Generalized Hardy–Cesaro operators between weighted spaces

Pedersen, Thomas Vils

Published in:
Glasgow Mathematical Journal

DOI:
10.1017/S0017089517000398

Publication date:
2019

Document version
Peer reviewed version

Citation for published version (APA):
Generalized Hardy-Cesàro operators between weighted spaces

Thomas Vils Pedersen

December 1, 2017

Abstract

We characterize those non-negative, measurable functions ψ on $[0, 1]$ and positive, continuous functions ω_1 and ω_2 on \mathbb{R}^+ for which the generalized Hardy-Cesàro operator

$$(U_\psi f)(x) = \int_0^1 f(tx)\psi(t)\,dt$$

defines a bounded operator $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$. This generalizes a result of Xiao ([7]) to weighted spaces. Furthermore, we extend U_ψ to a bounded operator on $M(\omega_1)$ with range in $L^1(\omega_2) \oplus \mathbb{C}\delta_0$, where $M(\omega_1)$ is the weighted space of locally finite, complex Borel measures on \mathbb{R}^+. Finally, we show that the zero operator is the only weakly compact generalized Hardy-Cesàro operator from $L^1(\omega_1)$ to $L^1(\omega_2)$.

1 Introduction

A classical result of Hardy ([5]) shows that the Hardy-Cesàro operator

$$(U f)(x) = \frac{1}{x} \int_0^x f(s)\,ds$$

defines a bounded linear operator on $L^p(\mathbb{R}^+)$ with $\|U\| = p/(p - 1)$ for $p > 1$. Clearly, U is not bounded on $L^1(\mathbb{R}^+)$. Hardy's result has been generalized in various ways, of which we will mention some, which have inspired this paper.

For $1 \leq p \leq q \leq \infty$ and non-negative measurable functions u and v on \mathbb{R}^+, Muckenhoupt ([6]) and Bradley ([3]) gave a necessary and sufficient condition for the existence of a constant C such that

$$\left(\int_0^\infty \left(u(x) \int_0^x f(t)\,dt \right)^q \,dx \right)^{1/q} \leq C \left(\int_0^\infty (v(x)f(x))^p \,dx \right)^{1/p}$$

for every positive, measurable function f on \mathbb{R}^+. This can be rephrased as a characterization of the weighted L^p and L^q spaces on \mathbb{R}^+ between which the Hardy-Cesàro operator U is bounded.

\footnote{2010 Mathematics Subject Classification: 44A15, 47B34, 47B38, 47G10}

\footnote{Keywords: Generalized Hardy-Cesàro operators, weighted spaces, weak compactness.}
In a different direction, for a non-negative measurable function ψ on $[0, 1]$, Xiao ([7]) considered the generalized Hardy-Cesàro operators

$$(U_\psi f)(x) = \int_0^1 f(tx)\psi(t) \, dt$$

for measurable functions f on \mathbb{R}^n. We remark that

$$(U_\psi f)(x) = \frac{1}{x} \int_0^x f(s)\psi(s/x) \, ds$$

for measurable functions f on \mathbb{R}. Xiao proved that U_ψ defines a bounded operator on $L^p(\mathbb{R}^n)$ (for $p \geq 1$) if and only if

$$\int_0^1 \psi(t) \frac{t}{t^{n/p}} \, dt < \infty.$$

Xiao’s result is the main motivation for this paper.

Finally, we mention that Albanese, Bonet and Ricker in a recent series of papers (see, for instance, [1] and [2]) have considered the spectrum, compactness and other properties of the Hardy-Cesàro operator on various spaces of continuous functions and discrete spaces.

In this paper we will study the generalized Hardy-Cesàro operators between weighted spaces of integrable functions, and we will obtain a generalization of Xiao’s result in this context. Let ω be a positive, continuous function on \mathbb{R}^+ and let $L^1(\omega)$ be the Banach space of (equivalence classes of) measurable functions f on \mathbb{R}^+ for which

$$\|f\|_{L^1(\omega)} = \int_\mathbb{R}^+ |f(t)| \omega(t) \, dt < \infty.$$

In the usual way we identify the dual space of $L^1(\omega)$ with the space $L_\infty(1/\omega)$ of measurable functions h on \mathbb{R}^+ for which

$$\|h\|_{L_\infty(1/\omega)} = \text{ess sup}_{t \in \mathbb{R}^+} |h(t)| / \omega(t) < \infty.$$

We denote by $C_0(1/\omega)$ the closed subspace of $L_\infty(1/\omega)$ consisting of the continuous functions g in $L_\infty(1/\omega)$ for which g/ω vanishes at infinity. Finally, we identify the dual space of $C_0(1/\omega)$ with the space $M(\omega)$ of locally finite, complex Borel measures μ on \mathbb{R}^+ for which

$$\|\mu\|_{M(\omega)} = \int_{\mathbb{R}^+} \omega(t) \, d|\mu|(t) < \infty.$$

We consider the space $L^1(\omega)$ as a closed subspace of $M(\omega)$.

In Section 2 we characterize those functions ψ, ω_1 and ω_2 for which U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. These operators are extended to bounded operators on $M(\omega_1)$ in Section 3 where we also obtain results about their ranges. Finally, in Section 4 we show that there are no non-zero weakly compact generalized Hardy-Cesàro operators from $L^1(\omega_1)$ to $L^1(\omega_2)$.
2 A characterization of the generalized Hardy-Cesàro operators

For a non-negative, measurable function \(\psi \) on \([0, 1]\) and positive, continuous functions \(\omega_1 \) and \(\omega_2 \) on \(\mathbb{R}^+ \), we say that condition (C) is satisfied if there exists a constant \(C \) such that

\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \leq C \omega_1(s)
\]

for every \(s \in \mathbb{R}^+ \).

Theorem 2.1 Let \(\psi \) be a non-negative, measurable function on \([0, 1]\) and let \(\omega_1 \) and \(\omega_2 \) be positive, continuous functions on \(\mathbb{R}^+ \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \) if and only if condition (C) is satisfied.

Proof Assume that condition (C) is satisfied and let \(f \in L^1(\omega_1) \). Then

\[
\int_0^\infty \int_0^1 |f(s)| \frac{\psi(t)}{t} \omega_2(s/t) \, dt \, ds \leq C \int_0^\infty |f(s)| \omega_1(s) \, ds = C \| f \|_{L^1(\omega_1)} < \infty,
\]

so it follows from Fubini’s theorem that

\[
\int_0^1 \int_0^\infty |f(tx)| \frac{\psi(t)}{t} \omega_2(x) \, dx \, dt = \int_0^1 \int_0^\infty |f(s)| \frac{\psi(t)}{t} \omega_2(s/t) \, dt \, ds \leq C \| f \|_{L^1(\omega_1)} < \infty.
\]

Another application of Fubini’s theorem thus shows that \((U_\psi f)(x)\) is defined for almost all \(x \in \mathbb{R}^+ \) with

\[
\| U_\psi f \|_{L^1(\omega_2)} = \int_0^\infty |(U_\psi f)(x)| \omega_2(x) \, dx \leq \int_0^\infty \int_0^1 |f(tx)| \frac{\psi(t)}{t} \omega_2(x) \, dx \, dt
\]

\[
= \int_0^1 \int_0^\infty |f(tx)| \frac{\psi(t)}{t} \omega_2(x) \, dx \, dt \leq C \| f \|_{L^1(\omega_1)} < \infty.
\]

Hence \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \).

Conversely, assume that \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). Since \(L^1(\omega_2) \) is a closed subspace of \(M(\omega_2) \), we identify with the dual space of \(C_0(1/\omega_2) \), and it follows from [4, Theorem VI.8.6] that there exists a map \(\rho \) on \(\mathbb{R}^+ \) to \(M(\omega_2) \) for which the map \(s \mapsto \langle g, \rho(s) \rangle = \int_{\mathbb{R}^+} g(x) \, d\rho(s)(x) \) is measurable and essentially bounded on \(\mathbb{R}^+ \) for every \(g \in C_0(1/\omega_2) \) with \(\| U_\psi g \| = \text{ess sup}_{s \in \mathbb{R}^+} \| \rho(s) \|_{M(\omega_2)} \) and such that

\[
\langle g, U_\psi f \rangle = \int_0^\infty \langle g, \rho(s) \rangle f(s) \omega_1(s) \, ds = \int_0^\infty \int_{\mathbb{R}^+} g(x) \, d\rho(s)(x) \, f(s) \omega_1(s) \, ds
\]

for every \(g \in C_0(1/\omega_2) \) and \(f \in L^1(\omega_1) \). On the other hand

\[
\langle g, U_\psi f \rangle = \int_0^\infty g(x) (U_\psi f)(x) \, dx
\]

\[
= \int_0^\infty \int_0^x \frac{g(x)}{s} f(s) \psi(s/x) \, ds \, dx
\]

\[
= \int_0^\infty \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx \, f(s) \omega_1(s) \, ds
\]
for every $g \in C_0(1/\omega_2)$ and $f \in L^1(\omega_1)$, so it follows that

$$\int_{\mathbb{R}^+} g(x) \, d\rho(s)(x) = \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx$$

for almost all $s \in \mathbb{R}^+$ and every $g \in C_0(1/\omega_2)$ (considering both sides as elements of $L^\infty(\mathbb{R}^+)$). Considered as elements of $M(\omega_2)$ we thus have

$$d\rho(s)(x) = \frac{1}{\omega_1(s)} \frac{1}{x} \psi(s/x) 1_{x \geq s} \, dx$$

for almost all $s, x \in \mathbb{R}^+$. Hence $\rho(s) \in L^1(\omega_2)$ with

$$\|\rho(s)\|_{L^1(\omega_2)} = \int_0^\infty \omega_2(x) \, d\rho(s)(x)$$

$$= \frac{1}{\omega_1(s)} \int_0^\infty \frac{1}{x} \psi(s/x) 1_{x \geq s} \omega_2(x) \, dx$$

$$= \frac{1}{\omega_1(s)} \int_s^\infty \frac{1}{x} \psi(s/x) \omega_2(x) \, dx$$

$$= \frac{1}{\omega_1(s)} \int_0^1 \frac{\psi(t)}{t} \omega_2(s/t) \, dt$$

for almost all $s \in \mathbb{R}^+$. Therefore

$$\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \|\rho(s)\|_{L^1(\omega_2)} \omega_1(s) \leq \|U_\psi\| \omega_1(s)$$

for almost all $s \in \mathbb{R}^+$. Since both sides of the inequality are continuous functions of s, the inequality holds for every $s \in \mathbb{R}^+$, so condition (C) holds.

Letting $s = 0$ in condition (C) we see that Xiao’s condition is necessary in our situation.

Corollary 2.2 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. If U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$, then

$$\int_0^1 \frac{\psi(t)}{t} \, dt < \infty.$$

The following straightforward consequences can be deduced from Theorem 2.1.

Corollary 2.3 Let ψ be a non-negative, measurable function on $[0, 1]$.

(a) Let ω be a decreasing, positive, continuous function on \mathbb{R}^+, and assume that $\int_0^1 \psi(t)/t \, dt < \infty$. Then U_ψ defines a bounded operator from $L^1(\omega)$ to $L^1(\omega)$.

(b) Let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+, and assume that ω_2 is increasing. If U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$, then there exists a constant C such that $\omega_2(s) \leq C \omega_1(s)$ for every $s \in \mathbb{R}^+$.

4
(c) Let ω be an increasing, positive, continuous function on \mathbb{R}^+, and assume that there exists $a < 1$ and $K > 0$ such that $\psi(t) \geq K$ almost everywhere on $[a, 1]$. If U_ψ defines a bounded operator from $L^1(\omega)$ to $L^1(\omega)$, then there exist positive constants C_1 and C_2 such that

$$C_1 \omega(s) \leq \int_0^1 \omega(s/t) \frac{\psi(t)}{t} \, dt \leq C_2 \omega(s)$$

for every $s \in \mathbb{R}^+$.

Proof (a): We have

$$\int_0^1 \omega(s/t) \frac{\psi(t)}{t} \, dt \leq \int_0^1 \psi(t) \, dt \omega(s)$$

for every $s \in \mathbb{R}^+$, so condition (C) is satisfied with $\omega_1 = \omega_2 = \omega$ and the result follows.

(b): We have

$$\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \geq \int_0^1 \psi(t) \, dt \omega_2(s)$$

for every $s \in \mathbb{R}^+$. Since condition (C) is satisfied, the result follows.

(c): We have

$$\int_0^1 \omega(s/t) \frac{\psi(t)}{t} \, dt \geq K \int_a^1 \omega(s/t) \, dt \geq K(1-a)\omega(s)$$

for every $s \in \mathbb{R}^+$. The other inequality is just condition (C) with $\omega_1 = \omega_2 = \omega$. □

We finish the section with some examples of functions ψ, ω_1 and ω_2 for which U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$.

Example 2.4

(a) For $\alpha > 0$, let $\psi(t) = t^\alpha$ for $t \in [0, 1]$. Also, for $\beta_1, \beta_2 \in \mathbb{R}$, let $\omega_i(x) = (1 + x)^{\beta_i}$ for $x \in \mathbb{R}^+$ and $i = 1, 2$. Then U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$ if and only if $\beta_2 \leq \beta_1$ and $\beta_2 < \alpha$.

(b) For $\alpha > 0$, let $\psi(t) = t^\alpha$ for $t \in [0, 1]$. Also, let $\omega_1(x) = e^{-x}/(1 + x)$ and $\omega_2(x) = e^{-x}$ for $x \in \mathbb{R}^+$. Then U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. Moreover, it is not possible to replace $\omega_1(x)$ by a function tending faster to zero at infinity.

(c) Let $\psi(t) = e^{-1/t^2}$ for $t \in [0, 1]$. Also, let $\omega_1(x) = e^{x^2/4}/x$ and $\omega_2(x) = e^x$ for $x \in \mathbb{R}^+$. Then U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. Moreover, it is not possible to replace $\omega_1(x)$ by a function tending slower to infinity at infinity.

Proof (a): For $s \geq 1$ and $t \in [0, 1]$ we have $s/t < 1 + s/t \leq 2s/t$, so

$$\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_0^1 \left(1 + \frac{s}{t}\right)^{\beta_2} t^{a-1} \, dt$$

$$\simeq s^{\beta_2} \int_0^1 t^{a-\beta_2-1} \, dt$$

$$\simeq s^{\beta_2}.$$
for \(s \geq 1 \) if \(\beta_2 < \alpha \) (where \(F(s) \simeq G(s) \) for positive functions \(F \) and \(G \) on \([1, \infty)\) indicates the existence of positive constants \(C_1 \) and \(C_2 \) such that \(C_1 F(s) \leq G(s) \leq C_2 F(s) \) for all \(s \in [1, \infty) \)), whereas the integrals diverge if \(\beta_2 \geq \alpha \). Moreover, the expression
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_0^1 \left(1 + \frac{s}{t} \right)^{\beta_2} \, t^{\alpha-1} \, dt
\]
defines a positive, continuous function of \(s \) on \(\mathbb{R}^+ \), so it follows that condition (C) is satisfied if and only if \(\beta_2 \leq \beta_1 \) and \(\beta_2 < \alpha \).

(b): For \(s \geq 1 \) we have
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_s^\infty \omega_2(x) \psi(s/x) \, dx = \int_s^\infty e^{-x} s^\alpha x^{-\alpha} \, dx \leq \int_s^\infty \frac{e^{-x}}{x} \, dx \leq \frac{e^{-s}}{s}.
\]
Moreover,
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \leq \int_0^1 \frac{\psi(t)}{t} \, dt < \infty
\]
for all \(s \in \mathbb{R}^+ \), so condition (C) is satisfied and \(U_\psi \) thus defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). On the other hand, since
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \geq \int_s^2 \frac{e^{-x}}{x} s^\alpha x^{-\alpha} \, dx \geq \frac{1}{2^{\alpha+1} s} \int_s^2 e^{-x} \, dx \geq \frac{1}{2^{\alpha+2}} \frac{e^{-s}}{s}
\]
for \(s \geq 1 \), it is not possible to replace \(\omega_1(x) \) by a function tending faster to zero at infinity.

(c): For \(s \in \mathbb{R}^+ \) we have
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_s^\infty \omega_2(x) \psi(s/x) \, dx = \int_s^\infty e^{x-y^2/2} \frac{2}{s} e^{-y^2/2} \, dy = \int_{s/4}^\infty e^{y-y^2/s^2} \, dy.
\]
Moreover, for \(s \geq 4 \)
\[
\int_{s/4}^\infty \frac{e^{y-y^2/2}}{y} \, dy \leq \frac{4}{s} \int_{s/4}^\infty e^{-(y-s/2)^2+s^2/4} \, dy = 4 \int_{-s/4}^\infty e^{-u^2} \, du \frac{e^{s^2/4}}{s}
\]
and
\[
\int_1^{s/4} \frac{e^{y-y^2/2}}{y} \, dy \leq \int_1^{s/4} e^{y^2} \, dy \leq \frac{e^{s^2/4}}{s},
\]
so condition (C) is satisfied and \(U_\psi \) thus defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). On the other hand, the estimate
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_1^\infty \frac{e^{y-y^2/2}}{y} \, dy \geq \frac{1}{s} \int_{s/2}^{s/2+1} e^{-(y-s/2)^2+s^2/4} \, dy = \int_0^1 e^{-u^2} \, du \frac{e^{s^2/4}}{s}
\]
for \(s \geq 2 \) shows that it is not possible to replace \(\omega_1(x) \) by a function tending slower to infinity at infinity.

In Example 2.3(b) we have \(\omega_2(x)/\omega_1(x) \to \infty \) as \(x \to \infty \), which should be compared to the conclusion in Corollary 2.3(b). Conversely, Example 2.3(c) shows an example where we need \(\omega_2(x)/\omega_1(x) \to 0 \) rapidly as \(x \to \infty \) in order for \(U_\psi \) to be defined.
3 Extensions to weighted spaces of measures

Identifying the dual space of $L^1(\omega)$ with $L^\infty(1/\omega)$ as in the introduction, we have the following result about the adjoint of U_ψ.

Proposition 3.1 Let ψ be a non-negative, measurable function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator, and consider the adjoint operator $U_\psi^* : L^\infty(1/\omega_2) \to L^\infty(1/\omega_1)$.

(a) For $h \in L^\infty(1/\omega_2)$ we have

$$(U_\psi^* h)(x) = \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt$$

for almost all $x \in \mathbb{R}^+$.

(b) U_ψ^* maps $C_0(1/\omega_2)$ into $C_0(1/\omega_1)$.

Proof (a): Let $h \in L^\infty(1/\omega_2)$. Since $|h(x/t)| \leq \|h\|_{L^\infty(1/\omega_2)} \omega_2(x/t)$ for almost all $x,t \in \mathbb{R}^+$, it follows from condition (C) that $\int_0^1 h(x/t) \psi(t)/t \, dt$ is defined and satisfies

$$\left| \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt \right| \leq \|h\|_{L^\infty(1/\omega_2)} \int_0^1 \omega_2(x/t) \frac{\psi(t)}{t} \, dt \leq C \|h\|_{L^\infty(1/\omega_2)} \omega_1(x)$$

for almost all $x \in \mathbb{R}^+$. Hence the function $x \mapsto \int_0^1 h(x/t) \psi(t)/t \, dt$ belongs to $L^\infty(1/\omega_1)$. Also, for $f \in L^1(\omega_1)$ we have

$$\langle f, U_\psi^* h \rangle = \langle U_\psi f, h \rangle = \int_0^\infty (U_\psi f)(s) h(s) \, ds$$

$$= \int_0^\infty \int_0^s \frac{1}{s} f(x) \psi(x/s) h(s) \, dx \, ds$$

$$= \int_0^\infty \int_x^\infty \frac{h(s)}{s} \psi(x/s) \, ds \, f(x) \, dx$$

from which it follows that

$$(U_\psi^* h)(x) = \int_x^\infty \frac{h(s)}{s} \psi(x/s) \, ds = \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt$$

for almost all $x \in \mathbb{R}^+$.

(b): It suffices to show that U_ψ^* maps $C_c(\mathbb{R}^+)$ (the continuous functions on \mathbb{R}^+ with compact support) into $C_0(1/\omega_1)$. Let $g \in C_c(\mathbb{R}^+)$, let $x_0 \in \mathbb{R}^+$ and let (x_n) be a sequence in \mathbb{R}^+ with $x_n \to x_0$ as $n \to \infty$. Then

$$(U_\psi^* g)(x_n) - (U_\psi^* g)(x_0) = \int_0^1 (g(x_n/t) - g(x_0/t)) \frac{\psi(t)}{t} \, dt$$

for $n \in \mathbb{N}$. Since g is bounded on \mathbb{R}^+ and since $\int_0^1 \psi(t)/t \, dt < \infty$ by Corollary 2.2, it follows from Lebesgue’s dominated convergence theorem that $(U_\psi^* g)(x_n) \to (U_\psi^* g)(x_0)$ as $n \to \infty$. Hence $U_\psi^* g$ is continuous on \mathbb{R}^+. Finally, from the expression

$$(U_\psi^* g)(x) = \int_x^\infty \frac{g(s)}{s} \psi(x/s) \, ds$$

we have
it follows that $\text{supp } U_\psi g \subseteq \text{supp } g$, so we conclude that $U_\psi^* g \in C_c(\mathbb{R}^+ \subseteq C_0(1/\omega_1)$. □

Let V_ψ be the restriction of U_ψ^* to $C_0(1/\omega_2)$ considered as a map into $C_0(1/\omega_1)$. We then immediately have the following result.

Corollary 3.2 Let ψ be a non-negative, measurable function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator. The bounded operator $\overline{U}_\psi = V_\psi^*$ from $M(\omega_1)$ to $M(\omega_2)$ is an extension of U_ψ.

Let ψ be a non-negative, continuous function on $[0,1]$ with $\psi(0) = 0$. For $\mu \in M(\omega_1)$ and $x > 0$ let

$$(W_\psi \mu)(x) = \frac{1}{x} \int_{(0,x)} \psi(s/x) \, d\mu(s).$$

Proposition 3.3 Let ψ be a non-negative, continuous function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator. Then $W_\psi \mu \in L^1(\omega_2)$ and

$$W_\psi \mu = \overline{U}_\psi \mu + \int_0^1 \frac{\psi(t)}{t} \, dt \cdot \mu(\{0\}) \delta_0$$

for $\mu \in M(\omega_1)$. In particular $\text{ran } \overline{U}_\psi \subseteq L^1(\omega_2) \oplus C\delta_0$ and \overline{U}_ψ maps $M((0,\infty),\omega_1)$ into $L^1(\omega_2)$.

Proof By Corollary 2.2 we have $\int_0^1 \psi(t)/t \, dt < \infty$, so it follows that $\psi(0) = 0$. Let $\mu \in M(\omega_1)$ with $\mu(\{0\}) = 0$. By condition (C) we have

$$\int_{(0,\infty)} \infty \frac{1}{x} \psi(s/x) \omega_2(x) \, dx \, d|\mu|(s) = \int_{(0,\infty)} \int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \, d|\mu|(s)$$

$$\leq C \int_{(0,\infty)} \omega_1(s) \, d|\mu|(s) = C \|\mu\|_{M(\omega_1)} < \infty,$$

so it follows from Fubini’s theorem that

$$\int_0^\infty \frac{1}{x} \int_{(0,x)} \psi(s/x) \, d|\mu|(s) \, \omega_2(x) \, dx < \infty.$$

Hence $W_\psi \mu \in L^1(\omega_2)$. Moreover, for $g \in C_0(1/\omega_2)$ we have

$$\langle g, \overline{U}_\psi \mu \rangle = \langle V_\psi g, \mu \rangle = \int_{(0,\infty)} \int_0^1 g(s/t) \frac{\psi(t)}{t} \, dt \, d\mu(s)$$

$$= \int_{(0,\infty)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx \, d\mu(s)$$

$$= \int_0^\infty \frac{1}{x} \int_{(0,x)} \psi(s/x) \, d\mu(s) \, g(x) \, dx$$

$$= \int_0^\infty (W_\psi \mu)(x) g(x) \, dx = \langle g, W_\psi \mu \rangle,$$
so we conclude that $U_{\psi}\mu = W_{\psi}\mu$. Finally, for $g \in C_0(1/\omega_2)$ we have

$$\langle g, U_{\psi}\delta_0 \rangle = \langle V_{\psi}g, \delta_0 \rangle = (V_{\psi}g)(0) = g(0) \int_0^1 \frac{\psi(t)}{t} \, dt = \langle g, \int_0^1 \frac{\psi(t)}{t} \, dt \cdot \delta_0 \rangle.$$

Since $W_{\psi}\delta_0 = 0$ this finishes the proof. \hfill \Box

The conclusion about the range of U_{ψ} can be generalized to the case, where ψ is not assumed to be continuous.

Proposition 3.4 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_{\psi} : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. Then $\text{ran} \, U_{\psi} \subseteq L^1(\omega_2) \oplus C\delta_0$.

Proof Choose a sequence of non-negative, continuous functions (ψ_n) on $[0, 1]$ with $\psi_n \leq \psi$ and

$$\int_0^1 \frac{\psi(t) - \psi_n(t)}{t} \, dt \to 0 \quad \text{as } n \to \infty.$$

For $\mu \in M(\omega_1)$ and $g \in C_0(1/\omega_2)$ we have

$$\left| \langle g, (U_{\psi} - U_{\psi_n})\mu \rangle \right| = \left| \langle (V_{\psi} - V_{\psi_n})g, \mu \rangle \right| = \left| \int_{\mathbb{R}^+} \int_0^1 g(x/t) \frac{\psi(t) - \psi_n(t)}{t} \, dt \, d\mu(x) \right| \leq \|g\|_{C_0(1/\omega_2)} \int_{\mathbb{R}^+} \int_0^1 \omega_2(x/t) \frac{\psi(t) - \psi_n(t)}{t} \, dt \, d\mu(x).$$

Let

$$p_n(x) = \int_0^1 \omega_2(x/t) \frac{\psi(t) - \psi_n(t)}{t} \, dt$$

for $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$. By condition (C) there exists a constant C such that $p_n(x) \leq C\omega_1(x)$ for every $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$. Moreover, for every $x \in \mathbb{R}^+$ we have $p_n(x) \to 0$ as $n \to \infty$ by Lebesgue’s dominated convergence theorem. Hence

$$\| (U_{\psi} - U_{\psi_n})\mu \|_{M(\omega_2)} = \sup_{\|g\|_{C_0(1/\omega_2)} \leq 1} \left| \langle g, (U_{\psi} - U_{\psi_n})\mu \rangle \right| \leq \int_{\mathbb{R}^+} p_n(x) \, d\mu\|(x) \to 0$$

as $n \to \infty$ again by Lebesgue’s dominated convergence theorem. Consequently, $U_{\psi_n} \to U_{\psi}$ strongly as $n \to \infty$. Since $\text{ran} \, U_{\psi_n} \subseteq L^1(\omega_2) \oplus C\delta_0$ for $n \in \mathbb{N}$ by Proposition 3.3 the same thus holds for $\text{ran} \, U_{\psi}$. \hfill \Box

Corollary 3.5 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_{\psi} : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. For $s > 0$ we then have $(U_{\psi}\delta_s)(x) = \psi(s/x)/x$ for almost all $x \geq s$ and $(U_{\psi}\delta_s)(x) = 0$ for almost all $x < s$.

9
Proof For ψ continuous, this follows from Proposition 3.3. For general ψ it follows from the approach in the proof of Proposition 3.4 using $\overline{U}_\psi \overline{\psi} \rightarrow U_\psi$ strongly as $n \rightarrow \infty$. □

It follows from Corollary 3.5 that

$$\|U_\psi \delta_s\|_{M(\omega_2)} = \int_0^\infty \omega_2(x) \psi(s/x) dx = \int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} dt,$$

whereas $\|\delta_s\|_{M(\omega_1)} = \omega_1(s)$. Since U_ψ is bounded we thus recover condition (C). If we without using Theorem 2.1 could show that if $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator, then is has a bounded extension $U_\psi : M(\omega_1) \rightarrow M(\omega_2)$ for which Corollary 3.5 holds, then we would in this way obtain an alternative proof of condition (C).

4 Weakly compact operators

We finish the paper by showing that there are no non-zero, weakly compact generalized Hardy-Cesàro operators between $L^1(\omega_1)$ and $L^1(\omega_2)$.

Proposition 4.1 Let ψ be a non-negative, measurable function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator. If $\psi \neq 0$, then U_ψ is not weakly compact.

Proof For $f \in L^1(\omega_1)$ and $x \in \mathbb{R}^+$ we have

$$(U_\psi f)(x) = \frac{1}{x} \int_0^x f(s) \psi(s/x) ds = \int_0^1 f(s) \rho(s) x \psi(s/x) ds,$$

where (with a slight change of notation compared to the proof of Theorem 2.1)

$$\rho(s)(x) = \frac{1}{\omega_1(s)} \frac{1}{x} \psi(s/x) 1_{x \geq s}$$

for $x, s \in \mathbb{R}^+$. In the proof of Theorem 2.1 we saw that $\rho(s) \in L^1(\omega_2)$ with $\|\rho(s)\|_{L^1(\omega_2)} \leq C$ for a constant C for almost all $s \in \mathbb{R}^+$. It thus follows from [4, Theorem VI.8.10] that U_ψ is weakly compact if and only if $\{\rho(s) : s \in \mathbb{R}^+\}$ is contained in a weakly compact set of $L^1(\omega_2)$ (except possibly for s belonging to a null-set). Consider $\rho(s)$ as an element of $C_0(1/\omega_2)^*$ for $s \in \mathbb{R}^+$ and let $g \in C_0(1/\omega_2)$. Then

$$\langle g, \rho(s) \rangle = \int_0^\infty g(x) \rho(s)(x) dx$$

$$= \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) dx$$

$$= \frac{1}{\omega_1(s)} \int_0^1 g(s/t) \frac{\psi(t)}{t} dt.$$

Since $g(s/t) \rightarrow g(0)$ as $s \rightarrow 0^+$ for all $t > 0$, it follows from Lebesgue’s dominated convergence theorem that

$$\langle g, \rho(s) \rangle \rightarrow \frac{1}{\omega_1(0)} g(0) \int_0^1 \frac{\psi(t)}{t} dt.$$
as $s \to 0_+$. We therefore conclude that

$$\rho(s) \to \frac{1}{\omega_1(0)} \int_0^1 \frac{\psi(t)}{t} dt \cdot \delta_0$$

weak-star in $M(\omega_2)$ as $s \to 0_+$. Since $\delta_0 \notin L^1(\omega_2)$, it follows that $\{\rho(s) : s \in \mathbb{R}^+\}$ is not contained in a weakly compact set of $L^1(\omega_2)$ (even excepting null sets), and the result follows. \qed

References

Thomas Vils Pedersen
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 Copenhagen Ø
Denmark
vils@math.ku.dk