Generalized Hardy–Cesaro operators between weighted spaces

Pedersen, Thomas Vils

Published in:
Glasgow Mathematical Journal

DOI:
10.1017/S0017089517000398

Publication date:
2019

Document version
Peer reviewed version

Citation for published version (APA):
Generalized Hardy-Cesàro operators between weighted spaces

Thomas Vils Pedersen

December 1, 2017

Abstract

We characterize those non-negative, measurable functions \(\psi \) on \([0, 1]\) and positive, continuous functions \(\omega_1 \) and \(\omega_2 \) on \(\mathbb{R}^+ \) for which the generalized Hardy-Cesàro operator

\[
(U_{\psi} f)(x) = \int_0^1 f(tx) \psi(t) \, dt
\]

defines a bounded operator \(U_{\psi} : L^1(\omega_1) \to L^1(\omega_2) \). This generalizes a result of Xiao ([7]) to weighted spaces. Furthermore, we extend \(U_{\psi} \) to a bounded operator on \(M(\omega_1) \) with range in \(L^1(\omega_2) \oplus C_0 \), where \(M(\omega_1) \) is the weighted space of locally finite, complex Borel measures on \(\mathbb{R}^+ \). Finally, we show that the zero operator is the only weakly compact generalized Hardy-Cesàro operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \).

1 Introduction

A classical result of Hardy ([5]) shows that the Hardy-Cesàro operator

\[
(U f)(x) = \frac{1}{x} \int_0^x f(s) \, ds
\]

defines a bounded linear operator on \(L^p(\mathbb{R}^+) \) with \(\|U\| = p/(p - 1) \) for \(p > 1 \). Clearly, \(U \) is not bounded on \(L^1(\mathbb{R}^+) \). Hardy’s result has been generalized in various ways, of which we will mention some, which have inspired this paper.

For \(1 \leq p \leq q \leq \infty \) and non-negative measurable functions \(u \) and \(v \) on \(\mathbb{R}^+ \), Muckenhoupt ([6]) and Bradley ([3]) gave a necessary and sufficient condition for the existence of a constant \(C \) such that

\[
\left(\int_0^\infty \left(u(x) \int_0^x f(t) \, dt \right)^q \, dx \right)^{1/q} \leq C \left(\int_0^\infty (v(x) f(x))^p \, dx \right)^{1/p}
\]

for every positive, measurable function \(f \) on \(\mathbb{R}^+ \). This can be rephrased as a characterization of the weighted \(L^p \) and \(L^q \) spaces on \(\mathbb{R}^+ \) between which the Hardy-Cesàro operator \(U \) is bounded.

\(^02010\) Mathematics Subject Classification: 44A15, 47B34, 47B38, 47G10

\(^0\)Keywords: Generalized Hardy-Cesàro operators, weighted spaces, weak compactness.
In a different direction, for a non-negative measurable function ψ on $[0, 1]$, Xiao (7) considered the generalized Hardy-Cesàro operators
\[
(U_\psi f)(x) = \int_0^1 f(tx)\psi(t) \, dt
\]
for measurable functions f on \mathbb{R}^n. We remark that
\[
(U_\psi f)(x) = \frac{1}{x} \int_0^x f(s)\psi(s/x) \, ds
\]
for measurable functions f on \mathbb{R}. Xiao proved that U_ψ defines a bounded operator on $L^p(\mathbb{R}^n)$ (for $p \geq 1$) if and only if
\[
\int_0^1 \psi(t) \, dt < \infty.
\]

Xiao’s result is the main motivation for this paper.

Finally, we mention that Albanese, Bonet and Ricker in a recent series of papers (see, for instance, [1] and [2]) have considered the spectrum, compactness and other properties of the Hardy-Cesàro operator on various spaces of continuous functions and discrete spaces.

In this paper we will study the generalized Hardy-Cesàro operators between weighted spaces of integrable functions, and we will obtain a generalization of Xiao’s result in this context. Let ω be a positive, continuous function on \mathbb{R}^+ and let $L^1(\omega)$ be the Banach space of (equivalence classes of) measurable functions f on \mathbb{R}^+ for which
\[
\|f\|_{L^1(\omega)} = \int_0^\infty |f(t)| \omega(t) \, dt < \infty.
\]
In the usual way we identify the dual space of $L^1(\omega)$ with the space $L^\infty(1/\omega)$ of measurable functions h on \mathbb{R}^+ for which
\[
\|h\|_{L^\infty(1/\omega)} = \text{ess sup}_{t \in \mathbb{R}^+} |h(t)| / \omega(t) < \infty.
\]
We denote by $C_0(1/\omega)$ the closed subspace of $L^\infty(1/\omega)$ consisting of the continuous functions g in $L^\infty(1/\omega)$ for which g/ω vanishes at infinity. Finally, we identify the dual space of $C_0(1/\omega)$ with the space $M(\omega)$ of locally finite, complex Borel measures μ on \mathbb{R}^+ for which
\[
\|\mu\|_{M(\omega)} = \int_{\mathbb{R}^+} \omega(t) \, d|\mu|(t) < \infty.
\]
We consider the space $L^1(\omega)$ as a closed subspace of $M(\omega)$.

In Section 2 we characterize those functions ψ, ω_1 and ω_2 for which U_ψ defines a bounded operator from $L^1(\omega_1)$ to $L^1(\omega_2)$. These operators are extended to bounded operators on $M(\omega_1)$ in Section 3 where we also obtain results about their ranges. Finally, in Section 4 we show that there are no non-zero weakly compact generalized Hardy-Cesàro operators from $L^1(\omega_1)$ to $L^1(\omega_2)$.
2 A characterization of the generalized Hardy-Cesàro operators

For a non-negative, measurable function \(\psi \) on \([0, 1]\) and positive, continuous functions \(\omega_1 \) and \(\omega_2 \) on \(\mathbb{R}^+ \), we say that condition (C) is satisfied if there exists a constant \(C \) such that

\[
\int_0^1 \omega_2(s/t) \psi(t) \frac{dt}{t} \leq C \omega_1(s)
\]

for every \(s \in \mathbb{R}^+ \).

Theorem 2.1 Let \(\psi \) be a non-negative, measurable function on \([0, 1]\) and let \(\omega_1 \) and \(\omega_2 \) be positive, continuous functions on \(\mathbb{R}^+ \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \) if and only if condition (C) is satisfied.

Proof Assume that condition (C) is satisfied and let \(f \in L^1(\omega_1) \). Then

\[
\int_0^\infty \int_0^1 |f(s)| \frac{\psi(t)}{t} \omega_2(s/t) \frac{dt}{t} ds \leq C \int_0^\infty |f(s)| \omega_1(s) ds = C \|f\|_{L^1(\omega_1)} < \infty,
\]

so it follows from Fubini’s theorem that

\[
\int_0^1 \int_0^\infty |f(tx)| \psi(t) \omega_2(x) dx dt = \int_0^1 \int_0^\infty |f(s)| \frac{\psi(t)}{t} \omega_2(s/t) \frac{dt}{t} ds \leq C \|f\|_{L^1(\omega_1)} < \infty.
\]

Another application of Fubini’s theorem thus shows that \((U_\psi f)(x) \) is defined for almost all \(x \in \mathbb{R}^+ \) with

\[
\|U_\psi f\|_{L^1(\omega_2)} = \int_0^\infty |(U_\psi f)(x)| \omega_2(x) dx \leq \int_0^\infty \int_0^1 |f(tx)| \psi(t) \omega_2(x) dx dt \leq C \|f\|_{L^1(\omega_1)} < \infty.
\]

Hence \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \).

Conversely, assume that \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). Since \(L^1(\omega_2) \) is a closed subspace of \(M(\omega_2) \) which we identify with the dual space of \(C_0(1/\omega_2) \), it follows from [4, Theorem VI.8.6] that there exists a map \(\rho \) from \(\mathbb{R}^+ \) to \(M(\omega_2) \) for which the map \(s \mapsto \langle g, \rho(s) \rangle = \int_{\mathbb{R}^+} g(x) d\rho(s)(x) \) is measurable and essentially bounded on \(\mathbb{R}^+ \) for every \(g \in C_0(1/\omega_2) \) with \(\|U_\psi\| = \text{ess sup}_{s \in \mathbb{R}^+} \|\rho(s)\|_{M(\omega_2)} \) and such that

\[
\langle g, U_\psi f \rangle = \int_0^\infty \langle g, \rho(s) \rangle f(s) \omega_1(s) ds = \int_0^\infty \int_{\mathbb{R}^+} g(x) d\rho(s)(x) f(s) \omega_1(s) ds
\]

for every \(g \in C_0(1/\omega_2) \) and \(f \in L^1(\omega_1) \). On the other hand

\[
\langle g, U_\psi f \rangle = \int_0^\infty \int_0^x \frac{g(x)}{x} f(s) \psi(s/x) ds dx
\]

\[
= \int_0^\infty \int_0^\infty \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) dx f(s) \omega_1(s) ds
\]

3
for every \(g \in C_0(1/\omega_2) \) and \(f \in L^1(\omega_1) \), so it follows that

\[
\int_{\mathbb{R}^+} g(x) \, d\rho(s)(x) = \frac{1}{\omega_1(s)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx
\]

for almost all \(s \in \mathbb{R}^+ \) and every \(g \in C_0(1/\omega_2) \) (considering both sides as elements of \(L^\infty(\mathbb{R}^+) \)). Considered as elements of \(M(\omega_2) \) we thus have

\[
d\rho(s)(x) = \frac{1}{\omega_1(s)} \frac{1}{x} \psi(s/x) 1_{x \geq s} \, dx
\]

for almost all \(s, x \in \mathbb{R}^+ \). Hence \(\rho(s) \in L^1(\omega_2) \) with

\[
\|\rho(s)\|_{L^1(\omega_2)} = \int_0^\infty \omega_2(x) \, d\rho(s)(x)
\]

\[
= \frac{1}{\omega_1(s)} \int_0^\infty \frac{1}{x} \psi(s/x) 1_{x \geq s} \omega_2(x) \, dx
\]

\[
= \frac{1}{\omega_1(s)} \int_s^\infty \frac{1}{x} \psi(s/x) \omega_2(x) \, dx
\]

\[
= \frac{1}{\omega_1(s)} \int_0^1 \frac{\psi(t)}{t} \omega_2(s/t) \, dt
\]

for almost all \(s \in \mathbb{R}^+ \). Therefore

\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \|\rho(s)\|_{L^1(\omega_2)} \omega_1(s) \leq \|U_\psi\| \omega_1(s)
\]

for almost all \(s \in \mathbb{R}^+ \). Since both sides of the inequality are continuous functions of \(s \), the inequality holds for every \(s \in \mathbb{R}^+ \), so condition (C) holds. \(\square \)

Letting \(s = 0 \) in condition (C) we see that Xiao’s condition is necessary in our situation.

Corollary 2.2 Let \(\psi \) be a non-negative, measurable function on \([0, 1]\) and let \(\omega_1 \) and \(\omega_2 \) be positive, continuous functions on \(\mathbb{R}^+ \). If \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \), then

\[
\int_0^1 \frac{\psi(t)}{t} \, dt < \infty.
\]

The following straightforward consequences can be deduced from Theorem 2.1.

Corollary 2.3 Let \(\psi \) be a non-negative, measurable function on \([0, 1]\)

(a) Let \(\omega \) be a decreasing, positive, continuous function on \(\mathbb{R}^+ \), and assume that \(\int_0^1 \psi(t)/t \, dt < \infty \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega) \) to \(L^1(\omega) \).

(b) Let \(\omega_1 \) and \(\omega_2 \) be positive, continuous functions on \(\mathbb{R}^+ \), and assume that \(\omega_2 \) is increasing. If \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \), then there exists a constant \(C \) such that \(\omega_2(s) \leq C \omega_1(s) \) for every \(s \in \mathbb{R}^+ \).
(c) Let \(\omega \) be an increasing, positive, continuous function on \(\mathbb{R}^+ \), and assume that there exists \(a < 1 \) and \(K > 0 \) such that \(\psi(t) \geq K \) almost everywhere on \([a, 1] \). If \(U_\psi \) defines a bounded operator from \(L^1(\omega) \) to \(L^1(\omega) \), then there exist positive constants \(C_1 \) and \(C_2 \) such that

\[
C_1 \omega(s) \leq \int_0^1 \omega(s/t) \frac{\psi(t)}{t} dt \leq C_2 \omega(s)
\]

for every \(s \in \mathbb{R}^+ \).

Proof (a): We have

\[
\int_0^1 \omega(s/t) \frac{\psi(t)}{t} dt \leq \int_0^1 \frac{\psi(t)}{t} dt \omega(s)
\]

for every \(s \in \mathbb{R}^+ \), so condition (C) is satisfied with \(\omega_1 = \omega_2 = \omega \) and the result follows.

(b): We have

\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} dt \geq \int_0^1 \frac{\psi(t)}{t} dt \omega_2(s)
\]

for every \(s \in \mathbb{R}^+ \). Since condition (C) is satisfied, the result follows.

(c): We have

\[
\int_0^1 \omega(s/t) \frac{\psi(t)}{t} dt \geq K \int_a^1 \omega(s/t) dt \geq K(1-a) \omega(s)
\]

for every \(s \in \mathbb{R}^+ \). The other inequality is just condition (C) with \(\omega_1 = \omega_2 = \omega \). \(\square \)

We finish the section with some examples of functions \(\psi, \omega_1 \) and \(\omega_2 \) for which \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \).

Example 2.4

(a) For \(\alpha > 0 \), let \(\psi(t) = t^\alpha \) for \(t \in [0, 1] \). Also, for \(\beta_1, \beta_2 \in \mathbb{R} \), let \(\omega_i(x) = (1 + x)^{\beta_i} \) for \(x \in \mathbb{R}^+ \) and \(i = 1, 2 \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \) if and only if \(\beta_2 \leq \beta_1 \) and \(\beta_2 < \alpha \).

(b) For \(\alpha > 0 \), let \(\psi(t) = t^\alpha \) for \(t \in [0, 1] \). Also, let \(\omega_1(x) = e^{-x}/(1 + x) \) and \(\omega_2(x) = e^{-x} \) for \(x \in \mathbb{R}^+ \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). Moreover, it is not possible to replace \(\omega_1(x) \) by a function tending faster to zero at infinity.

(c) Let \(\psi(t) = e^{-1/t^2} \) for \(t \in [0, 1] \). Also, let \(\omega_1(x) = e^{x^2/4}/x \) and \(\omega_2(x) = e^x \) for \(x \in \mathbb{R}^+ \). Then \(U_\psi \) defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). Moreover, it is not possible to replace \(\omega_1(x) \) by a function tending slower to infinity at infinity.

Proof (a): For \(s \geq 1 \) and \(t \in [0, 1] \) we have \(s/t < 1 + s/t \leq 2s/t \), so

\[
\int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} dt = \int_0^1 \left(1 + \frac{s}{t}\right)^{\beta_2} t^{\alpha-1} dt \\
\approx s^{\beta_2} \int_0^1 t^{\alpha-\beta_2-1} dt \\
\approx s^{\beta_2}
\]
for \(s \geq 1 \) if \(\beta_2 < \alpha \) (where \(F(s) \simeq G(s) \) for positive functions \(F \) and \(G \) on \([1, \infty)\) indicates the existence of positive constants \(C_1 \) and \(C_2 \) such that \(C_1 F(s) \leq G(s) \leq C_2 F(s) \) for all \(s \in [1, \infty) \)), whereas the integrals diverge if \(\beta_2 \geq \alpha \). Moreover, the expression

\[
\int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_{0}^{1} \left(1 + \frac{s}{t} \right)^{\beta_2} t^{-\alpha-1} \, dt
\]

defines a positive, continuous function of \(s \) on \(\mathbb{R}^+ \), so it follows that condition (C) is satisfied if and only if \(\beta_2 \leq \beta_1 \) and \(\beta_2 < \alpha \).

(b): For \(s \geq 1 \) we have

\[
\int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_{s}^{\infty} \frac{\omega_2(x)}{x} \psi(s/x) \, dx = \int_{s}^{\infty} \frac{e^{-x} s^{\alpha} x^\alpha}{x^\alpha} \, dx = \int_{s}^{\infty} \frac{e^{-x}}{x} \, dx \leq \frac{e^{-s}}{s}.
\]

Moreover,

\[
\int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt \leq \int_{0}^{1} \frac{\psi(t)}{t} \, dt < \infty
\]

for all \(s \in \mathbb{R}^+ \), so condition (C) is satisfied and \(U_\psi \) thus defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \). On the other hand, since

\[
\int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt \geq \int_{s}^{2s} \frac{e^{-x}}{x} \, dx \geq \frac{1}{2^\alpha+1} \int_{s}^{2s} e^{-x} \, dx \geq \frac{1}{2^\alpha+2} \frac{e^{-s}}{s}
\]

for \(s \geq 1 \), it is not possible to replace \(\omega_1(x) \) by a function tending faster to zero at infinity.

(c): For \(s \in \mathbb{R}^+ \) we have

\[
\int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_{s}^{\infty} \frac{\omega_2(x)}{x} \psi(s/x) \, dx = \int_{s}^{\infty} \frac{e^{-x/s} x^{s/2}}{x^{s/2}} \, dx = \int_{1}^{\infty} \frac{e^{s^2 y^2}}{y} \, dy.
\]

Moreover, for \(s \geq 4 \)

\[
\int_{s/4}^{\infty} \frac{e^{s^2 y^2}}{y} \, dy \leq \frac{4}{s} \int_{s/4}^{\infty} e^{-(y-s/2)^2+s^2/4} \, dy = 4 \int_{-\infty}^{\infty} e^{-u^2} \, du \frac{e^{s^2/4}}{s}
\]

and

\[
\int_{1}^{s/4} \frac{e^{s^2 y^2}}{y} \, dy \leq \int_{1}^{s/4} e^{s y} \, dy \leq \frac{e^{s^2/4}}{s},
\]

so condition (C) is satisfied and \(U_\psi \) thus defines a bounded operator from \(L^1(\omega_1) \) to \(L^1(\omega_2) \).

On the other hand, the estimate

\[
\int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt = \int_{1}^{\infty} \frac{e^{s^2 y^2}}{y} \, dy \geq \frac{1}{s} \int_{s/2}^{s/2+1} e^{-(y-s/2)^2+s^2/4} \, dy = \int_{0}^{1} e^{-u^2} \, du \frac{e^{s^2/4}}{s}
\]

for \(s \geq 2 \) shows that it is not possible to replace \(\omega_1(x) \) by a function tending slower to infinity at infinity.

In Example 2.3(b) we have \(\omega_0(x)/\omega_1(x) \to \infty \) as \(x \to \infty \), which should be compared to the conclusion in Corollary 2.3(b). Conversely, Example 2.3(c) shows an example where we need \(\omega_2(x)/\omega_1(x) \to 0 \) rapidly as \(x \to \infty \) in order for \(U_\psi \) to be defined.
3 Extensions to weighted spaces of measures

Identifying the dual space of \(L^1(\omega) \) with \(L^\infty(1/\omega) \) as in the introduction, we have the following result about the adjoint of \(U_\psi \).

Proposition 3.1 Let \(\psi \) be a non-negative, measurable function on \([0, 1]\) and let \(\omega_1 \) and \(\omega_2 \) be positive, continuous functions on \(\mathbb{R}^+ \). Assume that condition (C) is satisfied so that \(U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2) \) is a bounded operator, and consider the adjoint operator \(U_\psi^* : L^\infty(1/\omega_2) \rightarrow L^\infty(1/\omega_1) \).

(a) For \(h \in L^\infty(1/\omega_2) \) we have

\[
(U_\psi^* h)(x) = \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt
\]

for almost all \(x \in \mathbb{R}^+ \).

(b) \(U_\psi^* \) maps \(C_0(1/\omega_2) \) into \(C_0(1/\omega_1) \).

Proof (a): Let \(h \in L^\infty(1/\omega_2) \). Since \(|h(x/t)| \leq \|h\|_{L^\infty(1/\omega_2)} \omega_2(x/t) \) for almost all \(x,t \in \mathbb{R}^+ \), it follows from condition (C) that \(\int_0^1 h(x/t) \psi(t)/t \, dt \) is defined and satisfies

\[
\left| \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt \right| \leq \|h\|_{L^\infty(1/\omega_2)} \int_0^1 \omega_2(x/t) \frac{\psi(t)}{t} \, dt \leq C \|h\|_{L^\infty(1/\omega_2)} \omega_1(x)
\]

for almost all \(x \in \mathbb{R}^+ \). Hence the function \(x \mapsto \int_0^1 h(x/t) \psi(t)/t \, dt \) belongs to \(L^\infty(1/\omega_1) \). Also, for \(f \in L^1(\omega_1) \) we have

\[
\langle f, U_\psi^* h \rangle = \langle U_\psi f, h \rangle = \int_0^\infty (U_\psi f)(s) h(s) \, ds
\]

\[
= \int_0^\infty \int_0^s \frac{1}{s} f(x) \psi(x/s) h(s) \, dx \, ds
\]

\[
= \int_0^\infty \int_x^\infty h(s) \psi(x/s) ds \, f(x) \, dx
\]

from which it follows that

\[
(U_\psi^* h)(x) = \int_x^\infty \frac{h(s)}{s} \psi(x/s) \, ds = \int_0^1 h(x/t) \frac{\psi(t)}{t} \, dt
\]

for almost all \(x \in \mathbb{R}^+ \).

(b): It suffices to show that \(U_\psi^* \) maps \(C_c(\mathbb{R}^+) \) (the continuous functions on \(\mathbb{R}^+ \) with compact support) into \(C_0(1/\omega_1) \). Let \(g \in C_c(\mathbb{R}^+) \), let \(x_0 \in \mathbb{R}^+ \) and let \((x_n) \) be a sequence in \(\mathbb{R}^+ \) with \(x_n \rightarrow x_0 \) as \(n \rightarrow \infty \). Then

\[
(U_\psi^* g)(x_n) - (U_\psi^* g)(x_0) = \int_0^1 (g(x_n/t) - g(x_0/t)) \frac{\psi(t)}{t} \, dt
\]

for \(n \in \mathbb{N} \). Since \(g \) is bounded on \(\mathbb{R}^+ \) and since \(\int_0^1 \psi(t)/t \, dt < \infty \) by Corollary 2.2, it follows from Lebesgue’s dominated convergence theorem that \(U_\psi^* g)(x_n) \rightarrow (U_\psi^* g)(x_0) \) as \(n \rightarrow \infty \). Hence \(U_\psi^* g \) is continuous on \(\mathbb{R}^+ \). Finally, from the expression

\[
(U_\psi^* g)(x) = \int_x^\infty \frac{g(s)}{s} \psi(x/s) \, ds
\]
it follows that $\text{supp} U^*_\psi g \subseteq \text{supp} g$, so we conclude that $U^*_\psi g \in C_c(\mathbb{R}^+) \subseteq C_0(1/\omega_1)$.

Let V_ψ be the restriction of U^*_ψ to $C_0(1/\omega_2)$ considered as a map into $C_0(1/\omega_1)$. We then immediately have the following result.

Corollary 3.2 Let ψ be a non-negative, measurable function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator. The bounded operator $\overline{U_\psi} = V^*_\psi$ from $M(\omega_1)$ to $M(\omega_2)$ is an extension of U_ψ.

Let ψ be a non-negative, continuous function on $[0,1]$ with $\psi(0) = 0$. For $\mu \in M(\omega_1)$ and $x > 0$ let

$$(W_\psi \mu)(x) = \frac{1}{x} \int_{(0,x)} \psi(s/x) \, d\mu(s).$$

Proposition 3.3 Let ψ be a non-negative, continuous function on $[0,1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2)$ is a bounded operator. Then $W_\psi \mu \in L^1(\omega_2)$ and

$$\overline{U_\psi \mu} = W_\psi \mu + \int_0^1 \frac{\psi(t)}{t} \, dt \cdot \mu(\{0\}) \delta_0$$

for $\mu \in M(\omega_1)$. In particular $\text{ran} \overline{U_\psi} \subseteq L^1(\omega_2) \oplus C\delta_0$ and $\overline{U_\psi}$ maps $M((0,\infty),\omega_1)$ into $L^1(\omega_2)$.

Proof By Corollary 2.2 we have $\int_0^1 \psi(t)/t \, dt < \infty$, so it follows that $\psi(0) = 0$. Let $\mu \in M(\omega_1)$ with $\mu(\{0\}) = 0$. By condition (C) we have

$$\int_{(0,\infty)} \int_s^\infty \frac{1}{x} \psi(s/x) \omega_2(x) \, dx \, d\mu(s) = \int_{(0,\infty)} \int_0^1 \omega_2(s/t) \frac{\psi(t)}{t} \, dt \, d\mu(s)$$

$$\leq C \int_{(0,\infty)} \omega_1(s) \, d\mu(s) = C \|\mu\|_{M(\omega_1)} < \infty,$$

so it follows from Fubini’s theorem that

$$\int_0^\infty \frac{1}{x} \int_{(0,x)} \psi(s/x) \, d\mu(s) \omega_2(x) \, dx < \infty.$$

Hence $W_\psi \mu \in L^1(\omega_2)$. Moreover, for $g \in C_0(1/\omega_2)$ we have

$$\langle g, \overline{U_\psi \mu} \rangle = \langle V_\psi g, \mu \rangle = \int_{(0,\infty)} \int_0^1 g(s/t) \frac{\psi(t)}{t} \, dt \, d\mu(s)$$

$$= \int_{(0,\infty)} \int_s^\infty \frac{g(x)}{x} \psi(s/x) \, dx \, d\mu(s)$$

$$= \int_0^\infty \frac{1}{x} \int_{(0,x)} \psi(s/x) \, d\mu(s) \, g(x) \, dx$$

$$= \int_0^\infty (W_\psi \mu)(x) g(x) \, dx = \langle g, W_\psi \mu \rangle,$$

8
so we conclude that $\overline{U}_\psi \mu = W_\psi \mu$. Finally, for $g \in C_0(1/\omega_2)$ we have

$$
\langle g, \overline{U}_\psi \delta_0 \rangle = \langle V_\psi g, \delta_0 \rangle = (V_\psi g)(0) = g(0) \int_0^1 \frac{\psi(t)}{t} dt = \langle g, \int_0^1 \frac{\psi(t)}{t} dt \cdot \delta_0 \rangle.
$$

Since $W_\psi \delta_0 = 0$ this finishes the proof. \qed

The conclusion about the range of \overline{U}_ψ can be generalized to the case, where ψ is not assumed to be continuous.

Proposition 3.4 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. Then $\text{ran} \overline{U}_\psi \subseteq L^1(\omega_2) \oplus \mathbb{C}\delta_0$.

Proof Choose a sequence of non-negative, continuous functions (ψ_n) on $[0, 1]$ with $\psi_n \leq \psi$ and

$$
\int_0^1 \frac{\psi(t) - \psi_n(t)}{t} dt \to 0 \quad \text{as } n \to \infty.
$$

For $\mu \in M(\omega_1)$ and $g \in C_0(1/\omega_2)$ we have

$$
|\langle g, (\overline{U}_\psi - \overline{U}_{\psi_n}) \mu \rangle| = |\langle (V_\psi - V_{\psi_n}) g, \mu \rangle| = \left| \int_{\mathbb{R}^+} \int_0^1 g(x/t) \frac{\psi(t) - \psi_n(t)}{t} dt d\mu(x) \right| \leq \|g\|_{C_0(1/\omega_2)} \int_{\mathbb{R}^+} \int_0^1 \omega_2(x/t) \frac{\psi(t) - \psi_n(t)}{t} dt d|\mu|(x).
$$

Let

$$
p_n(x) = \int_0^1 \omega_2(x/t) \frac{\psi(t) - \psi_n(t)}{t} dt
$$

for $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$. By condition (C) there exists a constant C such that $p_n(x) \leq C\omega_1(x)$ for every $x \in \mathbb{R}^+$ and $n \in \mathbb{N}$. Moreover, for every $x \in \mathbb{R}^+$ we have $p_n(x) \to 0$ as $n \to \infty$ by Lebesgue’s dominated convergence theorem. Hence

$$
\| (\overline{U}_\psi - \overline{U}_{\psi_n}) \mu \|_{M(\omega_2)} = \sup_{\|g\|_{C_0(1/\omega_2)} \leq 1} |\langle g, (\overline{U}_\psi - \overline{U}_{\psi_n}) \mu \rangle| \leq \int_{\mathbb{R}^+} p_n(x) d|\mu|(x) \to 0
$$

as $n \to \infty$ again by Lebesgue’s dominated convergence theorem. Consequently, $\overline{U}_{\psi_n} \to \overline{U}_\psi$ strongly as $n \to \infty$. Since $\text{ran} \overline{U}_{\psi_n} \subseteq L^1(\omega_2) \oplus \mathbb{C}\delta_0$ for $n \in \mathbb{N}$ by Proposition 3.3 the same thus holds for $\text{ran} \overline{U}_\psi$. \qed

Corollary 3.5 Let ψ be a non-negative, measurable function on $[0, 1]$ and let ω_1 and ω_2 be positive, continuous functions on \mathbb{R}^+. Assume that condition (C) is satisfied so that $U_\psi : L^1(\omega_1) \to L^1(\omega_2)$ is a bounded operator. For $s > 0$ we then have $(\overline{U}_\psi \delta_s)(x) = \psi(s/x)/x$ for almost all $x \geq s$ and $(\overline{U}_\psi \delta_s)(x) = 0$ for almost all $x < s$.

9
Proof. For \(\psi \) continuous, this follows from Proposition 3.3. For general \(\psi \) it follows from the approach in the proof of Proposition 3.4 using \(\mathcal{U}_\psi \rightarrow \mathcal{U}_\psi \) strongly as \(n \rightarrow \infty \). \(\square \)

It follows from Corollary 3.5 that

\[
\| \mathcal{U}_\psi \delta_s \|_{M(\omega_2)} = \int_{\mathbb{R}} \omega_2(x) \psi(s/x) \frac{1}{x} \frac{\psi(x)}{\omega_1(s)} \omega_1(s) \, dx = \int_{0}^{1} \omega_2(s/t) \frac{\psi(t)}{t} \, dt,
\]

whereas \(\| \delta_s \|_{M(\omega_1)} = \omega_1(s) \). Since \(\mathcal{U}_\psi \) is bounded we thus recover condition (C). If we without using Theorem 2.1 could show that if \(\mathcal{U}_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2) \) is a bounded operator, then it has a bounded extension \(\mathcal{U}_\psi : M(\omega_1) \rightarrow M(\omega_2) \) for which Corollary 3.5 holds, then we would in this way obtain an alternative proof of condition (C).

4 Weakly compact operators

We finish the paper by showing that there are no non-zero, weakly compact generalized Hardy-Cesàro operators between \(L^1(\omega_1) \) and \(L^1(\omega_2) \).

Proposition 4.1 Let \(\psi \) be a non-negative, measurable function on \([0,1]\) and let \(\omega_1 \) and \(\omega_2 \) be positive, continuous functions on \(\mathbb{R}^+ \). Assume that condition (C) is satisfied so that \(\mathcal{U}_\psi : L^1(\omega_1) \rightarrow L^1(\omega_2) \) is a bounded operator. If \(\psi \neq 0 \), then \(\mathcal{U}_\psi \) is not weakly compact.

Proof. For \(f \in L^1(\omega_1) \) and \(x \in \mathbb{R}^+ \) we have

\[
(Uf)(x) = \frac{1}{x} \int_{0}^{x} f(s) \psi(s/x) \, ds = \int_{0}^{\infty} f(s) \rho(s)(x) \omega_1(s) \, ds,
\]

where (with a slight change of notation compared to the proof of Theorem 2.1)

\[
\rho(s)(x) = \frac{1}{\omega_1(s)} \frac{1}{s} \psi(s/x) 1_{x \geq s}
\]

for \(x, s \in \mathbb{R}^+ \). In the proof of Theorem 2.1 we saw that \(\rho(s) \in L^1(\omega_2) \) with \(\| \rho(s) \|_{L^1(\omega_2)} \leq C \) for a constant \(C \) for almost all \(s \in \mathbb{R}^+ \). It thus follows from [4, Theorem VI.8.10] that \(\mathcal{U}_\psi \) is weakly compact if and only if \(\{ \rho(s) : s \in \mathbb{R}^+ \} \) is contained in a weakly compact set of \(L^1(\omega_2) \) (except possibly for \(s \) belonging to a null-set). Consider \(\rho(s) \) as an element of \(C_0(1/\omega_2)^* \) for \(s \in \mathbb{R}^+ \) and let \(g \in C_0(1/\omega_2) \). Then

\[
\langle g, \rho(s) \rangle = \int_{0}^{\infty} g(x) \rho(s)(x) \, dx
\]

\[
= \frac{1}{\omega_1(s)} \int_{s}^{\infty} \frac{g(x)}{x} \psi(s/x) \, dx
\]

\[
= \frac{1}{\omega_1(s)} \int_{0}^{1} g(s/t) \frac{\psi(t)}{t} \, dt.
\]

Since \(g(s/t) \rightarrow g(0) \) as \(s \rightarrow 0^+ \) for all \(t > 0 \), it follows from Lebesgue’s dominated convergence theorem that

\[
\langle g, \rho(s) \rangle \rightarrow \frac{1}{\omega_1(0)} g(0) \int_{0}^{1} \frac{\psi(t)}{t} \, dt
\]
as \(s \to 0_+ \). We therefore conclude that

\[
\rho(s) \to \frac{1}{\omega_1(0)} \int_0^1 \frac{\psi(t)}{t} \, dt \cdot \delta_0
\]

weak-star in \(M(\omega_2) \) as \(s \to 0_+ \). Since \(\delta_0 \notin L^1(\omega_2) \), it follows that \(\{ \rho(s) : s \in \mathbb{R}^+ \} \) is not contained in a weakly compact set of \(L^1(\omega_2) \) (even excepting null sets), and the result follows. \(\square \)

References

