〉1-loop,Z(x) = 0 and 〈O〉1-loop,O(x) = 0. However, for

the latter statement to be true, we must use a renormalization scheme that preserves the

supersymmetry of the theory without the defect, and therefore it is required that we use

dimensional reduction in our calculation. We conclude that if we use dimensional reduction,

only the lollipop and tadpole diagrams contribute at one-loop order,

〈 trZL 〉lol = L tr
[
(Zcl)L−1〈Z〉1-loop

]
, 〈 trZL 〉tad = L tr

[
(Zcl)L−2ZZ

]
. (5.11)

In the remainder of this section, we will evaluate these two diagrams.

To calculate the lollipop diagram, we use (5.11) and the one-loop correction to the

vevs (4.5):

〈 trZL 〉lol '
λL

2π2x3(k2
1 + k2

2)3

(
k4

2 tr
[
(Zcl)L−1 tk13 ⊗ 1k2

]
+ i k4

1 tr
[
(Zcl)L−1 1k1 ⊗ t

k2
3

] )
' λ(−i)L(k2

1 + k2
2)

L
2
−3

2L+1π2(L+ 1)(L+ 2)xL3

(
(k2

2 − k2
1)
(
k4

1 + k4
2 + (k1k2)2(L+ 2)

)
sin(Lψ0)

− k1k2(k4
1 + k4

2)L cos(Lψ0)
)
. (5.12)

In the second line, we have used (D.7) in appendix D to compute the color traces.

Finally, the contribution from the tadpole diagram (5.11) is

〈trZL 〉tad = NL

(
tr

[
(Zcl)L−21k1 ⊗

(
tk23

)2
]
Kφ,(2)

sym − tr

[
(Zcl)L−2

(
tk13

)2
⊗ 1k2

]
Kφ,(1)

sym

+ tr
[
(Zcl)L−2

] (
K
φ,(1)
sing −K

φ,(2)
sing

)
+ 2i tr

[
(Zcl)L−2tk13 ⊗ t

k2
3

]
Kφ

opp

)
,

(5.13)

where we have used the propagators (3.18) and (3.21). We can expand this expression in the

limit where k1 and k2 are large, which combined with the color traces in appendix D gives

〈 trZL〉tad '
λL(−i)L(k2

1 + k2
2)

L
2
−1

2L+2π2(L− 1)(L+ 2)xL3

[
2k1k2 cos(Lψ0)− (k2

1 − k2
2) sin(Lψ0)

]
. (5.14)

Notice that the tadpole diagram does not depend on the regulator ε from dimensional

regularization. In fact, even though (5.14) is applicable only in the double-scaling limit, the

regulator drops from the tadpole diagram even for finite k1 and k2. This is an important

consistency check; since trZL is a 1/2-BPS operator, it should not be renormalized, so we

should not find any UV-divergences and the terms proportional to 1
ε should cancel.
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We can combine the tree-level result (5.10), the lollipop diagram (5.12) and the tadpole

diagram (5.14) to obtain

〈trZL〉
〈trZL〉tree

= 1 +
λ

4π2(L− 1)
(
k2

1 + k2
2

)3
(

4(k1k2)2 + (L2 + 3L− 2)
(
k4

1 + k4
2

)
(5.15)

+ 2(L− 1)(L+ 2)k1k2

(
k2

1 − k2
2

)
cot[(L+ 2)ψ0]

)
+O

(
λ2

(k2
1 + k2

2)2

)
.

Note that the result has indeed an expansion in the parameter λ
(k21+k22)

as suggested by the

string-theory dual of the defect CFT. Moreover, the result (5.15) precisely agrees with the

supergravity prediction (1.4) quoted in the introduction!10

6 Outlook

While the main result of the present paper is a highly non-trivial positive test of AdS/dCFT

for a configuration where supersymmetry is completely broken, an important accompanying

achievement is the establishment of a perturbative framework for the SO(3) × SO(3)-

symmetric defect CFT involved. A crucial step of this achievement was of course the

determination of the exact mass spectrum of the theory using fuzzy spherical harmonics,

but an equally essential step was the rewriting of the resulting propagators of the theory in

terms of generators of su(2)×su(2). Worth stressing is also the recognition that dimensional

reduction constitutes an appropriate regularization scheme being compatible with the

supersymmetry of the underlying bulk CFT which governs the UV behavior of the defect

CFT. We have used our perturbative framework to calculate the one-loop correction to

the classical solution in the planar limit and obtained an explicit result for the one-point

function of trZL in the double-scaling limit; in the future, it would be interesting to go to

finite N (following [13, 47]), to obtain explicit results at finite k1 and k2 for trZL and to

go to higher loop orders. With the perturbative framework in place, the scene is also set

for the calculation of quantum corrections to other quantities of interest in the defect CFT,

such as other types of correlation functions or Wilson loops. In the case of the simpler

D3-D5 probe-brane setup, the calculation of a simple Wilson line to one-loop order [48]

confirmed the prediction of a classical string-theory calculation [16] consisting of evaluating

the area of a minimal surface in the double-scaling limit (1.2). The circular Wilson loop of

the D3-D5 defect CFT was analyzed in [49] and the case of two anti-parallel Wilson lines

was considered in a search for a Gross-Ooguri transition in [50]. Finally, the calculation of

two-point functions of the defect CFT allowed for data mining in N = 4 SYM theory by

means of the boundary conformal bootstrap equations [37]. A special class of two-point

functions was considered in [51].

In the case of the defect CFT based on the D3-D5 probe-brane setup, where only three

scalar fields get non-trivial SO(3) symmetric vevs, the one-point function problem showed

10To be precise, the supergravity prediction is for the unique SO(3)× SO(3)-symmetric chiral primary

operator built from L scalar fields [21]; while this operator is not equal to trZL, trZL has a non-vanishing

projection on it (induced by the norm from the two-point function far away from the defect), such that the

ratio of the one-point function and the tree-level one-point function of both operators coincide.
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very strong signs of integrability. Hence, it was possible to express the tree-level one-point

function of any scalar operator in a closed formula valid for any value of the representation

label k [11]. The formula could be extended to one-loop order in the SU(2) sub-sector and a

conjecture for an all-loop asymptotic formula for this sub-sector was put forward as well [14],

which extends the match with the supergravity prediction [15] for 〈trZL〉 in the double-

scaling limit to all loop-orders smaller than L. The calculation of a tree-level one-point

function can be formulated as the evaluation of the overlap between a Bethe state describing

the operator in question and a so-called matrix product state [8], and the apparent integra-

bility of the one-point function problem in the D3-D5 probe-brane set-up was suggested to

be a consequence of the matrix product state being annihilated by all the odd charges of the

integrable spin chain underlying the spectrum of N = 4 SYM theory [52]. One can explicitly

check that the matrix product state of relevance for the computation of one-point functions of

the SO(3)×SO(3)-symmetric defect CFT is not annihilated by the odd charges of the N = 4

SYM spin chain [53]. In accordance with this, it has only been possible to derive results

for tree-level one-point functions of non-protected operators on a case by case basis [53].

On the other hand, one can prove that the matrix product state of relevance for the

computation of the one-point functions of the earlier mentioned SO(5)-symmetric defect

CFT based on the non-supersymmetric D3-D7 probe-brane system with probe geometry

AdS4 × S4 is indeed annihilated by the odd charges of the N = 4 SYM spin chain [11].

Although only a few exact tree-level results and in particular no closed formula exist

so far [54], this observation indicates that setting up the perturbative program for the

SO(5)-symmetric defect CFT could potentially be very rewarding. We have already taken

the first step in this direction by explicitly determining the mass spectrum of the theory

via a further generalization of the method of fuzzy spherical harmonics [30], and we hope

to be able to report on the completion of the program in the near future.
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A Conventions

In this appendix, we summarize our conventions for field-theory calculations (appendix A.1)

and fuzzy spherical harmonics (appendix A.2).

A.1 Field-theory conventions

Throughout the paper, we choose the metric of Minkowski space to have mostly positive

signature, i.e. ηµν = diag(−1,+1, . . . ,+1). We will work in (3+1) dimensions, and we will

denote by d = 3 the dimension of the codimension-one defect. For the fermionic fields, we
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take the four-dimensional γ-matrices to be

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−12 0

0 12

)
, (A.1)

with σµ = (12, σ
i), σ̄µ = (12,−σi) and {γµ, γν} = −2ηµν .

For the four-dimensional matrices Gi that appear in the reduction of the spinors in ten

dimensions to four dimensions, we use the same conventions as in [13]:

G1 ≡ G(1)
1 = i

(
0 −σ3

σ3 0

)
, G2 ≡ G(1)

2 = i

(
0 σ1

−σ1 0

)
, G3 ≡ G(1)

3 =

(
σ2 0

0 σ2

)
,

G4 ≡ G(2)
1 = i

(
0 −σ2

−σ2 0

)
, G5 ≡ G(2)

2 =

(
0 −12

12 0

)
, G6 ≡ G(2)

3 = i

(
σ2 0

0 −σ2

)
.

(A.2)

The matrices in the first line are Hermitian, (G
(1)
i )† = G

(1)
i , while those in the second line

are anti-Hermitian, (G
(2)
i )† = −G(2)

i . Their (anti-)commutation relations are{
G

(1)
i , G

(1)
j

}
= +2δij ,

[
G

(1)
i , G

(1)
j

]
= −2iεijkG

(1)
k ,{

G
(2)
i , G

(2)
j

}
= −2δij ,

[
G

(2)
i , G

(2)
j

]
= −2εijkG

(2)
k .

(A.3)

The two sets commute,
[
G

(1)
i , G

(2)
j

]
= 0.

A.2 Lie algebra su(2) and fuzzy spherical harmonics

For the vevs with SO(3) × SO(3) symmetry, we will need explicit expressions for the

generators ti of the corresponding Lie algebra as well as for the fuzzy spherical harmonics

Ŷ m
` that serve as a basis for the fields in color space. Those are given here using the same

conventions as [13].

The basis matrices Eij are defined to have a 1 at position (i, j), i.e. [Eij ]m,n = δi,mδj,n.

We use the same form of the k-dimensional matrices ti of su(2) that was used in [8], namely

t+ =

k−1∑
n=1

ck,nE
n
n+1, t− =

k−1∑
n=1

ck,nE
n+1

n, t3 =

k∑
n=1

dk,nE
n
n, (A.4)

with the coefficients

ck,n =
√
n(k − n), dk,n =

1

2
(k − 2n+ 1). (A.5)

Defining also t1 = 1
2(t+ + t−) and t2 = 1

2i(t+ − t−), these matrices satisfy the commutation

relations of su(2),

[ti, tj ] = iεijktk. (A.6)
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The k-dimensional matrices ti can be used to construct su(2) representations Ŷ m
` of

spin `, for ` = 0, 1, . . . , k − 1, cf. [55, 56]. The k × k matrices Ŷ m
` are essentially given by a

symmetric and traceless polynomial of degree ` in the generators ti,

Ŷ m
` = 2`

√
(k − `− 1)!

(k + `)!

(
k2 − 1

4

)`/2 ∑
i1,...,i`

f `mi1,...,i` x̂i1 · · · x̂i` , ` = 1, . . . , k − 1, (A.7)

where the su(2) generators have been rescaled to

x̂i =

√
4

k2 − 1
ti ⇒

∑
i

x̂ix̂i = 1k, (A.8)

and the coefficients f `mi1,...,i` implement the symmetry and tracelessness conditions. Note

that the last equation defines the fuzzy two-sphere with coordinates x̂i and that the

construction (A.7) stems from the observation that on a normal two-sphere a basis of

functions can be constructed as a homogeneous polynomial in the Cartesian coordinates xi,

i = 1, 2, 3. These functions are the well-known spherical harmonics Y m
` .

We now give some properties of Ŷ m
` that are important for our purposes. With the

normalization as above, they satisfy(
Ŷ m
`

)†
= (−1)mŶ −m` and tr

[(
Ŷ m
`

)†
Ŷ m′
`′

]
= δ``′δmm′ . (A.9)

We also make use of the relation between the generators ti and Ŷ m
` for ` = 1, namely

t1 = c
(
Ŷ −1

1 − Ŷ 1
1

)
, t2 = ic

(
Ŷ −1

1 + Ŷ 1
1

)
, t3 = c

√
2Ŷ 0

1 (A.10)

with

c =
(−1)k+1

2

√
k(k2 − 1)

6
. (A.11)

B Color and flavor part of the propagators

In this appendix, we derive the propagators between the fields that originally appeared in the

action of N = 4 SYM theory. We focus on the propagators involving the six scalars and the

gauge field; the propagators involving the Majorana fermions can be obtained in a similar

way. To obtain the propagators, we will express the original fields in terms of the fields

in which the mass term of the action becomes diagonal. For example, for the complicated

bosons with `1, `2 6= 0, we have to undo the three steps of the diagonalization: the flavor

transformation (2.36), the Clebsch-Gordan procedure (2.55) and the diagonalization of the

final 3× 3 matrix (2.60).

After the flavor transformation, S · L is in the form (2.39) and the transformed vector

of complicated fields is

V †C =

C(1)

C(2)

A3

 , (B.1)
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where C(1) and C(2) were given in (2.37). In the 3 × 3 blocks TiL
(1)
i and TiL

(2)
i , we

diagonalize using Clebsch-Gordan coefficients and obtain the eigenstates (B(1))j1,m1,`1;`2,m2

and (B(2))`1,m1;j2,m2,`2 . The relation to the fields C
(a)
± and C

(a)
0 with a = 1, 2 is

(C
(a)
± )`m =

∑
j

〈`,m; 1,±1|j,m± 1〉(B(a))j,m±1;`, (C
(a)
0 )`m =

∑
j

〈`,m; 1, 0|j,m〉(B(a))j,m;`.

(B.2)

For j1 = `1 ± 1 and j2 = `2 ± 1, these fields diagonalize S · L and it only remains to

diagonalize the 3 × 3 matrix in (2.58). The fields D± and D0 in which the mass term is

diagonal were given in (2.60). Inverting this relation, we find

B
(1)
0 = −

√
`2(`2 + 1)

D0√
N0
− i
√
`1(`1 + 1)

(
D+√
N+

+
D−√
N−

)
,

B
(2)
0 = +

√
`1(`1 + 1)

D0√
N0
− i
√
`2(`2 + 1)

(
D+√
N+

+
D−√
N−

)
,

A3 =
λ−√
N+

D+ +
λ+√
N−

D−.

(B.3)

We begin with the propagators between scalars from different sectors and those involving

A3 using the notation described in section 3.3. They contain at most one su(2) Clebsch-

Gordan coefficient from each sector, which we can express as the matrix element of an su(2)

generator ti. In particular, we do not yet encounter products of su(2) generators unlike in

the propagators for scalars from the same sector. For convenience, we define

[r`s]m,m′ ≡
√
`(`+ 1)〈`,m; 1, s|`,m+ s〉δm′,m+s, (B.4)

for s = −1, 0, 1. One can check that r± = ∓t∓/
√

2, r0 = t3, r†s = r−s and finally

[(r`s)
†]m,m′ =

√
`(`+ 1)〈`,m− s; 1, s|`,m〉δm′,m−s. (B.5)

Using this notation, it will be easier to keep track of factors ±1/
√

2. The propagators

involving A3 are

〈(C(1)
s )`1m1;`2m2(A3)†

`′1m
′
1;`′2m

′
2
〉 = −iδ`1`′1δ`2`′2δm2m′2

[r`1s ]m1,m′1

(
λ+

N−
Km2

− +
λ−
N+

Km2
+

)
,

〈(A3)`1m1;`2m2(C(1)
s )†

`′1m
′
1;`′2m

′
2
〉 = iδ`1`′1δ`2`′2δm2m′2

[(r`1s )†]m1,m′1

(
λ+

N−
Km2

− +
λ−
N+

Km2
+

)
,

〈(A3)`1m1;`2m2(A3)†
`′1m

′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

(
λ2

+

N−
Km2

− +
λ2
−

N+
Km2

+

)
.

(B.6)

To obtain the same propagators for C
(2)
s , we simply relabel as in (3.22). For the propagators

that mix the two blocks, we need

〈(B(1)
0 )`1m1;`2m2(B

(2)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

×
√
`1(`1 + 1)

√
`2(`2 + 1)

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
,

(B.7)
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and we obtain

〈(C(1)
s )`1m1;`2m2(C

(2)
s′ )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2 [r`1s ]m1,m′1

[(r`2s′ )
†]m2,m′2

×

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
.

(B.8)

Converting to the fields φi is a matter of undoing the flavor transformation,

〈(φ̃(1)
i )`1m1;`2m2(φ̃

(2)
j )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2 [t

(`1)
i ]m1,m′1

[t
(`2)
j ]m2,m′2

(
Km2

−

N−
+
Km2

+

N+
− Km2

0

N0

)
,

(B.9)

〈(φ̃(1)
i )`1m1;`2m2(A3)†

`′1m
′
1;`′2m

′
2
〉 = −〈(A3)`1m1;`2m2(φ̃

(1)
i )†

`′1m
′
1;`′2m

′
2
〉

= −iδ`1`′1δ`2`′2 [t
(`1)
i ]m1m′1

δm2m′2

(
λ+

N−
Km2

− +
λ−
N+

Km2
+

)
,

(B.10)

with φ̃
(1)
i ≡ φ̃i and φ̃

(2)
i ≡ φ̃i+3. We obtain the analogue of the last equation for the second

sector by relabeling as in (3.22).

As anticipated, the propagators between scalars from the same sector contain products

of Clebsch-Gordan coefficients and are therefore more involved. For simplicity let us focus

on one sector, say the first one for concreteness. We define the combination K0
(1) as

〈(B(1)
0 )`1m1;`2m2(B

(1)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

×
[`2(`2 + 1)

N0
Km2

0 + `1(`1 + 1)

(
Km2

−

N−
+
Km2

+

N+

)]
︸ ︷︷ ︸

≡K0
(1)

.

(B.11)

The propagators with C
(1)
0 are

〈(C(1)
± )`1m1;`2m2(C

(1)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2

[t
(`1)
∓ ]m1,m′1√

2
δm2m′2

×

(
− `1 ∓m1 − 1

(2`1 + 1)`1
K
m2

(1),− +
`1 ±m1 + 2

(2`1 + 1)(`1 + 1)
K
m2

(1),+ +
∓m1 − 1

`1(`1 + 1)
K0

(1)

)
,

〈(C(1)
0 )`1m1;`2m2(C

(1)
0 )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm1m′1

δm2m′2

×

(
(`1 −m1 + 1)(`1 +m1 + 1)

(2`1 + 1)(`1 + 1)
K
m2

(1),+ +
(`1 −m1)(`1 +m1)

(2`1 + 1)`1
K
m2

(1),− +
m2

1

`1(`1 + 1)
K0

(1)

)
.

(B.12)
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The propagators between C
(1)
± are

〈(C(1)
± )`1m1;`2m2(C

(1)
± )`′1m′1;`′2m

′
2
〉 =

1

2
δ`1`′1δ`2`′2δm2m′2

[
[t

(`1)
∓ t

(`1)
± ]m1,m′1

`1(`1 + 1)
K0

(1)

+ δm1m′1

(
(`1 ∓m1)(`1 ∓m1 − 1)

(2`1 + 1)`1
K
m2

(1),− +
(`1 ±m1 + 1)(`1 ±m1 + 2)

(2`1 + 1)(`1 + 1)
K
m2

(1),+

)]
,

〈(C(1)
± )`1m1;`2m2(C

(1)
∓ )`′1m′1;`′2m

′
2
〉 =

1

2
δ`1`′1δ`2`′2 [t

(`1)
∓ t

(`1)
∓ ]m1,m′1

δm2m′2

×

(
K
m2

(1),−

(2`1 + 1)`1
− K

m2
(1),0

`1(`1 + 1)
+

K
m2

(1),+

(2`1 + 1)(`1 + 1)

)
.

(B.13)

Undoing the flavor transformation and inserting K0
(1) from (B.11), we find that the propa-

gator between two scalars from the same sector is

〈(φ̃(1)
i )`1m1;`2m2(φ̃

(1)
j )†

`′1m
′
1;`′2m

′
2
〉 = δ`1`′1δ`2`′2δm2m′2[

δijδm1m′1

(
`1 + 1

2`1 + 1
K
m2

(1),+ +
`1

2`1 + 1
K
m2

(1),−

)
− iεijk[t

(`1)
k ]m1,m′1

(
K
m2

(1),+

2`1 + 1
− K

m2
(1),−

2`1 + 1

)
− [t

(`1)
i t

(`1)
j ]m1,m′1

(
K
m2

(1),+

(2`1 + 1)(`1 + 1)
+

K
m2

(1),−

(2`1 + 1)`1
− `2(`2 + 1)

`1(`1 + 1)

Km2
0

N0
− Km2

−

N−
− Km2

+

N+

)]
,

(B.14)

with an analogous expression for the other sector obtained by relabeling as in (3.22). We

note that the terms with δij and εijk are the same as in [13] and that the last one would

vanish in the setup of that reference.

C One-loop correction to the scalar vacuum expectation values

In this appendix, we present in detail the calculation of the correction to the scalar vevs

summarized in section 4. We split the calculation in three parts: we obtain the effective

vertex Veff in section C.1, the contraction of the vertex with the external field is computed

in section C.2 and finally the remaining spacetime integral is performed in section C.3.

C.1 Calculation of the effective vertex

To compute the one-loop correction to the vevs of the scalars, we will need to know the

effective one-particle vertex defined by

Veff(y) ≡
∑

Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)), (C.1)

where the sum is carried over all inequivalent contractions of cubic vertices in (2.9). We

will start by calculating all the contractions assuming the limit N → ∞, but keeping k1

and k2 finite. We will continue to use equal signs in equations where the large-N limit has

been used. Then we will collect all contributions, and show that the regulator ε drops out.
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The calculation of the contractions proceeds identically to [13], but the propagators are

different in the two setups. In this section, capital Latin indices I, J,K will run from 1 to 6,

whereas lowercase Latin indices i, j, k will run from 1 to 3. We will perform dimensional

reduction at the end of the calculation, so in the intermediate results we will explicitly keep

the dependence on the number of fields of each species. All contractions come with a factor
2

g2YM
, which we will include at the end when we add all the contributions.

Since we are working in the large-N limit, all propagators will involve only fields in the

off-diagonal block. When we write a general propagator K ···, it will be the one defined in

section 3.3, but with the replacement `i → (ki − 1)/2 implicitly understood.

Simple contractions. All the contractions in this paragraph can be immediately obtained

from [13] by adapting the notation. The ghost contractions are

VG ≡ − tr
(
c̄[φcl

I , [φ̃I , c]]
)

= −nc
2N

y3
Keasy tr

(
φ̃ItI

)
, (C.2)

tr (i(∂µc̄)[A
µ, c]]) = 0. (C.3)

All the contributions from the vertex that couples three gauge fields vanish due to the

symmetry of the propagator,

tr
(
i[Aµ, Aν ]∂µAν

)
= tr

(
i[Aµ, Aν ]∂µAν

)
= tr

(
i[Aµ, Aν ]∂µAν

)
= 0. (C.4)

Finally, we consider the vertex tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
. The first two contractions give

tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
= 0, (C.5)

and

V1 ≡ tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
= +2N

(
∂3K

A,φ
)

tr
(
φ̃I tI

)
. (C.6)

Note that in the last equation we have carried out an integration by parts to move the

derivative from the field to the propagator. This is allowed because the effective vertex

will always be contracted with a scalar φ̃i and then integrated, as in (4.1). For the last

contraction, note that we can use (D.21) from [13], because as in that case, we have

Kφ,A ∝ Kν−1 −Kν+1. Thus, we find

V2 ≡ tr
(
i[Aµ, φ̃I ]∂µφ̃I

)
= +N

(
∂3K

φ,A
)

tr
(
φ̃ItI

)
. (C.7)

Interaction of three scalars. We can rewrite the interaction vertex involving three

scalars as

tr
(
[φcl
I , φ̃J ][φ̃I , φ̃J ]

)
= tr

(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
. (C.8)
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There are three inequivalent contractions:

V3 ≡ tr
(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
=

2N

y3

(
nφ,(1)K

φ,(1)
sing −

k2
1 − 1

4
Kφ,(1)

sym

)
tr
(
φ̃ItI

)
+ (1↔ 2),

(C.9)

V4 ≡ tr
(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
=

2N

y3

[
−Kφ,(1)

sing −
nφ,(1) − 1

2

(
K
φ,(1)
anti +Kφ,(1)

sym

)
(C.10)

+
k2

1 − 1

4
Kφ,(1)

sym −
k2

2 − 1

4
Kφ

opp

]
tr
(
φ̃

(1)
i t

(1)
i

)
+ (1↔ 2),

and

V5 ≡ tr
(
φ̃I [φ̃J , [φ

cl
I , φ̃J ]]

)
= −N

y3
(nφ,(1) − 1)

(
2K

φ,(1)
anti +Kφ,(1)

sym

)
tr
(
φ̃

(1)
i t

(1)
i

)
+ (1↔ 2).

(C.11)

Interaction of one scalar with two gauge fields. Next we rewrite the interaction

between one scalar and two gauge fields as

tr
(
[Aµ, φcl

I ][Aµ, φ̃I ]
)

= tr
(
φ̃I [A

µ, [φcl
I , Aµ]]

)
. (C.12)

For µ = 0, 1, 2 ≡ i, there is only one possible contraction:

V6 ≡ tr
(
φ̃I [A

i, [φcl
I , Ai]]

)
= nA,easy

2N

y3
Keasy tr

(
φ̃ItI

)
. (C.13)

In this contraction the chosen regularization procedure becomes relevant, because in

d = 3− 2ε space dimensions nA,easy = 3− 2ε. We are working in dimensional reduction [38,

39] and should therefore add 2ε scalars to the action that behave exactly as the easy

components of the gauge field. Thus, we should also consider the contraction

V7 ≡ tr
(
φ̃I [A

2ε, [φcl
I , A2ε]]

)
= 2ε

2N

y3
Keasy tr

(
φ̃ItI

)
. (C.14)

Adding the previous two equations, we find nA,easy + 2ε = 3 as a prefactor. Since nA,easy

only appears in this vertex, we can effectively say that in dimensional reduction nA,easy = 3

exactly.

For µ = 3, there are three possible contractions. The first one gives

V8 ≡ tr
(
φ̃I [A

3, [φcl
I , A3]]

)
=

2N

y3
KA,A tr

(
φ̃ItI

)
, (C.15)

while the other two do not contribute to the effective vertex:

tr
(
φ̃I [A

3, [φcl
I , A3]]

)
= tr

(
φ̃I [A

3, [φcl
I , A3]]

)
= 0. (C.16)
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Fermions in the loop. The action contains three cubic vertices including fermions. The

first one is

VF,1 =
1

2

3∑
i=1

tr
(
ψ̄jG

i
jk[φ̃i, ψk]

)
= Nnψ tr

(
t
(1)
i φ̃

(1)
i

)
tr K̃

(1)
F , (C.17)

the second vertex gives a similar result,

VF,2 =
1

2

6∑
i=4

tr
(
ψ̄jG

i
jk[φ̃i, γ5ψk]

)
= −Nnψ tr

(
t
(2)
i φ̃

(2)
i

)
tr
(
iγ5K̃

(2)
F

)
, (C.18)

and the last contraction vanishes,

1

2
tr
(
ψ̄jγ

µ[Aµ, ψj ]
)

= 0. (C.19)

It is important to remember that when the fermion propagators are being regulated one

has to use (3.14) and (3.10). The combinations of propagators (C.17) and (C.18) are

K̃
(1)
F =

1

(2`1+1)(2`2+1)

[
(`2 + 1)

(
K̃−`1,`2F − K̃`1+1,`2

F

)
+ `2

(
K̃−`1,−`2−1
F − K̃`1+1,−`2−1

F

)]
,

K̃
(2)
F =

1

(2`1+1)(2`2+1)

[
(`1 + 1)

(
K̃−`1,`2F − K̃−`1,−`2−1

F

)
+ `1

(
K̃`1+1,`2
F − K̃`1+1,−`2−1

F

)]
,

(C.20)

and the replacement (2.23) is understood.

Summing up all vertices. The full effective vertex is the sum of all the contractions

calculated in the previous subsection. We also have to remember to restore the overall

prefactor of 2
g2YM

of the action, i.e.

Veff =
2

g2
YM

(VG + V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + VF,1 + VF,2) . (C.21)

Inserting the expressions from the previous paragraphs, we see that the vertex contains a

part that depends on the regulator terms fε(y) = −1
ε − log(4π) + γE − 2 log(y3)− 1 and a

part that is finite as ε→ 0,

Veff = Veff,ε + Veff,fin. (C.22)

The ε-dependent part is

Veff,ε(y; k1, k2) =
−N

32π2y3
3

fε(y)
[
(k2

1 + k2
2)(nc + 2nψ − nφ,(1) − nφ,(2) − nA,easy)

− 2(nc + 2nψ + 5nφ,(1) − nφ,(2) − nA,easy − 18)
]

tr
(
φ̃

(1)
i t

(1)
i

)
+ (1↔ 2).

(C.23)

This is zero for nA,easy = 3, nc = 1, nψ = 4 and nφ,(1) = nφ,(2) = 3. Note that here we are

using that we can keep nA,easy = 3 in dimensional reduction, cf. the discussion after (C.13).

The finite part is

Veff,fin(y; k1, k2) =
−N

2π2y3
3

(
W (1)(k1, k2) tr

(
φ̃

(1)
i t

(1)
i

)
+W (2)(k1, k2) tr

(
φ̃

(2)
i t

(2)
i

))
, (C.24)

where the functions W (1)(k1, k2) and W (2)(k1, k2) are given in (4.3) and (4.4) in the main

text. This result is exact, i.e. we have not expanded for large k1 and k2.
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C.2 Contraction of the stick

Now we proceed to contract the external field with the effective vertex. The traces tr(φ̃
(b)
j t

(b)
j )

with b = 1, 2 coming from the effective vertex will be contracted with an external field φ̃
(a)
i .

For simplicity, let us consider the case where we are contracting fields from the first sector,

i.e. the case a = b = 1. Notice that t
(1)
j is a matrix in the k1k2 × k1k2 block padded with

zeros. Thus, when we multiply it with φ̃
(1)
j only the k1k2 × k1k2 block survives when taking

the trace. Expanding φ̃
(1)
i and φ̃

(1)
j in this block in terms of fuzzy spherical harmonics and

their Hermitian conjugates, we obtain

φ̃
(1)
i tr(φ̃

(1)
j t

(1)
j ) =

〈
(φ̃

(1)
i )`1,m1;`2,m2(φ̃

(1)
j )†

`′1,m
′
1;`′2,m

′
2

〉
Ŷ m1
`1
⊗ Ŷ m2

`2
tr

[(
Ŷ
m′1
`′1
⊗ Ŷ m′2

`′2

)† (
tk1j ⊗ 1k2

)]
.

(C.25)

In the previous expression, the trace can be simplified further. We start by expanding the

matrices ti and 1 in terms of the fuzzy spherical harmonics Ŷ m
` as

tk1i =
∑

m1=±1,0

(ci)m1 Ŷ
m1
`1=1, 1k2 = (−1)k2+1

√
k2 Ŷ

m2=0
`2=0 . (C.26)

The explicit coefficients (ci)m1 can be obtained from (A.10) and (A.11) in appendix A.2.

Using that the Ŷ m
` are traceless for ` > 0 and proportional to the identity for ` = 0, we

obtain

tr

[(
Ŷ
m′1
`′1
⊗ Ŷ m′2

`′2

)†
(tk1j ⊗ 1k2)

]
= tr

[(
Ŷ
m′1
`′1

)†
tk1j

]
tr

[(
Ŷ
m′2
`′2

)†]
= (−1)k2+1

√
k2 δ`′1,1 δ`′2,0 δm′2,0 (cj)m′1 .

(C.27)

Inserting this into (C.25), we find that the propagator between the scalars has to be evaluated

for `2 = `′2 = m2 = m′2 = 0 and `1 = `′1 = 1. The explicit form of the propagator is

〈(φ̃i)1,m1(φ̃j)
†
1,m′1
〉 = δijδm1,m′1

(
2
3K

m2=0 + 1
3K

m2=6
)

− i
3εijk[t

k1=3
k ]2−m1,2−m′1

(
Km2=0 −Km2=6

)
.

(C.28)

Combining this propagator with the explicit form of cmj and the 3 × 3 matrices tk1=3
i ,

we obtain

φ̃
(1)
i tr(φ̃

(1)
j t

(1)
j ) = (tk1i ⊗ 1k2)Km2=6, φ̃

(2)
i tr(φ̃

(2)
j t

(2)
j ) = (1k1 ⊗ t

k2
i )Km2=6. (C.29)

The contractions where the external field and the one inside the trace are from different

sectors vanish,

φ̃
(1)
i tr(φ̃

(2)
j t

(2)
j ) = φ̃

(2)
i tr(φ̃

(1)
j t

(1)
j ) = 0. (C.30)

The contraction of the easy components A0, A1 and A2 of the gauge field with the vertex

vanishes because the propagator between them and the scalars is zero. Furthermore, we find

A3 tr(φ̃
(1)
j t

(1)
j ) = A3 tr(φ̃

(2)
j t

(2)
j ) = 0. (C.31)

This shows that only the vevs of the scalars receive one-loop corrections.
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C.3 Spacetime integral

In order to evaluate the correction to the scalar vevs (4.1), we are only missing the calculation

of the integral over y. The propagator in the integral has mass m2 = 6, or equivalently

ν = 5
2 , and it can be expressed in terms of elementary functions,

Kν=
5
2 (x, y) =

g2
YM

2

ξ(x, y)4

10π2x3y3
2F1

(
2, 5

2 ; 7
2 ; ξ(x, y)2

)
=
g2

YM

2

1

4π2x3y3

(
2ξ2 − 3

ξ2 − 1
− 3 arctanh(ξ)

ξ

)
.

(C.32)

In the second equality, we have dropped the explicit dependence of ξ on x and y to simplify

the notation. In the integral, this propagator will be multiplied by a factor of 1/(y3)3 that

comes from the effective vertex. Thus, the integral is∫
d4y

1

y3
3

Kν=
5
2 (x, y) =

g2
YM

2

1

4π2

∫ ∞
0

dy3

∫ ∞
0

dr

∫
dΩ

r2

x3y4
3

(
2ξ2 − 3

ξ2 − 1
− 3 arctanh(ξ)

ξ

)
=
g2

YM

2

1

5

∫ ∞
0

dy3

{
(x3)−2 for 0 ≤ y3 < x3

(x3)3(y3)−5 for 0 ≤ x3 < y3

}
=
g2

YM

2

1

4x3
,

(C.33)

where we have used spherical coordinates defined by r2 = (x0−y0)2 + (x1−y1)2 + (x2−y2)2

and we are working in Euclidean signature as anticipated when we discussed the spacetime

part of the scalar propagator.

One can combine the effective vertex (C.24), the contractions (C.29) and the spacetime

integral (C.33) to obtain the correction to the vevs given in (4.2) of the main text.

D Color traces

For the calculation of 〈tr ZL〉 to one-loop order in section 5.2, we need expressions for the

color traces. More precisely, we need to calculate traces where (Zcl)L is multiplied with a

number of su(2) generators ti from each sector.

It was shown in [13] that

tr
[
(tk3)L

]
= (−1)L+1 2

L+ 1
BL+1

(
1−k

2

)
=

kL+1

2L(L+ 1)
+O(kL), (D.1)

for L even while tr
[
(tk3)L

]
= 0 for L odd. Here BL+1(k) denotes the Bernoulli polynomial

of degree L+ 1. In this paper, the most general trace that we will evaluate is

tr
[
(Zcl)L

(
tk13

)n1

⊗
(
tk23

)n2
]

=
(−1)L

xL3

L∑
n=0

(
L

n

)
iL−n tr

[(
tk13

)n+n1
]

tr

[(
tk23

)L+n2−n
]
.

(D.2)

A particular term in this sum will not vanish if n+ n1 is even and L+ n2 − n is even. In

order for the entire sum not to vanish we need that n1 and L+ n2 have the same parity, or
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equivalently, we need that n1 and L+ n2 are both even or both odd. In either case, only

half of the terms in the sum will contribute to the result.

When n1 is even and L+ n2 is even, only the terms with n even contribute. Thus, we

must sum over a new variable m such that n = 2m and m = 0, . . . , bL2 c. If we expand for

large k1 and k2, we obtain

(−1)L

2L+n1+n2xL3

bL
2
c∑

m=0

(
L

2m

)
iL−2m k2m+n1+1

1

(2m+ n1 + 1)

kL+n2−2m+1
2

(L+ n2 − 2m+ 1)
+O(kL+n1+n2+1). (D.3)

Here O(k`) stands for terms where the combined powers of k1 and k2 are less than or equal

to `.

When n1 is odd and L+ n2 is odd, only the terms with n odd contribute. Thus, we

must sum over a new variable m such that n = 2m+ 1 and m = 0, . . . , bL−1
2 c. If we expand

for large k1 and k2, we obtain

(−1)L

2L+n1+n2xL3

bL−1
2
c∑

m=0

(
L

2m+ 1

)
iL−2m−1 k2m+n1+2

1

(2m+ n1 + 2)

kL+n2−2m
2

(L+ n2 − 2m)
+O(kL+n1+n2+2).

(D.4)

The above sums can be carried out explicitly for particular values of n1 and n2. In all

cases of interest for us, the traces will vanish for L odd, so we will assume that L is even in

the rest of this section. It will also be convenient to express the results in terms of the angle

ψ0 ≡ arctan

(
k1

k2

)
. (D.5)

In the following results, the symbol ' means that the right-hand side only contains the

leading-order term in k1 and k2. The trace for n1 = 0 and n2 = 0 is

tr

[(
Zcl
)L]
' (−i)L(k2

1 + k2
2)

L
2

+1 sin [(L+ 2)ψ0]

2LxL3 (L+ 1)(L+ 2)
. (D.6)

When (n1, n2) = (1, 0) or (n1, n2) = (0, 1), we find

tr
[ (
Zcl
)L−1

tk13 ⊗ 1k2

]
' (−i)L(k2

1 + k2
2)

L
2

2LxL−1
3 L(L+ 1)(L+ 2)

[
− k1k2L cos (Lψ0)

+
[
k2

2 + k2
1(L+ 1)

]
sin (Lψ0)

]
,

tr
[ (
Zcl
)L−1

1k1 ⊗ t
k2
3

]
' (−i)L−1(k2

1 + k2
2)

L
2

2LxL−1
3 L(L+ 1)(L+ 2)

[
+ k1k2L cos (Lψ0)

+
[
k2

1 + k2
2(L+ 1)

]
sin (Lψ0)

]
.

(D.7)

For the case n1 = n2 = 1, the trace gives

tr
[ (
Zcl
)L−2

tk13 ⊗ t
k2
3

]
' (−i)L+1(k2

1 + k2
2)

L
2

2LxL−2
3 L(L+ 2)(L− 1)

[
+ k1k2L cos (Lψ0)

+ (k1 − k2)(k1 + k2) sin (Lψ0)
]
.

(D.8)
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Finally, for the cases (n1, n2) = (2, 0) and (n1, n2) = (0, 2) the traces evaluate to

tr
[ (
Zcl
)L−2 (

tk13

)2
⊗ 1k2

]
' − (−i)L(k2

1 + k2
2)

L
2

2LxL−2
3 (L− 1)L(L+ 1)(L+ 2)

[
+ 2k1k2L cos (Lψ0)

+
(
−2k2

2 + k2
1L(L+ 1)

)
sin (Lψ0)

]
,

tr
[ (
Zcl
)L−2

1k1 ⊗
(
tk23

)2 ]
' (−i)L(k2

1 + k2
2)

L
2

2LxL−2
3 (L− 1)L(L+ 1)(L+ 2)

[
+ 2k1k2L cos (Lψ0)

+
(
2k2

1 − k2
2L(L+ 1)

)
sin (Lψ0)

]
.

(D.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Andrei et al., Boundary and Defect CFT: Open Problems and Applications, 2018,

arXiv:1810.05697 [INSPIRE].

[2] N.R. Constable, R.C. Myers and O. Tafjord, The Noncommutative bion core, Phys. Rev. D 61

(2000) 106009 [hep-th/9911136] [INSPIRE].

[3] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes

with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

[4] M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, Introduction to Integrability and

One-point Functions in N = 4 SYM and its Defect Cousin, in Les Houches Summer School:

Integrability: From Statistical Systems to Gauge Theory, Les Houches France (2016)

[arXiv:1708.02525] [INSPIRE].

[5] O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories,

Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].

[6] J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with

interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].

[7] J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984)

514 [INSPIRE].

[8] M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in Defect CFT and

Integrability, JHEP 08 (2015) 098 [arXiv:1506.06958] [INSPIRE].

[9] I. Buhl-Mortensen, M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in

AdS/dCFT from Matrix Product States, JHEP 02 (2016) 052 [arXiv:1512.02532] [INSPIRE].

[10] M. de Leeuw, C. Kristjansen and S. Mori, AdS/dCFT one-point functions of the SU(3) sector,

Phys. Lett. B 763 (2016) 197 [arXiv:1607.03123] [INSPIRE].

[11] M. De Leeuw, C. Kristjansen and G. Linardopoulos, Scalar one-point functions and matrix

product states of AdS/dCFT, Phys. Lett. B 781 (2018) 238 [arXiv:1802.01598] [INSPIRE].

– 44 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/1810.05697
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.05697
https://doi.org/10.1103/PhysRevD.61.106009
https://doi.org/10.1103/PhysRevD.61.106009
https://arxiv.org/abs/hep-th/9911136
https://inspirehep.net/search?p=find+EPRINT+hep-th/9911136
https://doi.org/10.1088/1126-6708/2001/06/063
https://arxiv.org/abs/hep-th/0105132
https://inspirehep.net/search?p=find+EPRINT+hep-th/0105132
https://arxiv.org/abs/1708.02525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.02525
https://doi.org/10.1103/PhysRevD.66.025009
https://arxiv.org/abs/hep-th/0111135
https://inspirehep.net/search?p=find+EPRINT+hep-th/0111135
https://doi.org/10.1103/PhysRevD.66.025020
https://arxiv.org/abs/hep-th/0203020
https://inspirehep.net/search?p=find+EPRINT+hep-th/0203020
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1016/0550-3213(84)90241-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B240,514%22
https://doi.org/10.1007/JHEP08(2015)098
https://arxiv.org/abs/1506.06958
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06958
https://doi.org/10.1007/JHEP02(2016)052
https://arxiv.org/abs/1512.02532
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.02532
https://doi.org/10.1016/j.physletb.2016.10.044
https://arxiv.org/abs/1607.03123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03123
https://doi.org/10.1016/j.physletb.2018.03.083
https://arxiv.org/abs/1802.01598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.01598


J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

[12] I. Buhl-Mortensen, M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, One-loop

one-point functions in gauge-gravity dualities with defects, Phys. Rev. Lett. 117 (2016) 231603

[arXiv:1606.01886] [INSPIRE].

[13] I. Buhl-Mortensen, M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, A Quantum

Check of AdS/dCFT, JHEP 01 (2017) 098 [arXiv:1611.04603] [INSPIRE].

[14] I. Buhl-Mortensen, M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, Asymptotic

One-Point Functions in Gauge-String Duality with Defects, Phys. Rev. Lett. 119 (2017) 261604

[arXiv:1704.07386] [INSPIRE].

[15] K. Nagasaki and S. Yamaguchi, Expectation values of chiral primary operators in holographic

interface CFT, Phys. Rev. D 86 (2012) 086004 [arXiv:1205.1674] [INSPIRE].

[16] K. Nagasaki, H. Tanida and S. Yamaguchi, Holographic Interface-Particle Potential, JHEP 01

(2012) 139 [arXiv:1109.1927] [INSPIRE].

[17] D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from

N = 4 superYang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

[18] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar

Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills Theory,

Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

[19] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701

(2007) P01021 [hep-th/0610251] [INSPIRE].

[20] F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from

obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [INSPIRE].

[21] C. Kristjansen, G.W. Semenoff and D. Young, Chiral primary one-point functions in the

D3-D7 defect conformal field theory, JHEP 01 (2013) 117 [arXiv:1210.7015] [INSPIRE].

[22] O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall Effect in a Holographic

Model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].

[23] R.C. Myers and M.C. Wapler, Transport Properties of Holographic Defects, JHEP 12 (2008)

115 [arXiv:0811.0480] [INSPIRE].

[24] G. Grignani, N. Kim and G.W. Semenoff, D3-D5 holography with flux, Phys. Lett. B 715

(2012) 225 [arXiv:1203.6162] [INSPIRE].

[25] C. Kristjansen and G.W. Semenoff, Giant D5 Brane Holographic Hall State, JHEP 06 (2013)

048 [arXiv:1212.5609] [INSPIRE].

[26] C. Kristjansen, R. Pourhasan and G.W. Semenoff, A Holographic Quantum Hall Ferromagnet,

JHEP 02 (2014) 097 [arXiv:1311.6999] [INSPIRE].

[27] J. Hutchinson, C. Kristjansen and G.W. Semenoff, Conductivity Tensor in a Holographic

Quantum Hall Ferromagnet, Phys. Lett. B 738 (2014) 373 [arXiv:1408.3320] [INSPIRE].

[28] N. Jokela, G. Lifschytz and M. Lippert, Holographic anyonic superfluidity, JHEP 10 (2013)

014 [arXiv:1307.6336] [INSPIRE].

[29] N. Jokela, G. Lifschytz and M. Lippert, Flowing holographic anyonic superfluid, JHEP 10

(2014) 21 [arXiv:1407.3794] [INSPIRE].

[30] A. Gimenez Grau, C. Kristjansen, M. Volk and M. Wilhelm, work in progress.

– 45 –

https://doi.org/10.1103/PhysRevLett.117.231603
https://arxiv.org/abs/1606.01886
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01886
https://doi.org/10.1007/JHEP01(2017)098
https://arxiv.org/abs/1611.04603
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.04603
https://doi.org/10.1103/PhysRevLett.119.261604
https://arxiv.org/abs/1704.07386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.07386
https://doi.org/10.1103/PhysRevD.86.086004
https://arxiv.org/abs/1205.1674
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1674
https://doi.org/10.1007/JHEP01(2012)139
https://doi.org/10.1007/JHEP01(2012)139
https://arxiv.org/abs/1109.1927
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1927
https://doi.org/10.1088/1126-6708/2002/04/013
https://arxiv.org/abs/hep-th/0202021
https://inspirehep.net/search?p=find+EPRINT+hep-th/0202021
https://doi.org/10.1103/PhysRevD.75.085010
https://arxiv.org/abs/hep-th/0610248
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610248
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
https://doi.org/10.1103/PhysRevD.75.105011
https://arxiv.org/abs/hep-th/0612309
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612309
https://doi.org/10.1007/JHEP01(2013)117
https://arxiv.org/abs/1210.7015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7015
https://doi.org/10.1007/JHEP10(2010)063
https://arxiv.org/abs/1003.4965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4965
https://doi.org/10.1088/1126-6708/2008/12/115
https://doi.org/10.1088/1126-6708/2008/12/115
https://arxiv.org/abs/0811.0480
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.0480
https://doi.org/10.1016/j.physletb.2012.07.026
https://doi.org/10.1016/j.physletb.2012.07.026
https://arxiv.org/abs/1203.6162
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6162
https://doi.org/10.1007/JHEP06(2013)048
https://doi.org/10.1007/JHEP06(2013)048
https://arxiv.org/abs/1212.5609
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5609
https://doi.org/10.1007/JHEP02(2014)097
https://arxiv.org/abs/1311.6999
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.6999
https://doi.org/10.1016/j.physletb.2014.10.004
https://arxiv.org/abs/1408.3320
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3320
https://doi.org/10.1007/JHEP10(2013)014
https://doi.org/10.1007/JHEP10(2013)014
https://arxiv.org/abs/1307.6336
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6336
https://doi.org/10.1007/JHEP10(2014)021
https://doi.org/10.1007/JHEP10(2014)021
https://arxiv.org/abs/1407.3794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3794


J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

[31] A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, On the fermion spectrum of

spontaneously generated fuzzy extra dimensions with fluxes, Fortsch. Phys. 58 (2010) 537

[arXiv:0909.5559] [INSPIRE].

[32] L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4

super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].

[33] C.P. Burgess and G.D. Moore, The standard model: A primer, Cambridge University Press,

Cambridge U.K. (2006).

[34] M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge

U.K. (2015).

[35] T. Kawano and K. Okuyama, Spinor exchange in AdS(d+ 1), Nucl. Phys. B 565 (2000) 427

[hep-th/9905130] [INSPIRE].

[36] D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills

Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

[37] M. de Leeuw, A.C. Ipsen, C. Kristjansen, K.E. Vardinghus and M. Wilhelm, Two-point

functions in AdS/dCFT and the boundary conformal bootstrap equations, JHEP 08 (2017) 020

[arXiv:1705.03898] [INSPIRE].

[38] W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett.

84B (1979) 193 [INSPIRE].

[39] D.M. Capper, D.R.T. Jones and P. van Nieuwenhuizen, Regularization by Dimensional

Reduction of Supersymmetric and Nonsupersymmetric Gauge Theories, Nucl. Phys. B 167

(1980) 479 [INSPIRE].

[40] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric

Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

[41] D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections

of non-protected operators in N = 4 SYM, JHEP 06 (2015) 156 [arXiv:1410.8485] [INSPIRE].

[42] W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94

(1980) 37 [INSPIRE].

[43] L.V. Avdeev, G.A. Chochia and A.A. Vladimirov, On the Scope of Supersymmetric

Dimensional Regularization, Phys. Lett. B 105 (1981) 272 [INSPIRE].

[44] L.V. Avdeev, Noninvariance of Regularization by Dimensional Reduction: An Explicit

Example of Supersymmetry Breaking, Phys. Lett. B 117 (1982) 317 [INSPIRE].

[45] L.V. Avdeev and A.A. Vladimirov, Dimensional Regularization and Supersymmetry, Nucl.

Phys. B 219 (1983) 262 [INSPIRE].

[46] J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 superYang-Mills, JHEP 03 (2003)

013 [hep-th/0212208] [INSPIRE].

[47] B. Guo, Lollipop diagrams in defect N = 4 super Yang-Mills theory, MSc Thesis, University of

British Columbia, Vancouver Canada (2017).

[48] M. de Leeuw, A.C. Ipsen, C. Kristjansen and M. Wilhelm, One-loop Wilson loops and the

particle-interface potential in AdS/dCFT, Phys. Lett. B 768 (2017) 192 [arXiv:1608.04754]

[INSPIRE].

[49] J. Aguilera-Damia, D.H. Correa and V.I. Giraldo-Rivera, Circular Wilson loops in defect

Conformal Field Theory, JHEP 03 (2017) 023 [arXiv:1612.07991] [INSPIRE].

– 46 –

https://doi.org/10.1002/prop.201000018
https://arxiv.org/abs/0909.5559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.5559
https://doi.org/10.1007/JHEP01(2010)077
https://arxiv.org/abs/0908.0684
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0684
https://doi.org/10.1016/S0550-3213(99)00639-2
https://arxiv.org/abs/hep-th/9905130
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905130
https://doi.org/10.1007/s10955-009-9687-3
https://arxiv.org/abs/0804.2902
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2902
https://doi.org/10.1007/JHEP08(2017)020
https://arxiv.org/abs/1705.03898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03898
https://doi.org/10.1016/0370-2693(79)90282-X
https://doi.org/10.1016/0370-2693(79)90282-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B84,193%22
https://doi.org/10.1016/0550-3213(80)90244-8
https://doi.org/10.1016/0550-3213(80)90244-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B167,479%22
https://doi.org/10.1016/S0550-3213(00)00300-X
https://arxiv.org/abs/hep-th/0003055
https://inspirehep.net/search?p=find+EPRINT+hep-th/0003055
https://doi.org/10.1007/JHEP06(2015)156
https://arxiv.org/abs/1410.8485
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8485
https://doi.org/10.1016/0370-2693(80)90819-9
https://doi.org/10.1016/0370-2693(80)90819-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B94,37%22
https://doi.org/10.1016/0370-2693(81)90886-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B105,272%22
https://doi.org/10.1016/0370-2693(82)90726-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B117,317%22
https://doi.org/10.1016/0550-3213(83)90437-6
https://doi.org/10.1016/0550-3213(83)90437-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B219,262%22
https://doi.org/10.1088/1126-6708/2003/03/013
https://doi.org/10.1088/1126-6708/2003/03/013
https://arxiv.org/abs/hep-th/0212208
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212208
http://dx.doi.org/10.14288/1.0354495
http://dx.doi.org/10.14288/1.0354495
https://doi.org/10.1016/j.physletb.2017.02.047
https://arxiv.org/abs/1608.04754
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04754
https://doi.org/10.1007/JHEP03(2017)023
https://arxiv.org/abs/1612.07991
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.07991


J
H
E
P
0
1
(
2
0
1
9
)
0
0
7

[50] M. Preti, D. Trancanelli and E. Vescovi, Quark-antiquark potential in defect conformal field

theory, JHEP 10 (2017) 079 [arXiv:1708.04884] [INSPIRE].

[51] E. Widen, Two-point functions of SU(2)-subsector and length-two operators in dCFT, Phys.

Lett. B 773 (2017) 435 [arXiv:1705.08679] [INSPIRE].

[52] L. Piroli, B. Pozsgay and E. Vernier, What is an integrable quench?, Nucl. Phys. B 925 (2017)

362 [arXiv:1709.04796] [INSPIRE].

[53] M. de Leeuw, C. Kristjansen and K.E. Vardinghus, work in progress.

[54] M. de Leeuw, C. Kristjansen and G. Linardopoulos, One-point functions of non-protected

operators in the SO(5) symmetric D3–D7 dCFT, J. Phys. A 50 (2017) 254001

[arXiv:1612.06236] [INSPIRE].

[55] B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl.

Phys. B 305 (1988) 545 [INSPIRE].

[56] J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state

problem, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge U.S.A. (1982),

http://hdl.handle.net/1721.1/15717.

– 47 –

https://doi.org/10.1007/JHEP10(2017)079
https://arxiv.org/abs/1708.04884
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.04884
https://doi.org/10.1016/j.physletb.2017.08.059
https://doi.org/10.1016/j.physletb.2017.08.059
https://arxiv.org/abs/1705.08679
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.08679
https://doi.org/10.1016/j.nuclphysb.2017.10.012
https://doi.org/10.1016/j.nuclphysb.2017.10.012
https://arxiv.org/abs/1709.04796
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04796
https://doi.org/10.1088/1751-8121/aa714b
https://arxiv.org/abs/1612.06236
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06236
https://doi.org/10.1016/0550-3213(88)90116-2
https://doi.org/10.1016/0550-3213(88)90116-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B305,545%22
http://hdl.handle.net/1721.1/15717

	Introduction and summary
	Mass matrix
	Expansion of the action
	Boson mass matrix
	Decomposition of the color matrices and easy fields
	Complicated fields

	Fermion mass matrix
	Summary of the spectrum

	Propagators
	Scalar propagators
	Fermionic propagators
	Color and flavor part of the propagators

	One-loop corrections to the classical solution
	One-loop corrections to single-trace operators
	General single-trace operators
	One-loop one-point function of tr Z**L

	Outlook
	Conventions
	Field-theory conventions
	Lie algebra su(2) and fuzzy spherical harmonics

	Color and flavor part of the propagators
	One-loop correction to the scalar vacuum expectation values
	Calculation of the effective vertex
	Contraction of the stick
	Spacetime integral

	Color traces

