Generalized Hardy–Cesaro operators between weighted spaces

Pedersen, Thomas Vils

Published in: Glasgow Mathematical Journal

DOI: 10.1017/S0017089517000398

Publication date: 2019

Document version Peer reviewed version

Generalized Hardy-Cesàro operators between weighted spaces

Thomas Vils Pedersen

December 1, 2017

Abstract

We characterize those non-negative, measurable functions ψ on [0, 1] and positive, continuous functions ω_1 and ω_2 on ℝ^+ for which the generalized Hardy-Cesàro operator

(U_ψ f)(x) = \int_0^1 f(tx)ψ(t) dt

defines a bounded operator U_ψ : L^1(ω_1) → L^1(ω_2). This generalizes a result of Xiao ([7]) to weighted spaces. Furthermore, we extend U_ψ to a bounded operator on M(ω_1) with range in L^1(ω_2) ⊕ Cδ_0, where M(ω_1) is the weighted space of locally finite, complex Borel measures on ℝ^+. Finally, we show that the zero operator is the only weakly compact generalized Hardy-Cesàro operator from L^1(ω_1) to L^1(ω_2).

1 Introduction

A classical result of Hardy ([5]) shows that the Hardy-Cesàro operator

(U f)(x) = \frac{1}{x} \int_0^x f(s) ds

defines a bounded linear operator on L^p(ℝ^+) with ∥U∥ = p/(p − 1) for p > 1. Clearly, U is not bounded on L^1(ℝ^+). Hardy’s result has been generalized in various ways, of which we will mention some, which have inspired this paper.

For 1 ≤ p ≤ q ≤ ∞ and non-negative measurable functions u and v on ℝ^+, Muckenhoupt ([6]) and Bradley ([3]) gave a necessary and sufficient condition for the existence of a constant C such that

\left(\int_0^∞ \left(u(x) \int_0^x f(t) dt \right)^q dx \right)^{1/q} \leq C \left(\int_0^∞ (v(x)f(x))^p dx \right)^{1/p}

for every positive, measurable function f on ℝ^+. This can be rephrased as a characterization of the weighted L^p and L^q spaces on ℝ^+ between which the Hardy-Cesàro operator U is bounded.

02010 Mathematics Subject Classification: 44A15, 47B34, 47B38, 47G10

0 Keywords: Generalized Hardy-Cesàro operators, weighted spaces, weak compactness.
In a different direction, for a non-negative measurable function ψ on $[0, 1]$, Xiao ([7]) considered the generalized Hardy-Cesàro operators

$$(U_\psi f)(x) = \int_0^1 f(tx)\psi(t) \, dt$$

for measurable functions f on \mathbb{R}^n. We remark that

$$(U_\psi f)(x) = \frac{1}{x} \int_0^x f(s)\psi(s/x) \, ds$$

for measurable functions f on \mathbb{R}. Xiao proved that U_ψ defines a bounded operator on $L^p(\mathbb{R}^n)$ (for $p \geq 1$) if and only if

$$\int_0^1 \psi(t) \frac{t}{t^{n/p}} \, dt < \infty.$$

Xiao’s result is the main motivation for this paper.

Finally, we mention that Albanese, Bonet and Ricker in a recent series of papers (see, for instance, [1] and [2]) have considered the spectrum, compactness and other properties of the Hardy-Cesàro operator on various spaces of continuous functions and discrete spaces.

In this paper we will study the generalized Hardy-Cesàro operators between weighted spaces of integrable functions, and we will obtain a generalization of Xiao’s result in this context. Let ω be a positive, continuous function on \mathbb{R}^+ and let $L^1(\omega)$ be the Banach space of (equivalence classes of) measurable functions f on \mathbb{R}^+ for which

$$\|f\|_{L^1(\omega)} = \int_0^\infty |f(t)|\omega(t) \, dt < \infty.$$

In the usual way we identify the dual space of $L^1(\omega)$ with the space $L^\infty(1/\omega)$ of measurable functions h on \mathbb{R}^+ for which

$$\|h\|_{L^\infty(1/\omega)} = \text{ess sup}_{t \in \mathbb{R}^+} |h(t)|/\omega(t) < \infty.$$

We denote by $C_0(1/\omega)$ the closed subspace of $L^\infty(1/\omega)$ consisting of the continuous functions g in $L^\infty(1/\omega)$ for which g/ω vanishes at infinity. Finally, we identify the dual space of $C_0(1/\omega)$ with the space $M(\omega)$ of locally finite, complex Borel measures μ on \mathbb{R}^+ for which

$$\|\mu\|_{M(\omega)} = \int_{\mathbb{R}^+} \omega(t) \, d|\mu|(t) < \infty.$$

We consider the space $L^1(\omega)$ as a closed subspace of $M(\omega)$.

In Section 2 we characterize those functions ψ, ω_1 and ω_2 for which U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. These operators are extended to bounded operators on $M(\omega_1)$ in Section 3, where we also obtain results about their ranges. Finally, in Section 4 we show that there are no non-zero weakly compact generalized Hardy-Cesàro operators from $L^1(\omega_1)$ to $L^1(\omega_2)$.
2 A characterization of the generalized Hardy-Cesàro operators

For a non-negative, measurable function ψ on $[0, 1]$ and positive, continuous functions ω_1 and ω_2 on \mathbb{R}^+, we say that condition (C) is satisfied if there exists a constant C such that

$$\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \leq C \omega_1(s)$$

for every $s \in \mathbb{R}^+$.

Theorem 2.1 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Then U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$ if and only if condition (C) is satisfied.

Proof Assume that condition (C) is satisfied and let $f \in L^1(\omega_1)$. Then

$$\int_0^\infty \int_0^1 |f(s)| \frac{\psi(t)}{t} \omega_2(s/t) \, ds \, dt \leq C \int_0^\infty |f(s)| \omega_1(s) \, ds = C \|f\|_{L^1(\omega_1)} < \infty,$$

so it follows from Fubini’s theorem that

$$\int_0^1 \int_0^\infty |f(tx)| \psi(t) \omega_2(x) \, dx \, dt = \int_0^1 \int_0^\infty |f(s)| \frac{\psi(t)}{t} \omega_2(s/t) \, ds \, dt \leq C \|f\|_{L^1(\omega_1)} < \infty.$$

Another application of Fubini’s theorem thus shows that $(U_\psi f)(x)$ is defined for almost all $x \in \mathbb{R}^+$ with

$$\|U_\psi f\|_{L^1(\omega_2)} = \int_0^\infty |(U_\psi f)(x)| \omega_2(x) \, dx \leq \int_0^\infty \int_0^1 |f(tx)| \psi(t) \omega_2(x) \, dt \, dx$$

$$= \int_0^1 \int_0^\infty |f(tx)| \psi(t) \omega_2(x) \, dx \, dt \leq C \|f\|_{L^1(\omega_1)} < \infty.$$

Hence U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$.

Conversely, assume that U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. Since $L^1(\omega_2)$ is a closed subspace of $M(\omega_2)$ which we identify with the dual space of $C_0(1/\omega_2)$, it follows from [4, Theorem VI.8.6] that there exists a map ρ from \mathbb{R}^+ to $M(\omega_2)$ for which the map $s \mapsto \langle g, \rho(s) \rangle = \int_{\mathbb{R}^+} g(x) \, d\rho(s)(x)$ is measurable and essentially bounded on \mathbb{R}^+ for every $g \in C_0(1/\omega_2)$ with $\|U_\psi\| = \text{ess sup}_{x \in \mathbb{R}^+} \|\rho(s)\|_{M(\omega_2)}$ and such that

$$\langle g, U_\psi f \rangle = \int_0^\infty \langle g, \rho(s) \rangle f(s) \omega_1(s) \, ds = \int_0^\infty \int_{\mathbb{R}^+} g(x) \, d\rho(s)(x) f(s) \omega_1(s) \, ds$$

for every $g \in C_0(1/\omega_2)$ and $f \in L^1(\omega_1)$. On the other hand

$$\langle g, U_\psi f \rangle = \int_0^\infty g(x)(U_\psi f)(x) \, dx$$

$$= \int_0^\infty \int_0^x \frac{g(x)}{s} f(s) \psi(s/x) \, ds \, dx$$

$$= \int_0^\infty \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx \, f(s) \omega_1(s) \, ds$$
for every $g \in C_0(1/\omega_2)$ and $f \in L^1(\omega_1)$, so it follows that
\[
\int_{\mathbb{R}^+} g(x) \, d\mu(s)(x) = \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx
\]
for almost all $s \in \mathbb{R}^+$ and every $g \in C_0(1/\omega_2)$ (considering both sides as elements of $L^\infty(\mathbb{R}^+)$). Considered as elements of $M(\omega_2)$ we thus have
\[
d\mu(s)(x) = \frac{1}{\omega_1(s)} \frac{1}{x} \psi(s/x) 1_{x \geq s} \, dx
\]
for almost all $s, x \in \mathbb{R}^+$. Hence $\mu(s) \in L^1(\omega_2)$ with
\[
\|\mu(s)\|_{L^1(\omega_2)} = \int_0^\infty \omega_2(x) \, d\mu(s)(x)
\]
\[
= \frac{1}{\omega_1(s)} \int_0^\infty \frac{1}{x} \psi(s/x) 1_{x \geq s} \omega_2(x) \, dx
\]
\[
= \frac{1}{\omega_1(s)} \int_s^\infty \frac{1}{x} \psi(s/x) \omega_2(x) \, dx
\]
\[
= \frac{1}{\omega_1(s)} \int_0^1 \frac{\psi(t)}{t} \omega_2(s/t) \, dt
\]
for almost all $s \in \mathbb{R}^+$. Therefore
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \|\mu(s)\|_{L^1(\omega_2)} \omega_1(s) \leq \|U\psi\|_{L^1(\omega_1)}
\]
for almost all $s \in \mathbb{R}^+$. Since both sides of the inequality are continuous functions of s, the inequality holds for every $s \in \mathbb{R}^+$, so condition (C) holds. \qed

Letting $s = 0$ in condition (C) we see that Xiao’s condition is necessary in our situation.

Corollary 2.2 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. If $U\psi$ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$, then
\[
\int_0^1 \frac{\psi(t)}{t} \, dt < \infty.
\]

The following straightforward consequences can be deduced from Theorem 2.1.

Corollary 2.3 Let ψ be a non-negative, measurable function on $[0, 1]$

(a) Let ω be a decreasing, positive, continuous function on \mathbb{R}^+, and assume that
\[
\int_0^1 \frac{\psi(t)}{t} \, dt < \infty. \text{ Then } U\psi \text{ defines a bounded operator from } L^1(\omega) \text{ to } L^1(\omega).
\]

(b) Let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+, and assume that ω_2 is increasing. If $U\psi$ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$, then there exists a constant C such that $\omega_2(s) \leq C\omega_1(s)$ for every $s \in \mathbb{R}^+$.
(c) Let \(\omega \) be an increasing, positive, continuous function on \(\mathbb{R}^+ \), and assume that there exists \(a < 1 \) and \(K > 0 \) such that \(\psi(t) \geq K \) almost everywhere on \([a, 1]\). If \(U_\psi \) defines a bounded operator from \(L^1(\omega) \) to \(L^1(\omega) \), then there exist positive constants \(C_1 \) and \(C_2 \) such that

\[
C_1 \omega(s) \leq \int_0^1 \omega(s/t) \frac{\psi(t)}{t} \, dt \leq C_2 \omega(s)
\]

for every \(s \in \mathbb{R}^+ \).

Proof (a): We have

\[
\int_0^1 \omega(s/t) \frac{\psi(t)}{t} \, dt \leq \int_0^1 \frac{\psi(t)}{t} \, dt \omega(s)
\]

for every \(s \in \mathbb{R}^+ \), so condition (C) is satisfied with \(\omega_1 = \omega_2 = \omega \) and the result follows.

(b): We have

\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \geq \int_0^1 \frac{\psi(t)}{t} \, dt \omega_2(s)
\]

for every \(s \in \mathbb{R}^+ \). Since condition (C) is satisfied, the result follows.

(c): We have

\[
\int_0^1 \omega(s/t) \frac{\psi(t)}{t} \, dt \geq K \int_a^1 \omega(s/t) \, dt \geq K(1-a) \omega(s)
\]

for every \(s \in \mathbb{R}^+ \). The other inequality is just condition (C) with \(\omega_1 = \omega_2 = \omega \). \(\square \)

We finish the section with some examples of functions \(\psi, \omega_1 \) and \(\omega_2 \) for which \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \).

Example 2.4

(a) For \(\alpha > 0 \), let \(\psi(t) = t^\alpha \) for \(t \in [0, 1] \). Also, for \(\beta_1, \beta_2 \in \mathbb{R} \), let \(\omega_i(x) = (1 + x)^{\beta_i} \) for \(x \in \mathbb{R}^+ \) and \(i = 1, 2 \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \) if and only if \(\beta_2 \leq \beta_1 \) and \(\beta_2 < \alpha \).

(b) For \(\alpha > 0 \), let \(\psi(t) = t^\alpha \) for \(t \in [0, 1] \). Also, let \(\omega_1(x) = e^{-x}/(1 + x) \) and \(\omega_2(x) = e^{-x} \) for \(x \in \mathbb{R}^+ \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). Moreover, it is not possible to replace \(\omega_1(x) \) by a function tending faster to zero at infinity.

(c) Let \(\psi(t) = e^{-t^2} \) for \(t \in [0, 1] \). Also, let \(\omega_1(x) = e^{x^2/4}/x \) and \(\omega_2(x) = e^x \) for \(x \in \mathbb{R}^+ \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). Moreover, it is not possible to replace \(\omega_1(x) \) by a function tending slower to infinity at infinity.

Proof (a): For \(s \geq 1 \) and \(t \in [0, 1] \) we have \(s/t < 1 + s/t \leq 2s/t \), so

\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_0^1 \left(1 + \frac{s}{t}\right)^{\beta_2} t^\alpha - 1 \, dt
\]

\[
\simeq s^{\beta_2} \int_0^1 t^{\alpha - \beta_2 - 1} \, dt
\]

\[
\simeq s^{\beta_2}
\]
for $s \geq 1$ if $\beta_2 < \alpha$ (where $F(s) \simeq G(s)$ for positive functions F and G on $[1, \infty)$ indicates the existence of positive constants C_1 and C_2 such that $C_1 F(s) \leq G(s) \leq C_2 F(s)$ for all $s \in [1, \infty)$), whereas the integrals diverge if $\beta_2 \geq \alpha$. Moreover, the expression
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_0^1 \left(1 + \frac{s}{t}\right)^{\beta_2} t^{\alpha-1} \, dt
\]
defines a positive, continuous function of s on \mathbb{R}^+, so it follows that condition (C) is satisfied if and only if $\beta_2 \leq \beta_1$ and $\beta_2 < \alpha$.

(b): For $s \geq 1$ we have
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_s^\infty \frac{\omega_2(x)}{x} \psi(s/x) \, dx = \int_s^\infty \frac{e^{-x} s^\alpha}{x^\alpha} \, dx \leq \int_s^\infty \frac{e^{-x}}{x} \, dx \leq \frac{e^{-s}}{s}.
\]
Moreover,
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \leq \int_0^1 \frac{\psi(t)}{t} \, dt < \infty
\]
for all $s \in \mathbb{R}^+$, so condition (C) is satisfied and U_ψ thus defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. On the other hand, since
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \geq \int_s^\infty \frac{e^{-x} s^\alpha}{x^\alpha} \, dx \geq \frac{1}{2}\int_s^\infty e^{-x} \, dx \geq \frac{1}{2} \frac{e^{-s}}{s}
\]
for $s \geq 1$, it is not possible to replace $\omega_1(x)$ by a function tending faster to zero at infinity.

(c): For $s \in \mathbb{R}^+$ we have
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_0^\infty \frac{\omega_2(x)}{x} \psi(s/x) \, dx = \int_0^\infty \frac{e^{-x} s^\alpha}{x^\alpha} \, dx = \int_1^\infty \frac{e^{sy-y^2}}{y} \, dy.
\]
Moreover, for $s \geq 4$
\[
\int_{s/4}^\infty \frac{e^{sy-y^2}}{y} \, dy \leq \frac{4}{s} \int_{s/4}^\infty e^{-(y-s/2)^2+s^2/4} \, dy = 4 \int_{-s/4}^\infty e^{-u^2} \, du \frac{e^{s^2/4}}{s}
\]
and
\[
\int_1^{s/4} \frac{e^{sy-y^2}}{y} \, dy \leq \int_1^{s/4} e^{sy} \, dy \leq \frac{e^{s^2/4}}{s},
\]
so condition (C) is satisfied and U_ψ thus defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. On the other hand, the estimate
\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_1^\infty \frac{e^{sy-y^2}}{y} \, dy \geq \frac{1}{s} \int_{s/2}^{s/2+1} e^{-(y-s/2)^2+s^2/4} \, dy = \int_0^1 e^{-u^2} \, du \frac{e^{s^2/4}}{s}
\]
for $s \geq 2$ shows that it is not possible to replace $\omega_1(x)$ by a function tending slower to infinity at infinity.

In Example 2.3(b) we have $\omega_2(x)/\omega_1(x) \to \infty$ as $x \to \infty$, which should be compared to the conclusion in Corollary 2.3(b). Conversely, Example 2.3(c) shows an example where we need $\omega_2(x)/\omega_1(x) \to 0$ rapidly as $x \to \infty$ in order for U_ψ to be defined.
3 Extensions to weighted spaces of measures

Identifying the dual space of $L^1(\omega)$ with $L^\infty(1/\omega)$ as in the introduction, we have the following result about the adjoint of U_ψ.

Proposition 3.1 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator, and consider the adjoint operator $U_\psi^* : L^\infty(1/\omega_2) \rightarrow L^\infty(1/\omega_1)$.

(a) For $h \in L^\infty(1/\omega_2)$ we have

$$(U_\psi^*h)(x) = \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt$$

for almost all $x \in \mathbb{R}^+$.

(b) U_ψ^* maps $C_0(1/\omega_2)$ into $C_0(1/\omega_1)$.

Proof (a): Let $h \in L^\infty(1/\omega_2)$. Since $|h(x/t)| \leq \|h\|_{L^\infty(1/\omega_2)} \omega_2(x/t)$ for almost all $x, t \in \mathbb{R}^+$, it follows from condition (C) that $\int_0^1 h(x/t) \psi(t)/t \, dt$ is defined and satisfies

$$\left| \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt \right| \leq \|h\|_{L^\infty(1/\omega_2)} \int_0^1 \omega_2(x/t) \frac{\psi(t)}{t} \, dt \leq C \|h\|_{L^\infty(1/\omega_2)} \omega_1(x)$$

for almost all $x \in \mathbb{R}^+$. Hence the function $x \mapsto \int_0^1 h(x/t) \psi(t)/t \, dt$ belongs to $L^\infty(1/\omega_1)$. Also, for $f \in L^1(\omega_1)$ we have

$$\langle f, U_\psi^*h \rangle = \langle U_\psi f, h \rangle = \int_0^\infty \langle U_\psi f(s) \rangle h(s) \, ds = \int_0^\infty \int_0^s \frac{1}{s} f(x) \psi(x/s) h(s) \, dx \, ds = \int_0^\infty \int_x^\infty \frac{h(s)}{s} \psi(x/s) \, ds \, f(x) \, dx$$

from which it follows that

$$(U_\psi^*h)(x) = \int_x^\infty \frac{h(s)}{s} \psi(x/s) \, ds = \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt$$

for almost all $x \in \mathbb{R}^+$.

(b): It suffices to show that U_ψ^* maps $C_c(\mathbb{R}^+)$ (the continuous functions on \mathbb{R}^+ with compact support) into $C_0(1/\omega_1)$. Let $g \in C_c(\mathbb{R}^+)$, let $x_0 \in \mathbb{R}^+$ and let (x_n) be a sequence in \mathbb{R}^+ with $x_n \rightarrow x_0$ as $n \rightarrow \infty$. Then

$$(U_\psi^*g)(x_n) - (U_\psi^*g)(x_0) = \int_0^1 (g(x_n/t) - g(x_0/t)) \frac{\psi(t)}{t} \, dt$$

for $n \in \mathbb{N}$. Since g is bounded on \mathbb{R}^+ and since $\int_0^1 \psi(t)/t \, dt < \infty$ by Corollary 2.2, it follows from Lebesgue’s dominated convergence theorem that $(U_\psi^*g)(x_n) \rightarrow (U_\psi^*g)(x_0)$ as $n \rightarrow \infty$. Hence U_ψ^*g is continuous on \mathbb{R}^+. Finally, from the expression

$$(U_\psi^*g)(x) = \int_x^\infty \frac{g(s)}{s} \psi(x/s) \, ds$$

we have
it follows that supp $U^* \mu \subseteq \text{supp } g$, so we conclude that $U^* \mu \in C_0(\mathbb{R}^+) \subseteq C_0(1/\omega_1)$.

Let V_ψ be the restriction of $U^* \mu$ to $C_0(1/\omega_2)$ considered as a map into $C_0(1/\omega_1)$. We then immediately have the following result.

Corollary 3.2 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. The bounded operator $\overline{U_\psi} = V^*_\psi$ from $M(\omega_1)$ to $M(\omega_2)$ is an extension of U_ψ.

Let ψ be a non-negative, continuous function on $[0, 1]$ with $\psi(0) = 0$. For $\mu \in M(\omega_1)$ and $x > 0$ let

$$\langle W_\psi \mu \rangle(x) = \frac{1}{x} \int_{(0, x)} \psi(s/x) d\mu(s).$$

Proposition 3.3 Let ψ be a non-negative, continuous function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. Then $W_\psi \mu \in L^1(\omega_2)$ and

$$\overline{U_\psi} \mu = W_\psi \mu + \int_0^1 \frac{\psi(t)}{t} dt \cdot \mu(\{0\}) \delta_0$$

for $\mu \in M(\omega_1)$. In particular ran $\overline{U_\psi} \subseteq L^1(\omega_2) \oplus \mathbb{C} \delta_0$ and $\overline{U_\psi}$ maps $M((0, \infty), \omega_1)$ into $L^1(\omega_2)$.

Proof By Corollary 2.2 we have $\int_0^1 \psi(t)/t dt < \infty$, so it follows that $\psi(0) = 0$. Let $\mu \in M(\omega_1)$ with $\mu(\{0\}) = 0$. By condition (C) we have

$$\int_{(0, \infty)} \int_s^\infty \frac{1}{x} \psi(s/x) \omega_2(x) dx \, d|\mu|(s) = \int_{(0, \infty)} \int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \, d|\mu|(s) \leq C \int_{(0, \infty)} \omega_1(s) \, d|\mu|(s) = C\|\mu\|_{M(\omega_1)} < \infty,$$

so it follows from Fubini’s theorem that

$$\int_0^\infty \frac{1}{x} \int_{(0, x)} \psi(s/x) d|\mu|(s) \omega_2(x) dx < \infty.$$

Hence $W_\psi \mu \in L^1(\omega_2)$. Moreover, for $g \in C_0(1/\omega_2)$ we have

$$\langle g, \overline{U_\psi} \mu \rangle = \langle V_\psi g, \mu \rangle = \int_{(0, \infty)} \int_0^1 g(s/t) \frac{\psi(t)}{t} \, dt \, d\mu(s)$$

$$= \int_{(0, \infty)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx \, d\mu(s)$$

$$= \int_0^\infty \frac{1}{x} \int_{(0, x)} \psi(s/x) \, d\mu(s) \, g(x) \, dx$$

$$= \int_0^\infty (W_\psi \mu)(x) \, g(x) \, dx = \langle g, W_\psi \mu \rangle,$$
so we conclude that $U_\psi \mu = W_\psi \mu$. Finally, for $g \in C_0(1/\omega_2)$ we have
\[
\langle g, U_\psi \delta_0 \rangle = \langle V_\psi g, \delta_0 \rangle = \langle V_\psi g \rangle(0) = g(0) \int_0^1 \frac{\psi(t)}{t} \, dt = \langle g, \int_0^1 \frac{\psi(t)}{t} \, dt \cdot \delta_0 \rangle.
\]
Since $W_\psi \delta_0 = 0$ this finishes the proof.

The conclusion about the range of U_ψ can be generalized to the case, where ψ is not assumed to be continuous.

Proposition 3.4 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. Then $\text{ran} \ U_\psi \subseteq L^1(\omega_2) \oplus \mathbb{C}\delta_0$.

Proof Choose a sequence of non-negative, continuous functions (ψ_n) on $[0, 1]$ with $\psi_n \leq \psi$ and
\[
\int_0^1 \frac{\psi(t) - \psi_n(t)}{t} \, dt \to 0 \quad \text{as } n \to \infty.
\]
For $\mu \in M(\omega_1)$ and $g \in C_0(1/\omega_2)$ we have
\[
|\langle g, (U_\psi - U_{\psi_n}) \mu \rangle| = |\{(V_\psi - V_{\psi_n})g, \mu\}|
= \left| \int_{\mathbb{R}^+} \int_0^1 g(x/t) \frac{\psi(t) - \psi_n(t)}{t} \, dt \, d\mu(x) \right|
\leq \|g\|_{C_0(1/\omega_2)} \int_{\mathbb{R}^+} \int_0^1 \omega_2(x/t) \frac{\psi(t) - \psi_n(t)}{t} \, dt \, d|\mu|(x).
\]
Let
\[
p_n(x) = \int_0^1 \omega_2(x/t) \frac{\psi(t) - \psi_n(t)}{t} \, dt
\]
for $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$. By condition (C) there exists a constant C such that $p_n(x) \leq C\omega_1(x)$ for every $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$. Moreover, for every $x \in \mathbb{R}^+$ we have $p_n(x) \to 0$ as $n \to \infty$ by Lebesgue’s dominated convergence theorem. Hence
\[
\| (U_\psi - U_{\psi_n}) \mu \|_{M(\omega_2)} = \sup_{\|g\|_{C_0(1/\omega_2)} \leq 1} |\langle g, (U_\psi - U_{\psi_n}) \mu \rangle| \leq \int_{\mathbb{R}^+} p_n(x) \, d|\mu|(x) \to 0
\]
as $n \to \infty$ again by Lebesgue’s dominated convergence theorem. Consequently, $U_{\psi_n} \to U_\psi$ strongly as $n \to \infty$. Since $\text{ran} \ U_{\psi_n} \subseteq L^1(\omega_2) \oplus \mathbb{C}\delta_0$ for $n \in \mathbb{N}$ by Proposition 3.3, the same thus holds for $\text{ran} \ U_\psi$. \qed

Corollary 3.5 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. For $s > 0$ we then have $(U_\psi \delta_s)(x) = \psi(s/x)/x$ for almost all $x \geq s$ and $(U_\psi \delta_s)(x) = 0$ for almost all $x < s$.

9
Proof For ψ continuous, this follows from Proposition 3.3. For general ψ it follows from the approach in the proof of Proposition 3.4 using $U_{\psi_n} \to U_{\psi}$ strongly as $n \to \infty$.

It follows from Corollary 3.5 that

$$\|U_{\psi}\delta_s\|_{M(\omega_2)} = \int_{s}^{\infty} \frac{\omega_2(x)}{x} \psi(s/x) \, dx = \int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt,$$

whereas $\|\delta_s\|_{M(\omega_1)} = \omega_1(s)$. Since U_{ψ} is bounded we thus recover condition (C). If we without using Theorem 2.1 could show that if $U_{\psi} : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator, then is has a bounded extension $U_{\psi} : M(\omega_1) \to M(\omega_2)$ for which Corollary 3.5 holds, then we would in this way obtain an alternative proof of condition (C).

4 Weakly compact operators

We finish the paper by showing that there are no non-zero, weakly compact generalized Hardy-Cesàro operators between $L^1(\omega_1)$ and $L^1(\omega_2)$.

Proposition 4.1 Let ψ be a non-negative, measurable function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_{\psi} : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. If $\psi \neq 0$, then U_{ψ} is not weakly compact.

Proof For $f \in L^1(\omega_1)$ and $x \in \mathbb{R}^+$ we have

$$(U_{\psi} f)(x) = \frac{1}{x} \int_{0}^{x} f(s) \psi(s/x) \, ds = \int_{0}^{\infty} f(s) \rho(s)(x) \omega_1(s) \, ds,$$

where (with a slight change of notation compared to the proof of Theorem 2.1)

$$\rho(s)(x) = \frac{1}{\omega_1(s)} \frac{1}{x} \psi(s/x) 1_{x \geq s}$$

for $x, s \in \mathbb{R}^+$. In the proof of Theorem 2.1 we saw that $\rho(s) \in L^1(\omega_2)$ with $\|\rho(s)\|_{L^1(\omega_2)} \leq C$ for a constant C for almost all $s \in \mathbb{R}^+$. It thus follows from [4, Theorem VI.8.10] that U_{ψ} is weakly compact if and only if $\{\rho(s) : s \in \mathbb{R}^+\}$ is contained in a weakly compact set of $L^1(\omega_2)$ (except possibly for s belonging to a null-set). Consider $\rho(s)$ as an element of $C_0(1/\omega_2)^*$ for $s \in \mathbb{R}^+$ and let $g \in C_0(1/\omega_2)$. Then

$$\langle g, \rho(s) \rangle = \int_{0}^{\infty} g(x) \rho(s)(x) \, dx$$

$$= \frac{1}{\omega_1(s)} \int_{s}^{\infty} \frac{g(x)}{x} \psi(s/x) \, dx$$

$$= \frac{1}{\omega_1(s)} \int_{0}^{1} g(s/t) \frac{\psi(t)}{t} \, dt.$$

Since $g(s/t) \to g(0)$ as $s \to 0_+$ for all $t > 0$, it follows from Lebesgue’s dominated convergence theorem that

$$\langle g, \rho(s) \rangle \to \frac{1}{\omega_1(0)} g(0) \int_{0}^{1} \frac{\psi(t)}{t} \, dt$$

where (with a slight change of notation compared to the proof of Theorem 2.1)
as $s \to 0_+$. We therefore conclude that

$$
\rho(s) \to \frac{1}{\omega_1(0)} \int_0^1 \frac{\psi(t)}{t} \, dt \cdot \delta_0
$$

weak-star in $M(\omega_2)$ as $s \to 0_+$. Since $\delta_0 \notin L^1(\omega_2)$, it follows that $\{ \rho(s) : s \in \mathbb{R}^+ \}$ is not contained in a weakly compact set of $L^1(\omega_2)$ (even excepting null sets), and the result follows. \qed

References

Thomas Vils Pedersen
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 Copenhagen Ø
Denmark
vils@math.ku.dk