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Abstract

We present hitherto unknown mean excitation energies of singly charges atomic anions wit Z< 18.
Most are calculated using the Random-phase Approximation and large basis sets but some are
estimated from the relationship that we have found between atomic mean excitation energies of
atoms and ions with same nuclear charge but different number of electrons.

Keywords: electronic structure, excited states, mean excitation energies, atomic anions, stopping power, plasma
physics

1. Introduction

Negative ions are abundant in interstellar space?, in atmospheres?, and in plasmas3. The basic
physical properties of negative ions are thus needed to explain and understand the nature of the
complicated chemical processes that determine the physical conditions both inside and outside of
our planet. Even though laboratory experiments on negative ions are inherently difficult due to
interactions with the surroundings, ion trapping* and new cryogenic ion-storage ring techniques
now allow the study of ions such as S for minutes and hours®, and will be providing much needed
information on properties of anions. Also, theoretical methods may provide some information on
some of the central physical quantities that are required in the modelling of matter in interstellar
space, atmospheres, and plasmas, and among those is material constants related to the slowing
down of heavy fast particles penetrating materials, i.e. stopping power. In 1930 Bethe formulated
the quantum theory for stopping power® showing that the most essential material constant
determining the bulk of the stopping for fast projectiles is the mean excitation energy’, lo, of the
target.

Even though the literature on mean excitation energies is quite extensive, little has been reported
for the mean excitation energy of negative ions. Here we report mean excitation energies for
singly charged anions of the first, second, and third row atoms, i.e. the same atoms for which we
recently reported mean excitation energies for all neutral and positively charged atoms®. Most of
the mean excitation energies are calculated using contemporary electronic structure theory and



the rest are estimated based on the relationship we find between mean excitation energies of
anions, neutral and cations with the same nuclear charge.

2. Theory

When a heavy, fast projectile collides with a target, it is slowed down due to the interaction with the
electrons of the target. For sufficiently fast projectiles, e.g. MeV protons, the slowing down process is
primarily caused by exciting the electrons of the target. The more difficult it is to excite the electrons of the
target, the more the projectile is slowed down. Bohr® was the first to describe the stopping of fast
projectiles by target electrons, and the quantum theory for it was formulated by Bethe®.

In atomic units, Bethe’s® expression for the stopping cross section of a target, S(v), for a projectile with
velocity v is
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S(v) =

Here, Z; and Z; are the charge of the projectile and the number of electrons of the target, respectively. This
is the simplest approximation to stopping power and we are disregarding corrections to the Bethe equation
as shell corrections and contributions proportional to higher powers of Z;, most noticeable Barkas'® and
Bloch!! corrections. However, Eq. (1) will give the leading contributions to the slowing down of fast,
energetic particles. Thus, in this approximation, the stopping cross section of a target is determined by only
one material constant, the mean excitation energy of the target

annﬂlnEnO) (2)
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Here E,,, = E,, — E; is the excitation energy of the system between the ground state < 0 | and an excited
state <n | and

Fro = § < 0lrln > -< nlr|0 > E,, (3)
is the corresponding dipole oscillator strength in the dipole length formulation.

The summations in Eq. (2) extend over all excited states, bound as well as continuum. In principle there
should have been a summation over the discrete, bound states and integration over the continuum states.
However, in a finite basis set calculation one obtains a finite number of pseudo-states placed in the
continuum and we use these states to calculate the continuum contributions to the mean excitation
energy. We have shown?? that this stick spectrum representation gives a good representation of the
continuum contributions to the dipole oscillator sum rule, provided large and flexible basis sets are used
and all states are included in the sum over states expressions for sum rules as the ones in Eq. (2).

Using the operator identity
[r,H] = ip (4)

for one or both dipole operators in Eq. (3) we obtain the mixed and the dipole velocity formulations,
respectively, for the dipole oscillator strength. In an exact theory the three formulations give the same



results for f,o. However, this is also the case in the Random-Phase Approximation (RPA) when using a
complete basis set?3.

Moreover, we know that the sum of the oscillator strengths in all three formulations in an exact theory and
in RPA must fulfill the Thomas-Reiche-Kuhn (TRK) sum rule!*

Zn fno=n (5)
where n is the number of electrons in the system.

Thus, the fulfillment of the TRK sum rule in the length, mixed and velocity formulation is a necessary
condition for basis set completeness of an RPA calculation, a criterion we shall apply to test the reliability of
our calculations.

3. Computational details

The mean excitation energies were obtained by explicitly summing over the excitation energies and
corresponding oscillator strengths of all states obtained for the given anion in the employed one-electron
basis set according to Eq. (2). The calculations of the excitation energies and oscillator strengths were
carried out at the level of time-dependent Hartree-Fock theory, which is also known as Random-phase
Approximation, using the Dalton program package®®. For the calculations on anions with an open shell
configuration the MCSCF module of DALTON was employed to generate the correct one configuration
wavefunctions.

A preliminary study of the basis set dependence of the mean excitation energies of the anions showed that
acceptable accuracy of the calculation required an addition of an extra set of diffuse functions compared to
our previous calculations on the neutral atoms and cations®. Therefore, we did not employ the aug-cc-
PCVXZ (X=Q,5) basis sets as in our previous studies,®¢17:18 put instead the d-aug-cc-pCVXZ ( X= Q,5) basis
sets. For Li we thus employed the fully uncontracted d-aug-cc-pCVQZ basis set, for B, C, N, O, and F the d-
aug-cc-pCV5Z basis set and for Na, Al, Si, P, S, and Cl the fully uncontracted d-aug-cc-pCV5Z basis set. With
these basis sets the Thomas-Reiche-Kuhn sum rule* in Eq. ( 5) was fulfilled to within 0.25% in the length
and velocity representations and even better in the mixed representation. The differences between the
mean excitation energies in the three representations were in most cases less than 0.1 eV. Thus, only the
results in the length representation are presented.

The Random-phase Approximation includes electron correlation to first order in the Hartree-Fock
fluctuation potential and, as was discussed recently®'®, this provides a sufficiently high level of electron
correlation to calculate mean excitation energies to good enough accuracy for experimental purposes. We
estimate that error bar on the calculated mean excitation energies will be of the order of 1-2 eV, the main
cause of which will be additional electron correlation effects as the remaining basis set effects on the
calculated lg’s is smaller than 0.1 eV. Thus, the mean excitation energies reported here represent the RPA
values to the quoted decimal places.



Some of the atoms in the second and third row have rather large estimated negative electron affinity: He( -
0.52 eV?), Be( -0.52 eV'?), Ne( -1.2 eV*?), Mg( -0.415 eV*®), and Ar( -1.0 eV*®). For the anions of those atoms
our finite basis set RPA calculations lead to erratic results for the sum rules, for instance containing
oscillator strengths of the same irreducible representation as the orbital in which the extra electron was
placed. They are therefore not included in this study. An exception is nitrogen, whose electron affinity is
also negative but very close to zero (-0.000726 eV?®). In this case we could obtain a meaningful RPA results
also for N,

4. Results

Using the method described in the preceding section we have calculated the mean excitation
energies for the singly charged anions listed in Table 1. We also list the parameters that were
recently® used to analyze the cations of the same series of atoms. The parameters Zess and S are
defined through the relations

Iy = ZZ% I,(H) (6)
with Z.¢ being
Zeff = Z - S (7)

where g is the calculated mean excitation energy, lo(H) = 14.990 eV is the exact mean excitation energy of
hydrogen?® and Z is the nuclear charge of the atom or ion. The S parameter defined in Eq. (7) resembles a
screening parameter but cannot meaningfully be so in all cases®. In the next section we will analyze the
calculated mean excitation energies in terms of Zesand S.

Table 1 contains results for all the singly charged negative ions for which were able to perform the RPA
calculation described above.

Table 1. Mean excitation energies (in eV) for singly charged first, second and third row anions.

lon lo(eV) Zet® s ASeA EA(eV)® lo/Z
H 6.7 0.67 0.33 0.75 6.7
Li 13.5 0.95 2.05 0.27(0.34) | 0.62 4.5
B 31.3 1.45 3.55 0.35(0.45) | 0.28 6.3
C 44.9 1.73 4.27 0.40(0.48) 1.26 7.5
N- 57.5 1.96 5.04 0.40(0.50) |0 8.2
o 73.5 2.21 5.79 0.42(0.51) 1.46 9.2
F 91.2 2.47 6.53 0.44(0.52) | 3.40 10.1
Na- 82.8 2.35 8.65 0.43(0.57) | 0.55 7.5
Al 95.4 2.52 10.48 0.46(0.58) | 0.43 7.3
Si- 108.6 2.69 11.31 0.51(0.59) 1.39 7.8
P 119.3 2.82 12.18 0.53 0.75 8.0
3 131.9 2.97 13.03 0.55 2.08 8.3
cr 145.6 3.12 13.88 0.57 3.61 8.6




@The mean excitation energy for H is calculated in the same basis set as the rest of the negative
ions. However, using the more extended basis set 13p17s+1-1-12 of Ref. 12 we find that lo(H’) =
6.6483 eV.

bDefined in Egs. (6) and (7).

€AS = S(X) = S(Y) where X and Y are isoelectronic elements, e.g. X being F and Y being O". The
results for neutral atoms are taken from Tables 1-17 in Ref. 8.

4The number in parenthesis is the value (Dn) for AS in the isoelectronic series with the same
number of electrons, see Table 19 in reference in Ref. 8.

¢ The electron affinity of the neutral atoms, see Ref. 21.

5. Discussion

To the authors’ knowledge there are no previous calculations or measurements of mean excitation
energies for negative atomic ions available in the literature to which we may compare our
calculated values. Thus, instead we have tried to see if some of the knowledge of the systematics
of mean excitation energies of atoms and their positive ions also holds for the anions. To this end
we have analyzed the mean excitation energies of the negative ions in terms of the parameters Zes
and S defined in Egs. (6) and (7). We found recently® that the change in S with Z in an isoelectronic
series was proportional to the Z for the atom or cation. We also saw that the proportionality
constant increases slightly with the number of electrons in the isoelectronic series. This
proportionality constant is given in parenthesis in column 5 of Table 1. As this constant is rather
different from the AS value for the anion in the same column the quadratic dependence on Z that
resulted from the constancy of AS for cations in an isoelectronic series cannot be extended to the
anion in the same isoelectronic series. This is perhaps not as surprising as we found?® that also for
the neutral atom and the singly excited cation this relation did not hold so well. Thus, the
guadratic dependence on Z for an isoelectronic series is restricted to positive ions with charges
larger than 1.

The electron affinity of an atom describes how well an atom may attract an electron and perhaps
this ability could also be related the magnitude of mean excitation energy of the atom. However,
Table 1 shows that there is no correlation between these two atomic properties, the reason
probably being that the electron affinity basically is a ground state property whereas lo is primarily
determined by its continuum contributions!??2,

In the last column of Table 1 we have illustrated how the mean excitation energies of the anions
are fulfilling the Bloch?® expression

Iy=CZ (8)



where Cis constant of the order 10 eV. This relation that holds rather well for small atoms in their
natural phase?*, even though Eq. (8) was originally derived for heavy atoms. However, not
unexpectedly Eq. (8) does not hold for the gas phase anions in Table 1 as they cannot be described
by the Thomas-Fermi?>26 theory that is the basis for the simple relationship in Eq. (8).

The Z-dependence of lp for neutral atoms shows periodic variations reflecting the shell structure of
the atoms®27282° The mean excitation energies increase with Z within a shell but the last value in
a shell tends to be larger than the first value (alkali atom) in next shell. As we can see from Table 1
this trend also holds for the mean excitation energies of the negative ions.

Another way of illustrating the relationship between the mean excitation energies of the negative
and positive ions is provided by Fig. 1 and Table 2 where we have plotted and listed, respectively,
the mean excitation energies of the negative as well as of the neutral and two first positive ions®
for all atoms for which the four mean excitation energies are available.

Table 2. Comparison of mean excitation energies Io (in eV) of atoms (X) with varying charge (q).

Atom g=-1 q=0° g=1° g=2* | lo(X lo(X)/1o(X) | 1o(X")/10(X?*) | 1o(X) from | Alo®
(X) )/10(X) Bragg's
rule®

Li 135 33.1 108.3 134.2 0.40 0.31 0.80 27.1 6.0
B 31.3 52.6 82.3 136.9 0.60 0.64 0.60 46.1 6.5
C 44.9 65.9 92.6 134.8 0.68 0.71 0.69 60.7 5.2
N 57.5 81.6 107.4 142.4 0.71 0.76 0.75 75.2 6.4
0 73.5 97.9 125.2 157.2 0.75 0.78 0.80 92.8 5.1
F 91.2 116.5 144.0 176.4 0.78 0.81 0.82 111.7 4.8
Na 82.8 125.7 189.2 220.4 0.65 0.66 0.86 120.6 5.1
Al 95.4 132.2 172.7 225.8 0.72 0.77 0.76 125.5 6.7
Si 108.6 140.8 177.2 221.2 0.77 0.79 0.80 136.3 4.5
P 119.3 151.6 185.3 225.2 0.79 0.79 0.82 146.5 5.1
S 131.9 162.4 195.7 232.8 0.81 0.81 0.84 158.7 4.3
cl 145.6 174.9 206.8 242.9 0.83 0.84 0.85 171.7 3.2

@From Tables 1-17 in Ref. 8.
bSee the text following Eq. (9).

€ Alp is the difference between the RPA value for lpin column 3 and the value computed using
Bragg’s rule in column 9.
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Figure 1. The mean excitation energies of atoms and three ions (in eV) as a function of nuclear
charge.

As can be seen from both Fig. 1 and the ratios in Table 2 the mean excitation energy of any atomic
ion is a decreasing function of the number of electrons in the ion. Furthermore, for most atoms lg
decreases by a nearly constant factor when the number of electrons is decreased by 1 and this
factor does not vary much from atom to atom. The factor is of the order %. This thus provides a
simple way of estimating the mean excitation energy of an atomic ion if the mean excitation
energy is known of the atom or one of the ions with the same nuclear charge.

It is, however, evident from Table 2 and Fig. 1 that this simple rule-of-thumb does not hold for all
atoms, Li and to a certain extent also Na being the most noticeable exceptions. Also, the
“constant” does vary both with the number of electrons in the ion and with the atomic number of
the atom. In fact, it increases a bit with both parameters. If we disregard the Li-series we find
ratios between neighboring ions vary between 0.60 and 0.85.

Another way of estimating mean excitation energies of one ion from that of other ions involves
the use a variant of Bragg’s rule®. This is also illustrated in Table 2.



Bragg’s rule states that a good approximation to the stopping cross section of a sample may be
obtained as a weighted sum of the stopping cross sections of the individual fragments of the
sample. This implies that if the stopping cross sections are approximated by the expressions in Eq.
(1) then Bragg'’s rule for mean excitation energies implies that

Inl, = %Zi w; Inly; (9)
where wi is the number of electrons in fragment i with the mean excitation energy loi and
Diw;=n (10)
is the total number of electrons in the system.

If one considers a diatomic molecule X, to consist of two fragments X* and X with N+1 and N-1
electrons, respectively, we may apply Eq. (9) to calculate the mean excitation energy of the
diatomic molecule X; from the mean excitation energies of the two ions X* and X". However, Eq.
(9) also implies that Bragg’s rule predicts that the mean excitation energy of the homonuclear,
diatomic molecule X; is the same as that of the atom X. Thus, applying Eqg. (10) twice for an atom
with charge g one may calculate the mean excitation energy of the atom from the lo’s of ions with
charges g-1 and g+1 as

2NInId = (N + D™ + (N — D™ (11)

Equation (11) with g = 0 has been used to calculate the mean excitation energies for the neutral
atom listed in column 9 of Table 2. The difference between the calculated values of lpand those
obtained by applying Bragg’s rule is also listed in Table 2. We can see that Bragg’s rule tend to
underestimate the directly calculated mean excitation energies of the neutral atoms by 4-6 eV.
However, for many experimental purposed this may be acceptable accuracy.

Thus, Eq. (11) may provide another method for obtaining one of the three mean excitation
energies from the two “neighboring” ions/atoms. An application of Eq. (11) could be to calculate
the mean excitation energy of the negative ions of He, Be, Ne, Mg, and Ar, that is the ions for
which we could not calculate them with the RPA method. Inserting the lg’s of the neutral and
singly charged positive ions of these atoms® in Eq. (11) we find that lo(He) =38 eV, Io(Be) = 29 eV,
lo(Ne’) =118 eV, lo(Mg’) =99 eV, and Ip(Ar’) = 165 eV. Another way to estimate the same mean
excitation energies would be an application of the “3/4 rule-of-thumb” mentioned above to
calculate the mean excitation energies of the anions from lo of the neutral atoms®. The results of
such a calculation are Ip(He) =32 eV, Io(Be’) =32 eV, lp(Ne’) = 103 eV, Io(Mg’) =96 eV, and Ip(Ar’) =
142 eV. The two set of results are thus of the same order of magnitude for 5 unstable anions and
may serve as a first guess on the mean excitations energies that we were unable to calculate.



6. Summary

Using the Random- Phase approximation we have calculated all excitation energies and oscillator
strengths in large basis sets for singly charged anions of nitrogen and the atoms with Z < 18 that
have positive electron affinity. From the sum-over-states expressions in Eqg. (2) we have then
computed the mean excitations of the negative ion.

It turns out that with a few exceptions the variation with Z is similar for singly charged anions,
neutral atoms and single charged positive ions, see Fig.1. This allows us to estimate the — often
unknown - mean excitation energies of negative ions from the more available mean excitation
energies of neutral atoms?*. In most cases one may obtain the mean excitation energy of an ion by
multiplying lp of the atom/ion with the same nuclear charge but one electron less by a factor of
3/4.

We have also shown that Bragg’s rule3® applied to ions may be applied to predict mean excitation
energies with charge g from those with charges qt1, see Eq. (11). This method was used to
estimate values for mean excitation energies of the unstable singly charged anions for which we
could not obtain convergence of the RPA calculation.

Thus, the main conclusion of our calculations is that there exist rather simple rules that relate the
mean excitation energies of atoms with different charges but the same value of nuclear charge Z.
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