Measurement of D_-, D_0, D_+, and D_s^+ production in pp collisions at $s=5.02\text{TeV}$ with ALICE

Acharya, S.; Adamova, D.; Adhya, S.; Adler, A.; Adolfsson, J.; Aggarwal, MM.; Aglieri Rinella, G.; Agnello, A.; Ahammed, Z.; Ahmad, Shafqat; Ahn, S.U.; Akindinov, A.; Al-Turany, M.; Alam, SN; Albuquerque, DSD; Aleksandrov, D.; Alessandro, B; Alfanda, H.M.; Alfaro-Molina; Ali, B.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Anaam, MN; Bearden, Ian; rtc312, rtc312; Zhou, You; Gaardhøje, Jens Jørgen; Bilandzic, Ante; Bourjau, Christian Alexander; Chojnacki, Marek; Ozelin De Lima Pimentel, Lais; Gajdosova, Katarina; bsm989, bsm989; Thoresen, Freja; Bourjau, Christian; Nielsen, Børge Svane; Pacik, Vojtech; ALICE Collaboration

Published in: European Physical Journal C

DOI: 10.1140/epjc/s10052-019-6873-6

Publication date: 2019

Document version
Publisher's PDF, also known as Version of record

Document license: CC BY

Citation for published version (APA):

Download date: 01. okt., 2019
Measurement of D^0, D^+, D^{*+} and D^+_s production in pp collisions at $\sqrt{s} = 5.02$ TeV with ALICE

ALICE Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 25 January 2019 / Accepted: 11 April 2019

© CERN for the benefit of the ALICE collaboration 2019

Abstract The measurements of the production of prompt D^0, D^+, D^{*+}, and D^+_s mesons in proton–proton (pp) collisions at $\sqrt{s} = 5.02$ TeV with the ALICE detector at the Large Hadron Collider (LHC) are reported. D mesons were reconstructed at mid-rapidity ($|y| < 0.5$) via their hadronic decay channels $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$, $D^{*+} \rightarrow D^0\pi^+ \rightarrow K^-\pi^+\pi^+$, $D^+_s \rightarrow \phi\pi^+ \rightarrow K^+K^-\pi^+$, and their charge conjugates. The production cross sections were measured in the transverse momentum interval $0 < p_T < 36$ GeV/c for D^0, $1 < p_T < 36$ GeV/c for D^+ and D^{*+}, and in $2 < p_T < 24$ GeV/c for D^+_s mesons. Thanks to the higher integrated luminosity, an analysis in finer p_T bins with respect to the previous measurements at $\sqrt{s} = 7$ TeV was performed, allowing for a more detailed description of the cross-section p_T shape. The measured p_T-differential production cross sections are compared to the results at $\sqrt{s} = 7$ TeV and to four different perturbative QCD calculations. Its rapidity dependence is also tested combining the ALICE and LHCb measurements in pp collisions at $\sqrt{s} = 5.02$ TeV. This measurement will allow for a more accurate determination of the nuclear modification factor in p–Pb and Pb–Pb collisions performed at the same nucleon–nucleon centre-of-mass energy.

1 Introduction

The study of the production of hadrons containing heavy quarks, i.e. charm and beauty, in proton–proton (pp) collisions at LHC energies is a sensitive test of Quantum Chromodynamics (QCD) calculations with the factorisation approach. In this scheme, the transverse momentum (p_T) differential production cross sections of hadrons containing charm or beauty quarks are calculated as a convolution of three terms: (i) the parton distribution functions (PDFs) of the incoming protons, (ii) the partonic scattering cross section, calculated as a perturbative series in powers of the strong coupling constant α_s, and (iii) the fragmentation function, which parametrises the non-perturbative evolution of a heavy quark into a given species of heavy-flavour hadron. Factorisation is implemented in terms of the squared momentum transfer Q^2 (collinear factorisation) [1] or of the partonic transverse momentum k_T [2]. At LHC energies, calculations based on collinear factorisation are available in the general-mass variable-flavour-number scheme, GM-VFNS [3–6], and in the fixed order plus next-to-leading logarithms approach, FONLL [7,8], both of them having next-to-leading order (NLO) accuracy with all-order resummation of next-to-leading logarithms. Within the k_T-factorisation framework, heavy-flavour production cross-section calculations exist only at leading order (LO) approximation in α_s [2,9,10]. All these calculations describe within uncertainties the production cross sections of D and B mesons measured in pp and p\bar{p} collisions in different kinematic regions at centre-of-mass energies from 0.2 to 13 TeV (see e.g. Ref. [11] and references therein). In the case of charm production, the uncertainties on the theoretical predictions, which are dominated by the choice of the scales of the perturbative calculation (e.g. the factorisation and renormalisation scales), are significantly larger than the uncertainties on the measured data points [12–23]. However, as pointed out in Ref. [24], in the ratios of cross sections at different LHC energies and in different rapidity intervals the uncertainty due to choice of the factorisation and renormalisation scales becomes subdominant with respect to the uncertainty on the PDFs, thus making the measurement sensitive to the gluon PDF at small Bjorken-x values. A precise measurement of the D-meson production cross sections down to $p_T = 0$ can therefore provide important constraints to perturbative QCD (pQCD) calculations and to low-x gluon PDFs. Furthermore, D-meson measurements in pp collisions represent an essential reference for the study of effects induced by cold and hot strongly-interacting matter in the case of proton–nucleus and nucleus–nucleus collisions (see e.g. the recent reviews [11,25,26]).
In this article, the measurements of the p_T-differential production cross sections of prompt D^0, D^+, D^{*+}, and D_s^+ mesons (as average of particles and anti-particles) in pp collisions at the centre-of-mass energy $\sqrt{s} = 5.02$ TeV are reported together with their ratios. The measurements are performed at mid-rapidity ($|y| < 0.5$) in the transverse momentum intervals $0 < p_T < 36$ GeV/c for D^0 mesons, $1 < p_T < 36$ GeV/c for D^+ and D^{*+} mesons, and $2 < p_T < 24$ GeV/c for D_s^+ mesons. The p_T-integrated D-meson production cross sections per unit of rapidity is also reported for each D-meson species. The ratios of the D^0, D^+, and D^{*+}-meson production cross sections measured at $\sqrt{s} = 7$ TeV [27] and $\sqrt{s} = 5.02$ TeV are presented as well, and compared to FONLL calculations. Finally, the ratios of D^0-meson production cross sections at mid- and forward rapidity are also reported, using the measurements done at forward rapidity by the LHCb collaboration in pp collisions at $\sqrt{s} = 5.02$ TeV [22].

2 Experimental apparatus and data sample

The ALICE experimental apparatus is composed of a set of detectors for particle reconstruction and identification at mid-rapidity, embedded in a large solenoidal magnet that provides a $B = 0.5$ T field parallel to the beams. It also includes a forward muon spectrometer and various forward and backward detectors for triggering and event characterisation. A complete description and an overview of their typical performance in pp, p–Pb, and Pb–Pb collisions is presented in Refs. [28,29].

The tracking and particle identification capabilities of the ALICE central barrel detectors were exploited to reconstruct the D-meson decay products at mid-rapidity. The Inner Tracking System (ITS), consisting of six cylindrical layers of silicon detectors, is used to track charged particles and to reconstruct primary and secondary vertices. The Time Projection Chamber (TPC) provides track reconstruction with tracks reconstructed with at least two points in the ITS, including at least one in the SPD, and D^0, D^+, and D_s^+ candidates were built combining pairs or triplets of tracks with the proper charge, each with $|\eta| < 0.8$, $p_T > 0.3$ GeV/c, at least 70 associated TPC space points, $x^2/\text{ndf} < 2$ in the TPC (where ndf is the number of degrees of freedom involved in the track fit procedure), and at least one hit in either of the two layers of the SPD. The D^{*-} candidates were identified by the combination of D^0 candidates with tracks reconstructed with at least two points in the ITS, including at least one in the SPD, and $p_T > 80$ MeV/c. As a consequence of these track selection criteria, the acceptance for D mesons decreases rapidly for $|\eta| > 0.5$ at low p_T and for $|\eta| > 0.8$ for $p_T > 5$ GeV/c. Therefore, only D^0-meson candidates within a fiducial acceptance region, $|\eta| < \eta_{\text{fid}}(p_T)$, were selected. The $\eta_{\text{fid}}(p_T)$ factor was defined as a second-order polynomial function, increasing from 0.5 to 0.8 in the transverse momentum range $0 < p_T < 5$ GeV/c, and a constant term, $\eta_{\text{fid}} = 0.8$, for $p_T > 5$ GeV/c.

In order to reduce the combinatorial background and to increase the signal-over-background ratio (S/B), geometrical selections on the D^0, D^+, and D_s^+-meson decay topology were applied. In the $D^{++} \rightarrow D^0 \pi^+$ case, the decay vertex cannot be resolved from the primary vertex and geometrical selections were applied on the secondary vertex topology of the produced D^0 mesons. The selection requirements, tuned to provide a large statistical significance for the sig-
nal and to keep the selection efficiency as high as possible, were mainly based on the displacement of the tracks from the primary vertex (d0), the distance between the D-meson decay vertex and the primary vertex (decay length, L), and the pointing of the reconstructed D-meson momentum to the primary vertex. Additional selection criteria, already introduced in Refs. [27,31], were applied to D+ and D_s mesons. These selections reject both combinatorial background and D mesons from beauty-hadron decays (selection efficiency reduced by 50% at high pT), denoted as “feed-down” in the following. For the D_s+ candidate selection, one of the two pairs of opposite-sign tracks was required to have a reconstructed K+K− invariant mass within ±10 MeV/c² with respect to the PDG world average of the φ meson [30].

Further reduction of the combinatorial background was obtained by applying particle identification (PID) to the decay tracks, except for the soft-pion track coming from D meson decays. Pions and kaons were identified requiring compatibility with the respective particle hypothesis within three standard deviations (3σ) between the measured and the expected signals for both the TPC dE/dx and the time-of-flight. Tracks without TOF hits were identified using only the TPC information with a 3σ selection, except for the decay products of D_s+ mesons with pT < 6 GeV/c, for which a 2σ selection was needed to suppress the larger fraction of combinatorial background in this mode.

The D-meson raw yields, including both particles and antiparticles, were obtained from binned maximum likelihood fits to the invariant-mass (M) distributions of D⁰, D+, and D_s+ candidates and to the mass difference ΔM = M(Kππ) − M(Kπ) distributions of D⁰ candidates, in the transverse-momentum intervals 0.5 < pT < 36 GeV/c for D⁰ mesons, 1 < pT < 36 GeV/c for D+ mesons, and 2 < pT < 24 GeV/c for D_s+ mesons. The signal extraction was performed in finer pT bins with respect to the previous measurements at √s = 7 TeV [27], allowing for a more detailed description of the cross-section pT shape. The fit function was composed of a Gaussian for the description of the signal and of an exponential term for the background of the signal and of an exponential term for the background of D⁰, D+, and D_s+ candidates, and of a threshold function for D_s+ candidates [27]. For the D⁰ meson, the contribution of signal candidates present in the invariant-mass distribution with the wrong decay-particle mass assignment (reflections) was included in the fit. It was modelled based on the invariant-mass distributions of the reflected signal in the simulation, which were parametrised as the sum of two Gaussian functions. The contribution of reflections is about 2%−3% of the raw signal depending on pT. For the M(KKπ) distribution, an additional Gaussian was used to describe the signal of the decay D+ → K+K−π+, with a branching ratio of (9.51 ± 0.34) × 10⁻³ [30], present on the left side of the D_s+ meson signal. Figure 1 shows the invariant mass (mass-difference) distributions together with the result of the fits, in 1.5 < pT < 2 GeV/c, 16 < pT < 24 GeV/c, 7 < pT < 7.5 GeV/c, and 3 < pT < 4 GeV/c intervals for D⁰, D+, D_s+, and D_s mesons, respectively. The statistical significance of the observed signals, S/√(S + B), varies from 4 to 28, depending on the meson species and on the pT interval. The S/B values obtained applying the selections described above are 0.01−1.85 for D⁰, 0.5−2.2 for D+, 0.3−4.2 for D_s+, and 0.3−2.2 for D_s mesons, depending on pT.

The pT-differential cross section of prompt D mesons in each pT interval was computed as:

\[
\frac{d^2σ}{dpTdy} = \frac{1}{cΔy(pT)ΔpT · BR} \cdot \frac{1}{2} \cdot \frac{1}{f_{prompt}(pT) · N^{D+B_{raw}}(pT)} \left|_{y < y_{fid}} \right| \frac{1}{L_{int}} \cdot \frac{ε}{(Acc × ε)_{prompt}(pT)}
\]

The raw yield values (sum of particles and antiparticles, N^{D+B_{raw}}) were divided by a factor of two and multiplied by the prompt fraction f_{prompt} to obtain the charged-averaged yields of prompt D mesons. Furthermore, they were divided by the acceptance-times-efficiency of prompt D mesons (Acc × ε)_{prompt}, the BR of the decay channel, the width of the pT interval (ΔpT), the correction factor for the rapidity coverage cΔy, and the integrated luminosity L_{int} = N_{ev}/σMB, where N_{ev} is the number of analysed events and σMB = (50.9 ± 0.9) mb is the cross section for the MB trigger condition [32].

The (Acc × ε) correction was obtained simulating pp collisions with the PYTHIA 6.4.25 event generator [33] (Perugia-11 tune [34]), and propagating the generated particles through the detector using GEANT3 [35]. Each simulated PYTHIA pp event contained a cτ or bτ pair, and D mesons were forced to decay into the hadronic channels of interest for the analysis. The luminous region distribution and the conditions of all the ALICE detectors in terms of active channels, gain, noise level and alignment, and their evolution with time during the data taking, were taken into account in the simulations.

Figure 2 shows the (Acc × ε) as a function of pT for prompt and feed-down D⁰, D+, D_s+, and D_s mesons within the fiducial acceptance region. The average larger displacement from the primary vertex of beauty hadrons due to their long lifetime (cτ ≈ 500 μm [30]) results in a more efficient selection of feed-down D mesons compared to prompt D mesons in most of the pT intervals.

The correction factor for the rapidity acceptance cΔy was computed with the PYTHIA 6.4.25 event generator with Perugia-11 tune. It was defined as the ratio of the generated D-meson yield in Δy = 2 y_{fid}, and that in |y| < 0.5. It was checked that calculations of the cΔy correction factor based on FONLL pQCD calculations [8] or on the assump-
from the EvtGen package [37], and the efficiencies for feed-
down D mesons reported in Fig. 2. The values of
and $p_T \mid f$ the D-meson yield is uniform within 1% in the range
would give the same result, because both in PYTHIA and in
combinatorial background with the contribution of the reflections. The
values of the mean (μ) and the width (σ) of the signal peak are reported
together with the signal counts (S) and the signal over background ratio (S/B) in the mass interval ($\mu - 3\sigma, \mu + 3\sigma$). The reported uncertainties
are only the statistical uncertainties from the fit

tion of uniform D-meson rapidity distribution in $|y| < y_{\text{fid}}$
would give the same result, because both in PYTHIA and in
FONLL the D-meson yield is uniform within 1% in the range
$|y| < 0.8$.

The f_{prompt} fraction was calculated similarly to previous
measurements (see e.g. Refs. [27,31]) using the beauty-

A different analysis method, not based on geometrical selections of the displaced decay-vertex topology, was developed for the two-body decay $D^0 \rightarrow K^{-} \pi^{+}$ (and its charge conjugate) in order to extend the measurement of the cross section down to $p_T = 0$ [19]. Indeed, the poor track impact parameter resolution at very low p_T and the small Lorentz boost limit the effectiveness of the selections based on the displaced decay-vertex topology. Furthermore, geometrical selections based on the displacement of the D^0-meson decay vertex tend to enhance the contribution of feed-down D mesons, increasing the related systematic uncertainty. This alternative analysis

Fig. 1 Invariant-mass (mass-difference) distributions of D^0, D^+, D^{++}, and D_s^+ candidates and charge conjugates in $1.5 < p_T < 2$ GeV/c, $16 < p_T < 24$ GeV/c, $7 < p_T < 7.5$ GeV/c, and $3 < p_T < 4$ GeV/c intervals, respectively. The blue solid lines show the total fit functions as described in the text and the red dashed lines are the combinatorial-background terms. In case of D^0, the grey dashed line represents the combinatorial background with the contribution of the reflections. The values of the mean (μ) and the width (σ) of the signal peak are reported together with the signal counts (S) and the signal over background ratio (S/B) in the mass interval ($\mu - 3\sigma, \mu + 3\sigma$). The reported uncertainties are only the statistical uncertainties from the fit.
Fig. 2 Acceptance × efficiency for D^0, D^+, D^{*+}, and D_s^+ mesons, as a function of p_T. The efficiencies for prompt (solid lines) and feed-down (dotted lines) D mesons are shown.

Fig. 3 Invariant-mass distributions of $D^0 \rightarrow K^- \pi^+$ candidates (and charge conjugates) for $0 < p_T < 0.5$ GeV/c. The left panel displays the invariant-mass distribution of all opposite-sign $K\pi$ pairs (or unlike sign, ULS in the legend) together with the background distribution estimated with the track-rotation technique. The right panel shows the invariant-mass distributions after subtraction of the background from the track-rotation technique. The blue solid line shows the total fit function as described in the text and the grey dashed line is the residual background after the subtraction of the background from the track-rotation technique.
The D0 candidates were formed combining pairs of kaons and pions tracks with opposite charge sign, |η| < 0.8, and $p_T > 0.3$ GeV/c. Track selection and pion and kaon identification were performed with the same strategy used in the analysis with decay-vertex reconstruction described in Sect. 3.1. The resulting D0 and \overline{D}^0 candidates were selected by applying the same fiducial acceptance selection $|y| < y_{\text{fid}}(p_T)$ adopted for the analysis with decay-vertex reconstruction. The invariant-mass distribution of Kπ pairs was obtained in fourteen transverse momentum intervals, in the range $0 < p_T < 12$ GeV/c. The background distribution was estimated with the track-rotation technique. For each D0 (and \overline{D}^0) candidate, up to 19 combinatorial-background-like candidates were created by rotating the kaon track by different angles in the range between $\frac{\pi}{2}$ and $\frac{10\pi}{10}$ radians in azimuth. The left hand panel of Fig. 3 shows the invariant-mass distribution of opposite-sign Kπ pairs together with that of the background estimated with the track-rotation technique in the interval $0 < p_T < 0.5$ GeV/c.

After subtracting the background distribution from the opposite-sign Kπ invariant-mass distribution, the D0-meson raw signal (sum of particle and antiparticle contributions) was extracted from the resulting distribution via a fit to the background-subtracted invariant-mass distribution, as reported in Fig. 3 (right panel) for the interval $0 < p_T < 0.5$ GeV/c. In the fit function, the signal was modelled with a Gaussian term, while the residual background with second-order polynomial function. The statistical significance of the signal extracted in $0 < p_T < 0.5$ GeV/c ($0.5 < p_T < 1$ GeV/c) is $S/\sqrt{S+B} = 5.2 (8.0)$.

The $(\text{Acc} \times \varepsilon)$ correction factors of prompt and feed-down D0 mesons were determined from the same Monte Carlo simulations as those used for the analyses with decay-vertex reconstruction. The $(\text{Acc} \times \varepsilon)$ obtained with the two different analyses are compared in Fig. 4. For the analysis that does not exploit the selections on the D0-meson decay vertex, the efficiency is higher by a factor of about 30 (3) at low (high) p_T and almost independent of p_T. The mild increase with the increasing p_T is mainly determined by the geometrical acceptance of the detector. Unlike in the analysis with decay-vertex reconstruction, the efficiency is the same for prompt D0 and for feed-down D0, as expected when no selection is made on the displacement of the D0-meson decay vertex from the interaction point.

The prompt fraction to the D0-meson raw yield, f_{prompt}, was estimated with the same FONLL-based approach used for the analysis with decay-vertex. The resulting f_{prompt} values decrease with increasing p_T, from a value of about 0.95 for $p_T < 4$ GeV/c to about 0.90 in the interval $8 < p_T < 12$ GeV/c and are larger compared to the analysis with decay-vertex reconstruction, due to the fact that the feed-down component is not enhanced by the topological selection criteria.

3.3 Measurement of the fraction of prompt D mesons

In order to cross-check the values obtained with the FONLL-based method of Sect. 3.1, the fractions of prompt D0 and D^+_s mesons in the raw yields, f_{prompt}, were measured exploiting the different shapes for the distributions of the transverse-plane impact parameter to the primary vertex (d_0) of prompt and feed-down D mesons. The prompt fraction was estimated via an unbinned maximum-likelihood fit of the d_0 distribution of D0 and D^+_s candidates with invariant mass $|M-M_D| < 2\sigma$ (where σ is the standard deviation of the Gaussian function describing the D-meson signal in the invariant-mass fits), using the fit function

$$F(d_0) = S \left[(1 - f_{\text{prompt}}) F_{\text{feed-down}}(d_0) \right] + f_{\text{prompt}} F_{\text{prompt}}(d_0) + B \cdot F_{\text{backgr}}(d_0).$$

In this function, S and B are the signal raw yield and background in the selected invariant-mass range, fixed to the values obtained from the invariant-mass fit; $F_{\text{prompt}}(d_0)$, $F_{\text{feed-down}}(d_0)$, and $F_{\text{backgr}}(d_0)$ are the functions describing the impact-parameter distributions of prompt and feed-down D mesons and background, respectively. The function F_{prompt} is a detector resolution term modelled with a Gaussian and a symmetric exponential term. The function $F_{\text{feed-down}}$ is the convolution of a sum of two symmetric exponential functions ($F_{\text{true}}^\text{feed-down}$), which describe the intrinsic impact-parameter distribution of secondary D mesons from beauty-hadron decays, and the detector resolution term (F_{prompt}). All the parameters of the F_{prompt} and $F_{\text{feed-down}}$ functions were fixed in the data fit to the values obtained.
by fitting the distributions from Monte Carlo simulations, except for the Gaussian width of the detector-resolution term, which was kept free in order to compensate a possible discrepancy between the impact-parameter resolution in the data and in the simulation. The distribution describing the combinatorial background was parameterised with a function composed of a Gaussian and symmetric exponential term \(F_{\text{backg}} \). The parameters were fixed to those obtained by fitting the impact-parameter distribution of background candidates in the side bands of the signal peak in the invariant-mass distributions. Figure 5 (left) shows examples of fits to the impact-parameter distributions of \(D^0 \) and \(D_s^+ \) mesons in the transverse-momentum intervals \(3 < p_T < 4 \text{ GeV}/c \) and \(5 < p_T < 6 \text{ GeV}/c \), respectively. For this study, wider \(p_T \) intervals were adopted compared to the analysis, due to the poor quality of the fit when reducing the sample. The \(D^0 \) candidates used in the impact-parameter fit were selected with the same criteria described in Sect. 3.1. For the \(D_s^+ \) mesons, the impact-parameter selection, used to extract the raw yield from the invariant-mass distribution, was not applied for this study. In this case, the prompt fraction, \(f_{\text{prompt}} \), was obtained by integrating the functions obtained from the fit in the restricted impact-parameter range used in the analysis.

The prompt fraction measured with the fits to the impact-parameter distributions of D-meson candidates has three main sources of systematic uncertainty, namely (i) the assumption on the shape of the impact-parameter distribution for each contribution (prompt D mesons, feed-down D mesons, and combinatorial background); (ii) the uncertainty on the signal and background yields extracted from the invariant-mass fits; and (iii) the consistency of the procedure, evaluated with a Monte Carlo closure test. These uncertainties were estimated with the procedures described in Ref. [19]. The total systematic uncertainty on \(f_{\text{prompt}} \) with the data-driven approach ranges, depending on \(p_T \), between 1 and 9% for the \(D^0 \) meson, and between 4 and 17% for the \(D_s^+ \) meson.

The prompt fractions in the raw yields of \(D^0 \) and \(D_s^+ \) mesons measured with the data-driven method are compared to those calculated with the FONLL-based approach in the right panels of Fig. 5 and found to be compatible within uncertainties. For the interval \(24 < p_T < 36 \text{ GeV}/c \) (\(16 < p_T < 24 \text{ GeV}/c \)), given the poor precision of the impact-parameter fit, it was not possible to determine the data-driven prompt fraction for the \(D^0 (D_s^+) \) meson.

4 Systematic uncertainties

Systematic uncertainties on the D-meson cross sections were estimated considering the following sources: (i) extraction of the raw yield from the invariant-mass distributions; (ii) track reconstruction efficiency; (iii) D-meson selection efficiency; (iv) PID efficiency; (v) the shape of the \(p_T \) spectrum generated for D mesons in the simulation; (vi) subtraction of the feed-down from beauty-hadron decays. In addition, the uncertainties on the branching ratios and on the integrated luminosity were considered. A summary of the systematic uncertainties is reported in Table 1 for different \(p_T \) intervals.

The systematic uncertainties on the raw yield extraction were evaluated by repeating the fits several hundred times varying the fit interval and the functional form of the background fit function. The same strategy was performed using a bin-counting method, in which the signal yield was obtained by integrating the invariant-mass distribution after subtracting the background, estimated from a fit to the side-bands only. The systematic uncertainty was defined as the RMS of the distribution of the signal yields obtained from all these variations and ranges between 1 and 9% depending on the D-meson species and \(p_T \) interval. This includes for the \(D^0 \) mesons a contribution of about 1% obtained by varying the ratio of the integral of the reflections to the integral of the signal and the shape of the templates used in the invariant-mass fits. For the background estimation of the \(D_s^+ \)-meson analysis without decay-vertex reconstruction with the track-rotation technique, different configurations of the rotation angle were used. In addition, three alternative approaches were tested to estimate the background distribution: like-sign (LS) pairs, event mixing, and side-band fit [19]. The raw yield values obtained subtracting these alternative background distributions were found to be consistent with those from the default configuration of the track-rotation method within the uncertainty estimated by varying the fit conditions and therefore no additional systematic uncertainty was assigned.

The systematic uncertainty on the track reconstruction efficiency has two different contributions. The first one is estimated by varying the track-quality selection criteria and the second one is estimated by comparing the probability to match the tracks from the TPC to the ITS hits in data and simulation (matching efficiency). To obtain the matching efficiency, the abundances of primary and secondary particles in data were estimated via template fits to the track impact-parameter distributions, where the relative abundances in the simulation were weighted to match those in data [27, 38]. The estimated uncertainty, a quadratic sum of the two contributions, depends on the D-meson \(p_T \) and it ranges from 3 to 5% for the two-body decay of \(D^0 \) mesons and from 3.5 to 7% for the three-body decays of \(D^+ \), \(D^{++} \), and \(D_s^+ \) mesons.

The systematic uncertainty on the D-meson selection efficiency originates from imperfections in the simulation of the D-meson decay kinematics and topology and of the resolutions and alignments of detectors in the simulation. For the analyses with decay-vertex reconstruction, the systematic uncertainty was estimated by repeating the analysis with different sets of selection criteria, resulting in a significant modification of the efficiencies, raw yield, and background
values. The systematic uncertainties are largest at low p_T (up to 5%), where the efficiencies are low and vary steeply with p_T, because of the tighter geometrical selections. For the D_s^+ meson, for which more stringent selection criteria were used, slightly larger uncertainties were estimated, ranging from 5% at high p_T to 8% at low p_T. In the case of the D^0-meson analysis without decay-vertex reconstruction, the stability of the corrected yield was tested against variations of the single-track p_T selection and no systematic effect was observed.

To estimate the uncertainty on the PID selection efficiency, the analysis was repeated without PID selection for the three non-strange D-meson species and D_s^+ mesons with $p_T > 6$ GeV/c. The resulting cross sections were found to be compatible with those obtained with the PID selection and therefore no systematic uncertainty was assigned. For D_s^+ mesons with $p_T < 6$ GeV/c and the D^0-meson analysis without decay-vertex reconstruction, an analysis without applying PID selections could not be performed due to the insufficient statistical significance of the signal. The systematic uncertainty for low-p_T D_s^+ mesons was therefore estimated by comparing the pion and kaon PID selection efficiencies in the data and in the simulation and combining the observed differences using the D_s^+-meson decay kinematics [31]. A 3% systematic uncertainty was assigned for $4 < p_T < 6$ GeV/c, and 2.5% for $p_T < 4$ GeV/c. For the D^0-meson analysis without decay-vertex reconstruction, compatible cross sections were obtained when using more stringent PID criteria. Based on this result and on the fact that the PID selections are the same as used in the analysis with decay-vertex reconstruction, no uncertainty due to PID was assigned.
The systematic uncertainty due to the generated D-meson p_T shape was estimated by using FONLL as an alternative generator with respect to PYTHIA to simulate the D-meson p_T distribution [15], and was found to be 0–5% for $p_T < 3$ GeV/c and negligible at higher p_T. The p_T shape of both considered distributions were found to be compatible with the measured one within uncertainties. Finally, the systematic uncertainty on the subtraction of feed-down from beauty-hadron decays (i.e. the calculation of the prompt fraction) was estimated by varying the FONLL parameters (b-quark mass, factorisation, and renormalisation scales) as prescribed in Ref. [8]. It ranges between $+1.0\%$ and -1.2% depending on the D-meson species and p_T interval.

The contributions of these different sources of uncertainties were summed in quadrature to obtain the total systematic uncertainty in each p_T interval, which varies from 6.5 to 10.0%, 6.5 to 10.5%, 5.4 to 11.3%, and 8.7 to 12.1% for the D^0, D^+, D^{*+}, and D_s^+ mesons, respectively. The systematic uncertainty on PID, tracking, and selection efficiencies are mainly correlated among the different p_T intervals, while the raw-yield extraction uncertainty is mostly uncorrelated. The p_T-differential cross sections have an additional global normalisation uncertainty due to the uncertainties on the integrated luminosity [32] and on the branching ratios of the considered D-meson decays [30].

5 Results

5.1 Transverse momentum-differential cross sections

The p_T-differential production cross section for prompt D^0 mesons in $|y| < 0.5$ in pp collisions at $\sqrt{s} = 5.02$ TeV was obtained from the analyses with and without decay-vertex reconstruction. The two results are compared in Fig. 6 with the inset showing their ratio in the common p_T range. In all the figures in this section, the vertical error bars represent the statistical uncertainties and the systematic uncertainties are depicted as boxes around the data points. In each p_T interval the symbols are positioned horizontally at the center of the bin and the horizontal bars represents the width of the p_T interval. The two results for prompt D^0-meson cross section are found to be consistent within statistical uncertainties, which are independent between the two measurements because of their very different signal-to-background ratios and efficiencies. The most precise measurement of the prompt D^0-meson production cross section is obtained using the results of the analysis without decay-vertex reconstruction in the interval $0 < p_T < 1$ GeV/c and those of the analysis with decay-vertex reconstruction for $p_T > 1$ GeV/c.

The p_T-differential cross sections for prompt D^0, D^+, D^{*+}, and D_s^+-meson production in $|y| < 0.5$ are depicted

<table>
<thead>
<tr>
<th>p_T (GeV/c)</th>
<th>D^0</th>
<th>D^+</th>
<th>D^{*+}</th>
<th>D_s^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–0.5</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>2–2.5</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>10–12</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>σ/(dσ/dy) (μb GeV$^{-1}$c$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>p_T</td>
<td><0.5$</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>$</td>
<td>p_T</td>
<td>>0.5$</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Fig. 6 Prompt D^0-meson p_T-differential production cross section in $|y| < 0.5$ in pp collisions at $\sqrt{s} = 5.02$ TeV measured with and without decay-vertex reconstruction. The inset shows the ratio of the measurements in their common p_T range. The vertical error bars and the empty boxes represent the statistical and systematic uncertainties, respectively.
Fig. 7 p_T-differential production cross section of prompt D^0, D^+, D^{++}, and D_s^+ mesons in pp collisions at $\sqrt{s} = 5.02$ TeV. Statistical uncertainties (bars) and systematic uncertainties (boxes) are shown. For the D^0 meson, the results in $0 < p_T < 1$ GeV/c are obtained from the analysis without decay-vertex reconstruction, while those in $1 < p_T < 36$ GeV/c are taken from the analysis with decay-vertex reconstruction. The D^{*+}-meson cross section is scaled by a factor of 5 for better visibility.

In Fig. 7. The prompt D^0-meson p_T-differential cross section is compatible with the one measured by the CMS collaboration at the same centre-of-mass energy in $|y| < 1$ and $2 < p_T < 100$ GeV/c [20].

In Figs. 8, 9, 10, and 11 the measured prompt D^0, D^+, D^{++}, and D_s^+-meson p_T-differential cross sections are compared with results of pQCD calculations performed with different schemes: FONLL [7, 8] (not available for the D_s^+ meson), two calculations using the GM-VNFS framework with different prescriptions to regulate the divergences at small transverse momentum, dubbed as GM-VNFS(mod-$\mu_{R,F}$) [39, 40] and GM-VNFS(SACOT-m_T) [5], and a calculation based on k_T-factorisation [41]. The GM-VNFS(mod-$\mu_{R,F}$) calculations were performed with a different choice of the factorisation and renormalisation scales μ_F and μ_R with respect to the GM-VNFS predictions of Ref. [5] that were compared in Ref. [27] to the cross sections measured at $\sqrt{s} = 7$ TeV. With this modification of QCD scale, the calculations could be extended to lower p_T. In GM-VNFS(SACOT-m_T), the divergences of the heavy-quark PDFs and light-parton fragmentation functions at low p_T are regulated by the heavy-quark mass, thus allowing the calculation of the D-meson cross section down to $p_T = 0$. Note also that the authors of the k_T-factorisation calculations changed the treatment of the running strong coupling constant α_s and the gluon distributions [41], with respect to the predictions shown in Ref. [27]. In GM-VNFS(mod-$\mu_{R,F}$) the value of charm mass is set to 1.3 GeV/c2, while in FONLL, GM-VNFS(SACOT-m_T) and k_T-factorisation predictions the mass is set to 1.5 GeV/c2. The four frameworks utilise different sets of PDFs (CTEQ6.6 [42], CTEQ14 [43], NNPDF3.1 [44] and MMHT2014 [45] for FONLL, GM-VNFS(mod-$\mu_{R,F}$), GM-VNFS(SACOT-m_T) and k_T-factorisation, respectively) and different fragmentation functions. The theoretical uncertainties are estimated by varying the factorisation and renormalisation scales in FONLL, GM-VNFS(SACOT-m_T) and k_T-factorisation, while only the renormalisation scale μ_R is varied in GM-VNFS(mod-$\mu_{R,F}$). In FONLL and k_T-factorisation calculations the charm-quark mass is also varied. The uncertainties on the PDFs are included in the GM-VNFS(SACOT-m_T) and FONLL predictions. The theoretical calculations are performed in the same p_T intervals as the measurements, except for the first bin of the D^0 prediction with GM-VNFS(mod-$\mu_{R,F}$) that starts from 0.1 GeV/c.

The results of these calculations are shown as filled boxes spanning the theoretical uncertainties and a solid line representing the values obtained with the central values of the pQCD parameters.

The measured cross sections of non-strange D mesons are described within uncertainties by FONLL and the two GM-VNFS calculations. The data lie systematically on the upper edge of the uncertainty band of the FONLL predictions. For the two calculations in the GM-VNFS framework, the central values of the predictions tend to underestimate the data at low and intermediate p_T and to overestimate them at high p_T. The k_T-factorisation predictions describe the data at low and intermediate p_T, but overshoot them for $p_T > 7$ GeV/c. The D_s^+-meson production tends to be underestimated by the three pQCD calculations in the measured p_T range.

The analysis without decay-vertex reconstruction provides also a direct measurement of the inclusive D^0-meson cross section because no selections are applied on the decay topology, which alter the fraction of prompt and feed-down D mesons. The inclusive D^0-meson cross section is shown in Fig. 12 and compared with results from FONLL calculations [7, 8] with the $B \rightarrow D + X$ decay kinematics from the EvtGen package [37]. The contributions of prompt D^0-meson production from FONLL and D^0 mesons from B-meson decays from FONLL+EvtGen are also shown separately. The measured cross sections are described by the calculation within the theoretical uncertainties, with the central value of the prediction lying below the data in all the p_T intervals, similarly to what observed for prompt D mesons.

The mean p_T of prompt D^0 mesons, $\langle p_T \rangle$, was evaluated for $p_T > 0$ with a fit of the prompt D^0-meson cross section, that is measured down to $p_T = 0$, using a power-law function, as was done in Ref. [27]. The result is:

$$\langle p_T \rangle_{D^0}^{\text{prompt}}_{pp, 5.02 \text{ TeV}} = 2.06 \pm 0.03 \text{ (stat.)} \pm 0.03 \text{ (syst.)} \text{ GeV/c},$$

which is slightly smaller than the one computed for pp collisions at $\sqrt{s} = 7$ TeV [27]:

$$\langle p_T \rangle_{D^0}^{\text{prompt}}_{pp, 7 \text{ TeV}} = 2.19 \pm 0.06 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \text{ GeV/c}.$$
Fig. 8 p_T-differential production cross sections for prompt D^0 meson compared to pQCD calculations: FONLL [7,8], GM-VFNS(mod-$\mu_{R,F}$) [39,40], GM-VFNS(SACOT-m_T) [6], and k_T-factorisation [41].

The ratios of the data to the theoretical predictions are shown in the lower part of each panel.

5.2 D-meson cross-section ratios

The ratios of the p_T-differential cross sections of prompt D^0, D^+, D^{*+}, and D_s^+ mesons in pp collisions at $\sqrt{s} = 5.02$ TeV are reported in Fig. 13. In the evaluation of the systematic uncertainties on these ratios, the sources of correlated and uncorrelated systematic effects were treated separately. In particular, the contributions of the yield...
The ratios of the data to the theoretical predictions are shown in the lower part of each panel.

Fig. 9: p_T-differential production cross sections for prompt D^+ meson compared to pQCD calculations: FONLL [7,8], GM-VFNS(mod-$\mu_{R,F}$) [39,40], GM-VFNS(SACOT-m_T) [6], and k_T-factorisation [41].

The ratios of the data to the theoretical predictions are shown in the lower part of each panel.

extraction and cut efficiency were considered as uncorrelated, while those of the feed-down from beauty-hadron decays and the tracking efficiency were treated as fully correlated among the different D-meson species. The measured D-meson cross-section ratios do not show a significant p_T dependence within the experimental uncertainties, thus suggesting no discernible difference between the fragmentation functions of charm quarks to pseudoscalar (D^0, D^+, and D^{+}_{s}) and vector (D^*^{+}) mesons and to strange and non-strange mesons. The results are compatible within uncertainties with the ratios measured in pp collisions at $\sqrt{s} = 7$ TeV [27].

To study the evolution of prompt D-meson production with the centre-of-mass energy of the collision, the ratios of the production cross sections in pp collisions at $\sqrt{s} = 7$ TeV [27] and $\sqrt{s} = 5.02$ TeV were computed for D^0, D^+,
D$^{*+}$ and D$^{+}_s$ mesons. The systematic uncertainties on the measured ratios were obtained treating the contribution originating from the subtraction of the feed-down from beauty-hadron decays as correlated, while all the other systematic uncertainties on the cross sections were propagated as uncorrelated between the measurements at the two different energies, except for the uncertainty on the BR, which cancels out in the ratio. The results for D0, D$^+$, D$^{*+}$ and D^+_s are compared in Fig. 14, on the left panel. The ratios for the different D-meson species are compatible within uncertainties. In the right panel, the D0-meson results are compared to FONLL calculations, which describe consistently the increasing trend as a function of p_T observed in the data. In the FONLL predictions, the uncertainties originating from scale variations and from PDFs cancel out to a large extent in the ratio [24], thus making the magnitude of the theoretical uncertainties comparable with those of the data.

The rapidity dependence of D0-meson production in pp collisions at $\sqrt{s} = 5.02$ TeV can be studied from the ratios between our measurements at midrapidity and the LHCb results in different y intervals at forward rapidity [22]. The precise measurement of the D0-meson cross section down...
to \(p_T = 0 \) presented in this paper, when analysed together with other results at different centre-of-mass energies and rapidities, can provide sensitivity to the gluon PDF at small values of Bjorken-\(x \) \((10^{-4} - 10^{-5}) \) [24]. In Fig. 15 the ratios of the \(D^0 \)-meson production cross sections per unit of rapidity measured with ALICE at mid-rapidity \((|y| < 0.5) \) and by the LHCb collaboration in three rapidity intervals at forward rapidity \(2 < y < 2.5 \) (left panel), \(3 < y < 3.5 \) (middle panel), \(4 < y < 4.5 \) (right panel) [22] are shown as a function of \(p_T \). The error bars and boxes represent the uncertainty obtained from the propagation of the statistical and systematic uncertainties, respectively, from the \(p_T \)-differential cross sections. The systematic uncertainties, including the one on the luminosity determination, were treated as uncorrelated between the ALICE and LHCb results, except for the uncertainty on the BR, which cancels out in the ratio. The central values and the uncertainties of the FONLL calculations are evaluated as described in Ref. [27]. The measured ratios are described by FONLL calculations, shown as red boxes in Fig. 15. Nevertheless the comparison seems to hint at a different slope in data with respect to FONLL, since at low (high) \(p_T \) the data tend to stay above (below) the FONLL central values, in all rapidity intervals.
5.3 Transverse momentum-integrated cross sections and ratios

The visible production cross sections of prompt D mesons were evaluated by integrating the p_T-differential cross sections over the narrower p_T intervals of the D^+, D^{*+}, and D_s^+-meson measurements, in the measured p_T range. The results are reported in Table 2. The systematic uncertainty was evaluated by propagating all the uncertainties as correlated among p_T intervals, except for the yield extraction uncertainty which is treated as uncorrelated owing to the bin-by-bin variation, significant especially at low p_T, of S/B and background invariant-mass shape.

The ratios of the p_T-integrated yields of the different D-meson species were computed from the cross sections integrated over the common p_T range. The systematic uncertainties on the ratios were computed treating the BR, yield extraction and cut efficiency uncertainties as uncorrelated among the different species and the other sources as correlated. The results are reported in Table 3.

The measured ratios are compatible within uncertainties with the results at $\sqrt{s} = 2.76$ TeV and $\sqrt{s} = 7$ TeV [16,27] and with the measurements of the LHCb collaboration at forward rapidity ($2.0 < y < 4.5$) at three different collision energies $\sqrt{s} = 5.02$, 7, and 13 TeV [21–23].
Table 2 Visible production cross sections of prompt D mesons in |y| < 0.5 in pp collisions at $\sqrt{s} = 5.02$ TeV

<table>
<thead>
<tr>
<th>Kinematic range (p_{T} (GeV/c))</th>
<th>Visible cross section (µb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0 0 < p_{T} < 36</td>
<td>447 ± 20(stat) ± 30(syst) ± 9(lumi) ± 5(BR)</td>
</tr>
<tr>
<td>D^+ 1 < p_{T} < 36</td>
<td>144 ± 10(stat) ± 10(syst) ± 3(lumi) ± 4(BR)</td>
</tr>
<tr>
<td>D^{++} 1 < p_{T} < 36</td>
<td>143 ± 12(stat) ± 11(syst) ± 3(lumi) ± 2(BR)</td>
</tr>
<tr>
<td>D_s^+ 2 < p_{T} < 24</td>
<td>40 ± 4(stat) ± 4(syst) ± 1(lumi) ± 1(BR)</td>
</tr>
</tbody>
</table>

Table 3 Ratios of the measured p_{T}-integrated cross sections of prompt D mesons in |y| < 0.5 in pp collisions at $\sqrt{s} = 5.02$ TeV

<table>
<thead>
<tr>
<th>Kinematic range (p_{T} (GeV/c))</th>
<th>Production cross section ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ(D^{+})/σ(D^0) 1 < p_{T} < 36</td>
<td>0.43 ± 0.04(stat) ± 0.03(syst) ± 0.01(BR)</td>
</tr>
<tr>
<td>σ(D^{++})/σ(D^0) 1 < p_{T} < 36</td>
<td>0.43 ± 0.04(stat) ± 0.03(syst) ± 0.003(BR)</td>
</tr>
<tr>
<td>σ(D_s^+)/σ(D^0) 2 < p_{T} < 24</td>
<td>0.24 ± 0.02(stat) ± 0.02(syst) ± 0.01(BR)</td>
</tr>
<tr>
<td>σ(D_s^+)/σ(D^{+}) 2 < p_{T} < 24</td>
<td>0.56 ± 0.06(stat) ± 0.05(syst) ± 0.03(BR)</td>
</tr>
</tbody>
</table>

Fig. 14 Ratios of D^0, D^+, D^{++} and D_s^+ meson production cross sections in pp collisions at $\sqrt{s} = 7$ TeV [27] and $\sqrt{s} = 5.02$ TeV as a function of p_{T} (left panel). D^0 ratio compared to FONLL pQCD calculations [7,8] (right panel)

Fig. 15 Ratios of D^0 meson production cross section per unit of rapidity at mid-rapidity (|y| < 0.5) to those measured by the LHCb Collaboration [22] in three rapidity ranges, 2 < y < 2.5 (left panel), 3 < y < 3.5 (middle panel), and 4 < y < 4.5 (right panel), as a function of p_{T}. The error bars and boxes represent the statistical and systematic uncertainty, respectively. Predictions from FONLL calculations are compared to the data points
The production cross sections per unit of rapidity, $d\sigma/dy$, at mid-rapidity were computed for each D-meson species by extrapolating the visible cross section to the full p_T range. The extrapolation factor for a given D-meson species was computed using the FONLL central parameters to evaluate the ratio between the total production cross section in $|y| < 0.5$ and that in the experimentally covered phase space. It was verified that the extrapolation factors computed with FONLL were compatible with those resulting from GM-VFNS calculations. The systematic uncertainty on the extrapolation factor was estimated as proposed in Ref. [27], considering sources due to (i) the CTEQ6.6 PDFs uncertainties [42], (ii) the variation of the charm-quark mass and (iii) the renormalisation and factorisation scales in the FONLL calculation. For D^0 mesons, for which the measurement extends down to $p_T = 0$, the extrapolation factor accounts only for the very small contribution of D mesons with $p_T > 36$ GeV/c and therefore its value is very close to unity with negligible uncertainty. The FONLL predictions are not available for D^*_s mesons, hence in this case the central value of the extrapolation factor was computed as described in Ref. [27], combining the prediction based on the p_T-differential cross section of charm quarks from FONLL, the fractions $f(c \rightarrow D^0)$ and $f(c \rightarrow D_s^+)$ from ALEPH [46], and the fragmentation functions from Ref. [47], which have one parameter, r, that was set to 0.1 as done in FONLL [48]. An additional contribution to the systematic uncertainty was assigned based on the envelope of the results obtained using the FONLL p_T-differential cross sections of non-strange D mesons to compute the D^*_s-meson extrapolation factor. The computed extrapolation factors and the prompt D-meson production cross sections per unit of rapidity $d\sigma/dy$ in $|y| < 0.5$, are presented in Table 4.

In Ref. [27], the $c\bar{c}$ production cross section per unit of rapidity at mid-rapidity ($|y| < 0.5$) and the total charm production cross sections in pp collisions at $\sqrt{s} = 7$ TeV were reported. They were computed from the prompt D^0-meson production cross section, which was divided by the fraction of charm quarks hadronising into D^0 mesons, $f(c \rightarrow D^0) = 0.542 \pm 0.024$, derived in Ref. [49] by averaging the measurements in e^+e^- collisions at LEP. However, recent measurements of the Λ_c^+ baryon production cross section in pp collisions at $\sqrt{s} = 7$ TeV and in p–Pb collisions at $\sqrt{s} = 5.02$ TeV [50] show a significant enhancement of the Λ_c^+/D^0 ratio for $p_T > 1$ GeV/c as compared to the values measured in e^+e^- and ep collisions at lower centre-of-mass energies. This suggests that the fragmentation fractions of charm quarks into charmed baryons in pp collisions at LHC energies might differ significantly from the LEP results reported in Ref. [49] and that measurements of charmed-baryon production cross sections in pp collisions at $\sqrt{s} = 5.02$ TeV are needed for an accurate calculation of the charm production cross section.

6 Summary

We have reported the measurement of the inclusive p_T-differential production cross sections of prompt D^0, D^+, D^{*+}, and D_s^+ mesons at mid-rapidity ($|y| < 0.5$) in pp collisions at a centre-of-mass energy of $\sqrt{s} = 5.02$ TeV, obtained with the data collected at the end of 2017 with the ALICE detector. The measurement was performed in the transverse-momentum range $0 < p_T < 36$ GeV/c for D^0, $1 < p_T < 36$ GeV/c for D^+ and D^{*+}, and $2 < p_T < 24$ GeV/c for D_s^+ mesons. It is measured in finer p_T bins with respect to the previous measurements at $\sqrt{s} = 7$ TeV [27], providing a more detailed description of the cross-section p_T shape. The results were compared and found compatible with different pQCD calculations performed with different schemes: FONLL [7, 8], two calculations using the GM-VFNS framework with different prescriptions [6, 39, 40], and a calculation based on k_T-factorisation [41]. The ratios of D^0-meson production cross sections measured with ALICE and LHCb in different rapidity intervals were compatible with FONLL calculations, indicating a slightly smaller slope in data with respect to theoretical predictions. The ratios of the cross sections of D^0, D^+, and D^{*+} mesons at $\sqrt{s} = 7$ TeV [27] and $\sqrt{s} = 5.02$ TeV are consistent with FONLL pQCD calculations. The ratios of the p_T-differential cross sections of D^0, D^+, D^{*+}, and D_s^+ mesons were found to be compatible within uncertainties with the D-meson cross-section ratios measured in pp collisions at $\sqrt{s} = 7$ TeV [27]. The new measurement will allow for a more accurate determination of the nuclear modification factor R_{pA} in p–Pb collisions and R_{AA} in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, due to
the larger statistics available and since it is performed at the same centre-of-mass energy of the other collision systems.

Acknowledgements The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOE), China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEC), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIF), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) and Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment: The numerical values of the data points will be uploaded to HEPData.]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

13. CDF Collaboration, D. Acosta et al., Measurement of prompt charm meson production cross sections at p+p collisions at
\[\sqrt{s} = 1.96 \text{ TeV}. \]
arXiv:hep-ex/0307080 [hep-ex]

14. ATLAS Collaboration, G. Aad et al., Measurement of \(D^{+ \mp}, D^{0} \) and \(D^{\mp} \) meson production cross sections in pp collisions at \(\sqrt{s} = 7 \) TeV with the ATLAS detector.

15. ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at \(\sqrt{s} = 7 \) TeV.
JHEP 01, 128 (2012).
arXiv:1111.1553 [hep-ex]

16. ALICE Collaboration, B. Abelev et al., Measurement of charm production at central rapidity in proton–proton collisions at \(\sqrt{s} = 2.76 \) TeV.
JHEP 07, 191 (2012).
arXiv:1205.4007 [hep-ex]

17. ALICE Collaboration, B. Abelev et al., Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at \(\sqrt{s} = 7 \) TeV.
arXiv:1205.5423 [hep-ex]

18. ALICE Collaboration, B. Abelev et al., \(D^{\pm} \) meson production at central rapidity in proton–proton collisions at \(\sqrt{s} = 7 \) TeV.

19. ALICE Collaboration, J. Adam et al., \(D^{0} \) meson production in p–Pb collisions at \(\sqrt{\text{NN}} = 5.02 \) TeV and in pp collisions at \(\sqrt{s} = 7 \) TeV.
arXiv:1605.07569 [nucl-ex]

20. CMS Collaboration, A.M. Sirunyan et al., Nuclear modification factor of \(D^{0} \) mesons in PbPb collisions at \(\sqrt{\text{NN}} = 5.02 \) TeV.
arXiv:1708.04962 [nucl-ex]

21. LHCb Collaboration, R. Aaij et al., Prompt charm production in pp collisions at \(\sqrt{s} = 7 \) TeV.
arXiv:1302.2864 [hep-ex]

22. LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross-sections in pp collisions at \(\sqrt{s} = 5 \) TeV.
JHEP 06, 147 (2017).
arXiv:1610.02230 [hep-ex]

23. LHCb Collaboration, R. Aaij et al., Measurements of prompt charm production cross-sections in pp collisions at \(\sqrt{s} = 13 \) TeV.
JHEP 03, 159 (2016).

24. M. Cacciari, M.L. Mangano, P. Nason, Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at \(\sqrt{s} = 7 \) and 13 TeV.

25. F. Prino, R. Rapp, Open heavy flavor in QCD matter and in nuclear collisions.
arXiv:1603.00529 [nucl-ex]

26. G. Aarts et al., Heavy-flavor production and medium properties in high-energy nuclear collisions—what next?
arXiv:1612.08032 [nucl-th]

27. ALICE Collaboration, S. Acharya et al., Measurement of D-meson production at mid-rapidity in pp collisions at \(\sqrt{s} = 7 \) TeV.
arXiv:1702.00766 [hep-ex]

28. ALICE Collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC.
JINST 3, S08002 (2008)

29. ALICE Collaboration, B.B. Abelev et al., Performance of the ALICE Experiment at the CERN LHC.
arXiv:1402.4476 [nucl-ex]

31. ALICE Collaboration, S. Acharya et al., Measurement of \(D^{0}, D^{+}, D^{*+} \) and \(D_{s}^{+} \) production in Pb-Pb collisions at \(\sqrt{\text{NN}} = 5.02 \) TeV.
arXiv:1804.09083 [nucl-ex]

32. ALICE Collaboration Collaboration, ALICE 2017 luminosity determination for pp collisions at \(\sqrt{s} = 5 \) TeV.
http://cds.cern.ch/record/2648933
23 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padua, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DIS del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
36 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
38 Faculty of Science, P.J. Safářik University, Kosice, Slovakia
39 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
40 Gangneung-Wonju National University, Gangneung, Republic of Korea
41 Department of Physics, Gauhati University, Guwahati, India
42 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
43 Helsinki Institute of Physics (HIP), Helsinki, Finland
44 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45 Hiroshima University, Hiroshima, Japan
46 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
47 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore, India
50 Indonesian Institute of Sciences, Jakarta, Indonesia
51 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52 INFN, Sezione di Bari, Bari, Italy
53 INFN, Sezione di Bologna, Bologna, Italy
54 INFN, Sezione di Cagliari, Cagliari, Italy
55 INFN, Sezione di Catania, Catania, Italy
56 INFN, Sezione di Padova, Padua, Italy
57 INFN, Sezione di Roma, Rome, Italy
58 INFN, Sezione di Torino, Turin, Italy
59 INFN, Sezione di Trieste, Trieste, Italy
60 Inha University, Inchon, Republic of Korea
61 Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
62 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63 Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
64 Institute for Theoretical and Experimental Physics, Moscow, Russia
65 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
66 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
67 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
68 Institute of Space Science (ISS), Bucharest, Romania
69 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
70 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
71 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
72 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
73 iThemba LABS, National Research Foundation, Somerset West, South Africa
Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Korea Institute of Science and Technology Information, Taejon, Republic of Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Division of Particle Physics, Department of Physics, Lund University, Lund, Sweden
Nagasaki Institute of Applied Science, Nagasaki, Japan
Nara Women’s University (NWU), Nara, Japan
School of Science, Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
National Centre for Nuclear Research, Warsaw, Poland
National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
National Nuclear Research Center, Baku, Azerbaijan
National Research Centre Kurchatov Institute, Moscow, Russia
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, National institute for subatomic physics, Amsterdam, The Netherlands
NRC Kurchatov Institute IHEP, Protvino, Russia
NRNU Moscow Engineering Physics Institute, Moscow, Russia
Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, UK
Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Ohio State University, Columbus, Ohio, USA
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics Department, Faculty of science, University of Zagreb, Zagreb, Croatia
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Jammu, Jammu, India
Physics Department, University of Rajasthan, Jaipur, India
Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physik Department, Technische Universität München, Munich, Germany
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
Rudjer Bošković Institute, Zagreb, Croatia
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, UK
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
Shanghai Institute of Applied Physics, Shanghai, China
St. Petersburg State University, St. Petersburg, Russia
Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
Suranaree University of Technology, Nakhon Ratchasima, Thailand
Technical University of Košice, Košice, Slovakia
Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
The University of Texas at Austin, Austin, TX, USA
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade de São Paulo (USP), São Paulo, Brazil
Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
Universidade Federal do ABC, Santo Andre, Brazil
University College of Southeast Norway, Tonsberg, Norway
University of Cape Town, Cape Town, South Africa
University of Houston, Houston, Texas, USA
University of Jyväskylä, Jyväskylä, Finland
University of Liverpool, Liverpool, UK
University of Science and Technology of China, Hefei, China
University of Tennessee, Knoxville, TN, USA
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
Department de Physique Nucléaire (DPhN), Université Paris-Saclay Centre d’Études de Saclay (CEA), IRFU, Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università degli Studi di Pavia, Pavia, Italy
Università di Brescia, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, MI, USA
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
Yale University, New Haven, CT, USA
Yonsei University, Seoul, Republic of Korea

a Deceased
b Dipartimento DET del Politecnico di Torino, Turin, Italy
c M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
d Department of Applied Physics, Aligarh Muslim University, Aligarh, India
e Institute of Theoretical Physics, University of Wroclaw, Poland