
u n i ve r s i t y o f co pe n h ag e n

Function Point Analysis FPA on A Team Planning Website Based on PHP and MYSQL

Lassen, Anders

Published in:
Journal of Information Technology and Software Engineering

DOI:
10.4172/2165-7866.1000237

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
Unspecified

Citation for published version (APA):
Lassen, A. (2018). Function Point Analysis FPA on A Team Planning Website Based on PHP and MYSQL.
Journal of Information Technology and Software Engineering, 8(3), [237]. https://doi.org/10.4172/2165-
7866.1000237

Download date: 20. sep.. 2019

https://doi.org/10.4172/2165-7866.1000237
https://curis.ku.dk/portal/da/persons/anders-lassen(a9d4dd70-a403-4783-a2cf-4149ce01ee8d).html
https://curis.ku.dk/portal/da/publications/function-point-analysis-fpa-on-a-team-planning-website-based-on-php-and-mysql(d0104e18-31b3-4ec4-8297-e8ffba2c3e8d).html
https://doi.org/10.4172/2165-7866.1000237
https://doi.org/10.4172/2165-7866.1000237

Volume 8 • Issue 3 • 1000237J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Jo
ur

na
l o

f I
nf

or
m

ati

on Technology & Software Engineering

ISSN: 2165-7866

Anders, J Inform Tech Softw Eng 2018, 8:3
DOI: 10.4172/2165-7866.1000237

Research Article Open Access

Journal of
Information Technology & Software Engineering

*Corresponding author: Anders L, Department of Computer Science, University
of Copenhagen, Copenhagen, Denmark, Tel: 4520898668; E-mail: knh487@di.ku.
dk, knh@di.ku.dk, plan@lassena.dk

Received March 27, 2018; Accepted May 10, 2018; Published May 18, 2018

Citation: Lassen A (2018) Function Point Analysis FPA on A Team Planning
Website Based on PHP and MYSQL. J Inform Tech Softw Eng 8: 237.
doi:10.4172/2165-7866.1000237

Copyright: © 2018 Lassen A. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Function point analysis; Dynamic SQL

Introduction
Function point analysis (FPA) is one way to determine the overall

complexity of a system. In the current study a custom website is
analyzed for complexity. Function point analysis is attributed to Allan
Albright in 1979 [1] and JE Gaffney [2] and further developed in the
MK2 report [3]. More recent work on function point analysis, a software
tool (Unified code count (UCC)) [4,5]. Function point analysis can be
evaluated using UML [6,7]. Made a literature review based on reported
keywords identifying improvements to the accuracy of function point
analysis [8]. They included 18 primary studies. The improvements
were categorized into three categories: 1) “weights and complexities”;
2) ‘technological in-dependence” of the method; and 3) calculating
the ‘adjusted functional size”. Literature review for productivity [9].
A study of Henderson and coworkers study perception of function
point analysis from a manger viewpoint and a developer viewpoint
based 13 desirable properties with 3 key findings: SLOC-count is less
complicated than FP; developers better perceive the benefits of FP than
Managers; the difference in values between managers and developers
inhibit communication necessary to reach informed decisions [10].

The FPA Allows for quantifying different properties of the system,
in LOW, AVERAGE or HIGH complexity, totaling the unadjusted
function points (UAF). Use SIMPLE, AVERAGE and COMPLEX,
where SIMPLE and COMPLEX are well defined; and use an AVERAGE,
MEDIAN, RANGE(LOW, HIGH) classification for complexity [2].
The unadjusted function points can then be adjusted for technical
complexity as the total adjusted function points (TAFP). It is this
measure that can be converted to project size in terms of man years
based on lines of code (LOC) for the used programming language [11].
A function point measure for a list of languages. To assess PHP we use
the LOC per function point for java and C++ [12].

The system examined is custom build website supporting planning
tasks and in-site-postings for Danish yachtracing crews participating
in international match race. The website domain myteam.dk was built
and in operation in the years 2008-2014 by Hans Jacob Simonsen [13].
The system supports in-site blogging, planning, logging comments to
training and events, handling expenses, sending out reminders by SMS.

The result of the function point analysis is further analyzed using
constructive cost model (COCOMO) analysis by Boehm BW [14].
Bearing in mind that the COCOMO measure is the total lines of code
delivered by the development team. Finally the result of the COCOMO-
analysis is compared to a simple source code count of delivered source

code. Comparing the Total Adjusted Function Points to Delivered
Source Lines of Code (SLOC), similar to the two step work effort
validation [2] (Figure 1).

Method
Persistent store

The website database was a relational database of type MYSQL
version 5.3 (or lower). The tables were defined with primary keys,
unique index and auto-increment. No foreign keys constraints, triggers
or stored procedures. Web-tier. Most of the source files were PHP files
with HTML, CSS - files and some libraries in java Script. PHP class
definitions were part of the code so both structured programming
and object-oriented programming was present. The model-layer was
object-oriented.

The system is evaluated using function point analysis [12]. The
metric is evaluated for: internal logical files (ILF), external interface
files (EIF), external Input (EI), external output (EO) and external
inquiry (EQ).

Internal logical files (ILF): Entity (Table 1) count in the relational
database schema. The complexity of the entities graded initially as:
below 8 attributes - (LOW), 8-16 attributes - (AVERAGE) and above
16 attributes (HIGH).

External interface files (EIF): Was not initially found relevant, but
library calls could be considered. For example, the calendar functions.

External input (EI): PHP-files including DML-statements INSERT,
UPDATE and DELETE executed as dynamic SQL. The search was a done
by ‘search in files’ with notepad++, and visual inspection (Notepad++
2007-2018). Server side code was considered and no stored procedures

Function Point Analysis FPA on A Team Planning Website Based on PHP
and MYSQL
Lassen A*
Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

Abstract
A function point analysis (FPA) has been carried out on a custom team planning website based on PHP and

MYSQL. The FPA was done after the development was finished (retrospective) and a constructive cost model analysis
(COCOMO) was carried out to asses source lines of code (SLOC). In the present study the function point analysis
is based on entities of the relational database evaluated as internal logical files, and evaluation of PHP source code
with dynamic SQL as either external input files or external inquiry files. The complexity for a custom team planning
website was found to be 510 total adjusted function points (TAFP) (UAF=580 FP, TDI=23, VAF=0, 88, TAFP=510FP).
The function point estimate was classified as an organic project in a COCOMO analysis, and it was concluded that the
complexity corresponds to 27742 LOC (or 27, 4 KDSI). The estimate of 66-82 person-months project would correspond
to a 4 crew team in 16-21 months. The estimate was compared to the actual source code count of 22300 LOC.

Volume 8 • Issue 3 • 1000237J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Anders L (2018) Function Point Analysis FPA on A Team Planning Website Based on PHP and MYSQL. J Inform Tech Softw Eng 8: 237.
doi:10.4172/2165-7866.1000237

Page 2 of 5

Count-3: Same evaluation based on inspection for INSERT-
statements.

Count-4: Same evaluation based on inspection for UPDATE- and
DELETE-statements.

 Internal logical files (ILF)

Every relation in the database was considered. Some of the
relations have media files. Media are implemented as attributes of type
LONGBLOB or BLOB. All these relations are AVERAGE candidates.

External measures

External Interface files (EIF): No external interface files are
determined at this point, unless the website configuration is to be
considered. An external interface file must be generated or maintained
by another system [1]. This measure is initially set to count 10 and
weight AVERAGE (Table 1).

External Input (EI): These are input screen. Here the PHP code
is inspected to determine user input. The initial file count done in
Notepad++ by simple keyword search is tagged count-1 in Table 2.
The result of the first count was 30 files with INSERT-statements, 49
files with UPDATE statements and 38 files with DELETE statements.
Initially set to complexity AVERAGE.

Further passes are done with code inspection carefully. Keywords
in comments and variable are discarded from counts. Files with several
DML statements are judged for complexity and account for recurring
files in the first count. A file with SELECT and DML modification
statements (INSERT, UPDATE, DELETE) should only be classified as
an external input file. EI should be reduced.

After the final pass, assessment of complexity is complete. Many
overlaps of data manipulation statements are present in the same files
and the total number of files included is 29. Files in the ‘classes’ folder
are model-classes for the major relational entities and implement
SELECT, INSERT, UPDATE and DELETE statements in various
member functions. The final count is given in Table 2 (11 LOW, 7
AVERAGE, 11 HIGH).

External output (EO): These are reports, screens, messages. Here
we know the SMS service is very important, but how many places are
the SMS services called? Likewise we account for an email service. We
estimate is 10 files, average complexity.

External Inquiry (EQ): Enquiry forms are listings; screens that are
informational; SELECT statements. All files with keyword ‘SELECT’
were inspected using ‘find in files’ in notepad++ (Notepad++ 2007-
2018). The initial file count was 86. In the most cases SELECT’s would
be simple, say 80%, so 86 files are divided into 16 files of AVERAGE
complexity and 70 files with LOW complexity.

SELECT-statements and dropdown html are the vast candidates.
Select is used in a HTML-tag for one option in a dropdown box. Select
also is found in comments. Upload is a library used that is not included,
even though some coding efforts must be done to facilitate upload (40
LOW, 13 AVERAGE, 5 HIGH).

Two further passes were done to inspect for data modifications
statements. After inspection for INSERT. UPDATE and DELETE
statements files initially classified External Inquiry (EQ) are classified
as External input files and the EQ count reduced accordingly. In
the last pass several UPDATE and DELETE-statements found and
moved several EQ-AVERAGE and EQ-HIGH file to EI-files. The
final assessment of complexity for External inquiry files (EQ) are

or triggers found to include. The complexity was assessed by counting
and weighing the DML statements found in each file.

External inquiry (EQ): PHP files with SELECT statements as
Dynamics SQL. Files with INSERT, UPDATE and DELETE statements
are not counted but treated as external input files.

External output (EO): These are reports, screens, messages. SMS
messaging is an example of external output considered from these
weighted measures according to unadjusted function points (UAF) was
calculated [1]. General system characteristics (GSC) were evaluated
for their degree of influence (DOI) summing to the total degrees of
influence (TDI): data communication; distributed data processing;
performance; heavily used configuration; transaction rate; on-line
data entry; end-user efficiency; online update; complex processing;
reusability; installation ease; operational ease; multiple sites; and
facilitate change. Each GSC was rated for degree of influence (DOI) on
a scale from 0 to 5: not present or no influence (0); incidental influence
(1); moderate influence (2); average influence (3); significant influence
(4); and strong influence (5). The value adjustment factor (VAF) was
calculated as 0.01 times TDI + 0.65. The total adjusted function points
(TAFP) was calculated as the unadjusted function points (UAF) times
the value adjustment factor (VAF)

VAF = (TDI * 0.01) + 0.65 (1)

FP = UAF * VAF (2)

Once calculated, the adjusted function points (FP) was used to
assess the project size using the constructive cost model (COCOMO).
The function point conversion table was examined and initially PHP
was compared to java or C++ [1]. The conversion rate for java or C++
are the same. Average source LOC per function point is 53, and average
source LOC for a 210 FP application is 11130 LOC. Since we have the
source code [13], the actual LOC can be counted and compared to the
estimated project size.

Results
The evaluation of the database relations was done in one pass. The

evaluation of the PHP-files was done in several passes.

Count-1: Simple file count.

Count-2: Inspection of files for SELECT statements. Presence of
Select in comments was disregarded and file Complexity was based on
the number of SELECT-statements.

Figure 1: The boundaries of the myteam website for FPA-evaluation. The
application boundary is defined as the boundary to the MYSQL database.
The external application is taken as the PHP-source-code on the web-server.
External inquiries (EI) are files with SELECT statements. External input are files
with DML statements INSERT, UPDATE and DELETE. External outputs (EO)
would be SMS and email services.

Volume 8 • Issue 3 • 1000237J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Anders L (2018) Function Point Analysis FPA on A Team Planning Website Based on PHP and MYSQL. J Inform Tech Softw Eng 8: 237.
doi:10.4172/2165-7866.1000237

Page 3 of 5

Relation Attributes Complexity (low, Average,
High) Referenced in code (notepad++) Cardinality (tuples)

Availability 5 LOW 10 hits in 2 files 100
Comments 6 LOW 69 hits in 20 files 73

Contents (media, blob) 9 AVERAGE 112 hits in 23 files 318
Diary (media, blob) 5 AVERAGE 258 hits in 18 files 98

Equalizations 7 LOW 14 hits in 3 files 294
Events 15 AVERAGE 321 in 49 files 1175

Expenses 7 LOW 42 hits in 4 files 594
Expence ToPers 2 LOW 10 hit in 2 files 2454

Faqs 5 LOW 5 hits in 3 files 6
Gallery 8 AVERAGE 336 hits in 24 files 56

Help Table 2 LOW 2 hits in 2 files 6
Links 6 AVERAGE 44 hits in 15 files 119

Main Team (media, longblob) 23 HIGH 65 hits in 20 files 38
No SMS 2 LOW 12 hits in 4 files 1

Pers Category 4 LOW 12 hits in 6 files 123
Pics (media, longblob) 11 AVERAGE 51 hits in 13 files 981

Positions 11 AVERAGE 77 hits in 4 files 100
PosNeg 3 LOW 64 hits in 16 files 10127

Race Diary 15 AVERAGE 78 hits in 5 files 5
reminderLog 8 LOW 40 hits in 6 files 9218

Sponsor (media, blob) 8 AVERAGE 56 hits in 5 files 0
Stat 6 AVERAGE 613 hits in 61 files 382501

team (media, blob x2) 30 HIGH Common name 1949 hits in 99 files 209
Team To Member 5 LOW 67 files in 11 files 177

Table 1: Relations and their complexity. LOW 0-7. AVERAGE 6-15. HIGH 23-30 plus binary objects. SQL-DML reference in PHP code with table name. Cardinality is the
number of tuples in each relation.

DML Complexity Files
IUD LOW 11
IUD AVERAGE 7
IUD HIGH 11
SUM 29

Table 2: DML modification statements (INSERT, UPDATE, DELETE). After the final
pass many overlaps in files have been identified. The total number of files included
is 29.

DML Complexity Files
SELECT LOW 31
SELECT AVERAGE 5
SELECT HIGH 1

Table 3: The complexity external inquiry, after four passes.

summarized in Table 3 (31 LOW, 5 AVERAGE, 1 HIGH).

Computing the unadjusted function points

The unadjusted function points in Table 4 are calculated using
the weights [12]. The ILF complexity is taken from Table 1. The EIF
Complexity is not determined and set ad hoc to (10 files and AVERAGE
complexity). EI is set to the file count with INSERT, UPDATE and
DELETE, corrected for recurrence, comments and variable- and
function names. EO is set to the SMS estimate (10 AVERAGE). Further
inspection will change this. EQ is adjusted for recurrence of SELECT’s
and conflicting data manipulation statements. Total unadjusted
function point = 580.

The external UAF count is higher than the internal UAF count.
Initially we found that the external UAF counts out performed the
internal UAF count, but final inspection has reduced this concern.

Count-4 Complexity

Low Average High

N W S N W S N W S S

Internal logical files (ILF) 12 7 84 10 10 100 2 15 30 214

External Interface files (EIF) 5 10 7 70 10 70

External Input (EI) 11 3 33 7 4 28 11 6 66 127

External Output (EO) 4 10 5 50 7 50

External Inquiry (EQ) 31 3 93 5 4 20 1 6 6 119

Total Unadjusted function points
(UAF) 580

Table 4: Total unadjusted function points (UAF). After finished evaluation. Weights
(w) applied [12].

The PHP-source code is less than twice as complex that the MYSQL
data model of the two measures of complexity set EIF and EO, EO is
to some extent reasonable. Of the two output modalities have been
identified and styles emails can add to complexity. Taken together they
are probably overestimated.

GSC and total adjusted function points

The unadjusted function points can now be weighted with a set of
general system characteristics (GSC). The 14 system characteristics and
the degrees of influence of each of the General system characteristics
[10] are listed in Table 5 column “Degree of influence [1]”.

Add hoc setting for general system characteristics for this application
was done. The unadjusted function point (UAF) of Table 5 was used
to calculate the total adjusted function points. Generally the degree of
influence have been reduced to a total of 23 degrees of influence. Only

Volume 8 • Issue 3 • 1000237J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Anders L (2018) Function Point Analysis FPA on A Team Planning Website Based on PHP and MYSQL. J Inform Tech Softw Eng 8: 237.
doi:10.4172/2165-7866.1000237

Page 4 of 5

one system characteristic (Multiple Sites) was set to average influence
(3) as the application could be refurbished to several platforms, and
the site give rise to 2 code bases. Seven system characteristics were set
to moderate influence (2): Data Communication, On-line Data Entry,
End User Efficiency, Online Update, Reusability, Installation Ease, and
Operational Ease. Five system characteristics were set to incidental
influence (1): Performance, Heavily Used Configuration, Transaction
Rate, Complex Processing, and Facilitate Change. One system
characteristic was set to not present or no influence (0): Distributed
data processing.

The value adjustment factor for this study was found to be 0.88. A
lower degree of influence than presented by Jack TM [12]. The total
adjusted functions points (TAFP) for this project was 510 FP.

COCOMO (Constructive cost model)

The COCOMO analysis takes the total adjusted function point
measure and converts to a measure of lines of delivered source code
(LOC). In our case PHP and java script are taken as the java and C++
measure of 53 LOC per function point and 11130 average source LOC
for a 210 FP application [12] (equation 4). My expectation for the
current 510 FP measure for TAFP would be 2.4 * 11130 lines of code =
27442 LOC (when UAF = 580 and TAFP = 510), see equation 5. Which
I hope will be found to be an over estimation for the original PHP site
[13]. The estimated number of lines of code can then be converted to
27,4 KDSI (1000 delivered source instructions = 1000 LOC) by dividing
by 1000 (equation 6).

Estimated LOCMar:(TAFP / 210 FP) * 11300 LOC/53FP) (4)

Estimated LOCE4: (510 FP/210 FP = 2,4) * 11300 LOC = 27442
LOC (5)

Estimated KDSIE4: 27442 LOC /1000 LOC/KDSI = 27,4 KDSI (6)

In COCOMO a man-month is 152 hours. In COCOMO first decide

if the project is organic (expect few problems), Embedded (expect
problems) or semi-detached (in-between). An embedded project scales
to 3.6 × KDSI1.20 . KDSI = 27,4 gives 191 Person-Months. I would go
with the lower project classification (organic to semi-detached), 77-122
person-months. The estimate is 19-30 months for a 4 crew team, or 2+
years (Table 6).

The actual lines of code counted is about 43000 LOC including
20700 LOC for 3-party code. The KDSI measure of COCOMO is a
measure of delivered source code instructions. This amounts to 43000-
20700= 22300 lines of delivered source code (22,3 KDSI). Compared to
the result of the constructive cost model estimate of 27,4 KDSI , this is
an overestimation by 23%.

Discussion
The first key question here is training. The subjective measure of

complexity in a smaller custom website, compared to corporate wide
systems. Does this lead to overestimation? Yes. In this function point
analysis only the relational tables an their complexity was held against
the PHP code as an external application. The function point analysis
was calculated from a database standpoint. There are other factors that
have only been touched.

It was surprising that function point analysis of a custom website
developed by one programmer and operational over a period of 6
years had the estimation of 510 function points (FP) converting to an
expected 27000 lines of code. I had expected less complexity. Experience
with FPA will give more precise estimates for each parameter and
even bring the FPA closer to the source code count. In this study the
boundary elements considered were primarily entity- and transactional
complexity. They seemed a tangible constraint on metrics explored.
Other metrics could be considered. A metric for algorithmic complexity
(AT) that also is an interesting metric, but may be more academic than
operational even in systems of modest size [4].

The Java code calibration is a candidate for debate. In this study
it worked out well, but I must also note some complex PHP and
Java script-files were not included. This would only increase the
measure. And training would cater for this. In the COCOMO analysis
overestimation could also be biased by my ad hoc setting of the various
degrees of influence.

A reason to retrospective make a function point analysis in this
case was the author’s lack of luck to debug and support the site after
the creator passed away and the vendor upgraded the PHP-version,
rendering the site down. This lack of skills can be attributed in some part
to Fredric Brooks – ‘The mythical man month’ [5] but also the teachings
of Peter Naur, ‘Computing a human activity’ and ‘Programming as
theory building’ [15-17]. In the section ‘program life, death and revival’
ties well into the problem not having access to programmers with
working knowledge [16]. Barry Boehm [5]and others list issues with
project estimation, also covers unfamiliarity with existing source code
[3,5,15]. This is a real obstacle or spike if you will, in reviewing and
debugging existing code. It is the author’s view that more frequently

General System Characteristic Degree of
influence

Degree of
influence

Data Communication 3 2
Distributed data processing 2 0

Performance 4 1
Heavily Used Configuration 3 1

Transaction Rate 3 1
On-line Data Entry 4 2
End User Efficiency 4 2

Online Update 3 2
Complex Processing 3 1

Reusability 2 2
Installation Ease 3 2
Operational Ease 3 2

Multiple Sites 1 3
Facilitate Change 2 1

Total degrees of influence (TDI) 40 23
VALUE ADJUSTMENT FACTOR (VAF)

VAF = (40 * 0.01) + 0.65 = 1.05
VAF = (TDI * 0.01) + 0.65

1.05 0.88

UAF 200 580
Total adjusted function points (TAFP)

 TAFP = 200 * 1.05 = 210
 TAFP = UAF * VAF

210 510

Table 5: Calculation of the value adjustment factor (VAF) and the total adjusted
function point (TAFP) or just function points (FP).

Project type Person-months KDSI Person-
months

Team4-
months

Organic Person-months= 2.4 * KDSI1.05 27,4 77 19

Semi-
detached Person-months= 3.0 * KDSI1.12 27,4 122 30

Embedded Person-months= 3.6 * KDSI1.20 27,4 191 48

Table 6: Calculating person months and team months for a four person team
(person-month divided by 4) based on KDSI=27,4

Volume 8 • Issue 3 • 1000237J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Anders L (2018) Function Point Analysis FPA on A Team Planning Website Based on PHP and MYSQL. J Inform Tech Softw Eng 8: 237.
doi:10.4172/2165-7866.1000237

Page 5 of 5

than admitted; it is the wiser choice to re implement the code in face
of rejection of the initial strategy. Support for this argument can also
be in comparing computing as text production to theory building [16].
In this case the following observations contribute to understand the
current system down: Broken links. Possible missing URL resolutions;
Application state could not be debugged and restored; Vendor upgrade
coincided with mourning period.

Conclusion
The Internal Logical File complexity holds for the number of

files/entities, but the complexity (LOW; AVERAGE; HIGH) could be
overestimated for a smaller custom website.

Using DML (Data Manipulation Language) as a marker for EI
an EQ in a website seems operational in a retrospective study (where
the coding has been done). The initial keyword search identifies key
participating potential relevant external files. A code inspection is
necessary to ass’s complexity and relevance.

It was found that the “myteam” custom website consist UAF=580
FP unadjusted function points, TDI=23 Total degrees of influence,
Value adjustment factor, VAF=0,88; Total adjusted function points
TAFP=510FP.

The COCOMO analysis showed an estimated project size of
27,4 KDSI or 27442 LOC. Based on 27,4 KDSI the project type was
classified as organic to semi-detached, and project estimate of 66-
82 person-months or 16-21 team-months for a four person team.
An overestimation of 23% is found compared to the current count
of the actual lines of code. The function point analysis explained the
complexity quite well.

References

1.	 Albrecht AJ (1979) Measuring application development productivity.
Proceedings of SHARE7GUIDE IBM Applications Development Symposium,
Monterey, California pp: 83-92.

2.	 Albrecht AJ, Gaffney JE (1983) Software function, source lines of code and
development effort prediction: A software science validation. IEEE Transaction
on Software Engineering SE-9: 639-647.

3.	 Treble S, Douglas N (1995) Sizing and Estimating Software in Practice: Making
MK II Function Points Work. McGraw Hill.

4.	 Henderson GS (1992) The application of function points to predict source lines
of code for software development. Thesis.

5.	 Hira A, Boehm B (2016) Function point analysis for software maintenance.
ISESEM.

6.	 Chen T (2008) The Application of the function point analysis in software
developers’ performance evaluation. 4th int. conf. on wireless communications,
networking and mobile computing pp:1-4.

7.	 Saxena V, Shrivastava M (2009) Performance of function point analysis
through UML modeling. ACM SIGSOFT software engineering notes 34: 1-4.

8.	 de Freitas Junior M, Fantinato M, Sun V (2015) Improvements to the function
point analysis method: A systematic literature review. IEEE Trans Engineering
management 62: 495-506.

9.	 Sudhakara GP, Patnaik AFS (2012) Measuring productivity of software
development teams. Serbian journal of management 7: 65-75.

10.	 Sheetz SD, Henderson D, Wallace L (2012) Understanding developer and
manager perceptions of function points and source lines of code. The Journal
of systems and software 82: 1540-1549.

11.	Dennis A, Haley WB (2000) Systems analysis and design: An applied approach.
New York. John Wiley.

12.	Marchewka JT (2010) Information technology management. International
student edition. 3rd Edition Pp165-168.

13.	Simonsen HJ (2008-2014) www.myteam.dk. A team planning website for
Danish yachtracing crews participating in national and international match race.
Domain www.myteam.dk.

14.	 James Cadle J, Yeates D (2008) Project management for information systems.
5th Edition. Person prentice Hall.

15.	Brooks, Jr. FP (1975) The mythical man-month. Essays on software
engineering. Addison-Wesley.

16.	 Naur P (1985) Programming as theory building. Micro processing and
microprogramming 15: 253-261.

17.	 Naur P (1992) Computing: A human Activity. Wesley.

http://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2012816
http://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2012816
http://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2012816
https://doi.org/10.1109/TSE.1983.235271
https://doi.org/10.1109/TSE.1983.235271
https://doi.org/10.1109/TSE.1983.235271
http://www.dtic.mil/dtic/tr/fulltext/u2/a258447.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a258447.pdf
https://doi.org/10.1145/2961111.2962613
https://doi.org/10.1145/2961111.2962613
http://doi.org/10.1145/1507195.1507214
http://doi.org/10.1145/1507195.1507214
https://doi.org/10.1109/TEM.2015.2453354
https://doi.org/10.1109/TEM.2015.2453354
https://doi.org/10.1109/TEM.2015.2453354
https://doi.org/10.1016/j.jss.2009.04.038
https://doi.org/10.1016/j.jss.2009.04.038
https://doi.org/10.1016/j.jss.2009.04.038
http://www.greatertzaneen.gov.za/documents/news/Project management for information system 5th.pdf
http://www.greatertzaneen.gov.za/documents/news/Project management for information system 5th.pdf
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1016/0165-6074(85)90032-8
http://www.naur.com/comp/default.html

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Method
	Persistent store
	Internal logical files (ILF)
	External interface files (EIF)
	External input (EI)
	External inquiry (EQ)
	External output (EO)

	Results
	 Internal logical files (ILF)
	External measures
	Computing the unadjusted function points
	GSC and total adjusted function points
	COCOMO (Constructive cost model)

	Discussion
	Conclusion
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	References

