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We provide a classification of translation invariant one-dimensional quantum walks with
respect to continuous deformations preserving unitarity, locality, translation invariance, a
gap condition, and some symmetry of the tenfold way. The classification largely matches
the one recently obtained (arXiv:1611.04439) for a similar setting leaving out translation in-
variance. However, the translation invariant case has some finer distinctions, because some
walks may be connected only by breaking translation invariance along the way, retaining
only invariance by an even number of sites. Similarly, if walks are considered equivalent
when they differ only by adding a trivial walk, i.e., one that allows no jumps between
cells, then the classification collapses also to the general one. The indices of the general
classification can be computed in practice only for walks closely related to some translation
invariant ones. We prove a completed collection of simple formulas in terms of winding
numbers of band structures covering all symmetry types. Furthermore, we determine the
strength of the locality conditions, and show that the continuity of the band structure,
which is a minimal requirement for topological classifications in terms of winding numbers
to make sense, implies the compactness of the commutator of the walk with a half-space
projection, a condition which was also the basis of the general theory. In order to apply the
theory to the joining of large but finite bulk pieces, one needs to determine the asymptotic
behaviour of a stationary Schrödinger equation. We show exponential behaviour, and give
a practical method for computing the decay constants.

1 Introduction
The topological classification of quantum matter has recently attracted a lot of attention [15, 25, 29–
32, 45, 54, 57]. It seems that this perspective provides us with some system properties which are stable
beyond expectations. Whatever more detailed question one might ultimately wish to investigate,
understanding this classification is as essential as a first step as knowing about continents before
studying a map in an atlas. The basic pattern of classification, and at the same time the guarantee
for its stability, is typically homotopy theory. That is, we consider two systems to be equivalent, or
“in the same topological phase”, if one can be deformed continuously into the other while retaining
some key properties. The classification depends critically on these constraints. The typical ones are:
discrete symmetries, a spectral gap and some finite range condition (locality). In the discrete time
setting, where dynamics is in discrete steps, unitarity is a further constraint. For the description of bulk
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matter, translation invariance is also often imposed. For translation invariant systems one can go to
momentum space, where the unitary time step or, in the continuous time case the Hamiltonian can be
diagonalized for each quasi-momentum separately, leading to a vector bundle over the Brillouin zone.
Locality amounts to a smoothness condition for this bundle, and symmetry and gap conditions also
translate easily. However, in this setting some of the most interesting phenomena are absent, namely
all those relating to boundary effects, when two bulk systems in different phases are joined. Folklore
has it that when these bulk phases can only be joined by closing a spectral gap on the way, then the
gap must “close at the boundary”, i.e., we expect eigenvalues or modes at the boundary. Plausible as
this may seem, proving such statements is another matter. Since it involves a non-translation invariant
situation, the vector bundle classification is no longer available, and while translation invariant systems
(say, with finite range) are described by finitely many parameters, the space of possible deformations
becomes vastly larger.

For the case of one dimensional discrete time systems (“quantum walks”) [2, 13, 14, 22, 28] we have
provided a classification in terms of three independent indices (↼sı(W ), si−(W ),⇀sı(W )) taking values
in a certain index group depending on the symmetries imposed [11]. The classification makes no
assumption on translation invariance and is shown to be complete in the sense that two walks can be
deformed into each other if and only if these indices coincide. This classification is mostly in agreement
with the intuitions of the heuristic literature about translation invariant systems [6, 8, 9, 34, 36], where
these triples are of the form (−n, 0, n). It also sharpens the stability properties of the classification. In
particular, in contrast to the continuous time case, there are walks which differ only in a finite region,
but can still not be deformed into each other, i.e., local perturbations are not necessarily “gentle”. The
index si−(W ) measures exactly this difference.

To our surprise we found that some aspects of the seemingly simpler, translation invariant subcase
presented additional difficulties. First, one would like to have a straightforward formula for the indices
in the translation invariant case. These formulas existed in the solid state literature, but we had to
connect them to the general classification of walks in [11].

Second, the completeness problem had to be addressed (Sect. 3). The theory in [11] asserts a
complete classification, meaning that walks with equal indices can actually be deformed into each
other. But when these walks are translation invariant, it is not a priori clear whether this deformation
can be chosen to preserve translation invariance as well. In fact, we show below that this is only true
for two of the five symmetry types with non-trivial invariant. For the remaining three we introduce
an additional binary homotopy invariant, which together with the index from [11] is complete. The
additional invariant turns out to be unstable in several ways: It trivializes, when we allow regrouping of
neighbouring cells, i.e., breaking the translation invariance to invariance only under even translations.
The same happens if we allow addition of trivial walks (those that act separately and equally in every
cell), as is customary in “stable” homotopy. Thus allowing either stabilizing with trivial additions or
period-2 regrouping the index from [11] is complete even in the translation invariant setting.

Third, the general theory used a very weak locality condition, allowing the amplitudes for long
jumps to decay like |x|−1−ε. In the translation invariant setting the decay of jump amplitudes should
translate into a smoothness property of the band structure, but which? We show in Sect. 2 that,
while locality in the sense of a norm limit of banded matrices translates exactly into continuity, the
locality condition of [11] translates to the weaker property “quasi-continuity” of the bands. It is a
challenge to state index formula in this setting. We carefully state these as winding numbers, which
only require continuity, not differentiability of the walk unitary as a function on the Brillouin zone (the
most common case). In the quasi-continuous case this would be replaced by radial limits of winding
numbers of analytic functions with a discontinuous boundary behaviour.

Finally, we had discussed in [11] how the theory, which is set up for infinite systems, actually
applies “approximately” to finite systems. Would protected boundary eigenvalues appear near the
interface between two long but finite intervals of distinct bulk phases? The crucial quantity here is the
exponential behaviour of solutions of the stationary Schrödinger equation for the translation invariant
versions of the bulk. This is a system of linear recursion relations, which cannot in general be solved
for the highest term, so the standard theory of exponential behaviour of solutions to finite difference
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equations does not immediately apply. Nevertheless, exponential behaviour is shown in full generality
in Sect. 4.

In several contexts (e.g., [11, 23]) we have seen that walks exhibit non-trivial additional invariants
compared to the Hamiltonian case. However, in the translation invariant case the difference is not so
pronounced. The essential gap condition then implies that the “effective Hamiltonian” Heff = i logW is
well-defined with a branch cut on the negative real axis. This provides a continuous (hence homotopy
compatible) mapping between the discrete and the continuous time case. Therefore, Theorems from
the literature on Hamiltonian systems can be taken over. Conversely, our results of Sects. 2 and 3
apply to the Hamiltonian case without further ado.

1.1 Connection to the literature
Topological phenomena are well-studied in many areas of physics, and consequently there are many
settings in which related questions are investigated, some belonging to different disciplines and scientific
cultures. Therefore, we give a perhaps unusually extended (and slightly subjective) description of
known and potential connections, including pointers to the literature. We are fully aware that we
cannot give full justice to this rich field, and apologize for any serious omissions.

Our own point of departure was in the quantum information community (mathematical physics
division). For many years the Hannover group has enjoyed a close collaboration with the experimental
group in Bonn [1, 3, 14], who realize quantum walks of neutral atoms in an optical lattice. Naturally,
this has partly determined our framework. Interest in this community was initially in long time
asymptotics (ultimately with algorithms in mind) and in recent years in the possibility to recast
some phenomena of interest in solid state physics for quantum simulation in a completely controlled
environment.

Some of the main connections of our work to work done in related fields are the following:

• Most of the physics literature on topological phases is for free fermion systems in the continuous
time (Hamiltonian) case [4, 26, 27, 31–33, 43, 44, 51, 54, 57, 65]. In our paper the Hilbert space
is a straightforward abstracted version of a system Hilbert space with basis vectors labelled by
the discrete position and internal excitations of a walking atom. In contrast, for a free fermion
system it is a space of modes of elementary excitations of a many particle system, whose basis
vectors label creation/annihilation of both particles and holes (Nambu space). Therefore the
particle-hole symmetry is built into the structure from the outset, whereas it may or may not
hold in our setting.

• The solid state literature is rather uneven in its level of rigour. Also, as we found in retrospect,
argumentation for general statements is not emphasized, and often not given in detail, although
the authors could have done so. We are far from criticizing this, but, as a complementary
approach follow a different tack, in order to achieve the kind of clarity we require as mathematical
physicists, and in the process to spare mathematically inclined readers some frustration. We are
also in a collaboration [7] with a colleague closer to the solid state community, to straighten out
conceptual differences.

• We are working in the discrete time case, with a single unitary operatorW defining the dynamical
step. This often arises in the Floquet setting, in which W is one period of a periodically driven
Hamiltonian system. Of course, it can be argued that the experimental system of our partners
is precisely of this type. In previous work [11, 23] we found additional topological invariants in
comparison to the Hamiltonian case, i.e. a non-trivial interplay of the locality, gap and unitarity
requirements. The difference in the current paper, which is concerned with the translation
invariant case only, is not so great. In fact, the basic index formulas ((24), (28), (42), (43), (55))
can be found in the literature (we thank a referee for tracking (55) in [44]), as applied to the
“effective Hamiltonian” Heff = −i logW . This works in the translation invariant case, because
there can be no eigenvalues in the spectral gap of W at −1, so there are no problems with the
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branch cut of the logarithm. Yet, we choose to work on the level of unitaries, also to establish a
direct connection to the general theory in [11].

• These formulas are not the main result of our paper. In fact, we have been aware of (most of)
them since the beginning of our project, when we took inspiration from the first papers concerned
with the topological classification of walks [6, 8, 9, 34–36, 39]. Our point here is rather more
subtle, namely to explore the “completeness” of these invariants: Thus equality of invariants of
two walks should imply that they can be deformed into each other, while keeping the relevant
structures (gap, symmetry, locality) intact. Proving completeness is the way to show that the
classification job has been finished, and no hidden obstructions have been overlooked. However,
the completeness question is very sensitive to a change of setting. On the one hand, it is surprising
that the complete classification of non-translation invariant walks [11] is essentially determined
by the (prima facie) much simpler translation invariant version of the question: Every class can be
realized by a local perturbation of two translation invariant walks cut in half and joined together.
On the other hand, new classes might arise in the translation invariant case, because two such
walks could be deformable into each other, but only by breaking the translational symmetry. In
fact, as we show in this paper, this does happen for the symmetry classes D (Prop. 3.3), BDI
(Lem. 3.11), but not for DIII (Prop. 3.15), CII (Lem. 3.13), and AIII (see beginning of Sect. 3.3.2).
However, all additional invariants disappear if we allow grouping of two neighbouring cells, i.e.,
deformations which break translational symmetry and are only invariant under even translations.

• There is an interesting alternative way to look at Floquet systems with symmetry. What we
are considering is only the unitary step operator W , i.e., the result of Hamiltonian driving
over a whole period, and the classification of such operators. However, as pointed out to us by
J. Asboth, one could also be interested in the homotopy classification of the entire driving process,
or “protocol”. Of course, in a setting with discrete symmetries this only really makes sense, when
the driving process satisfies the symmetry along the whole way. With time symmetric driving
this gives a special role to the unitary operator at half-period. In the experimental system we had
in mind this symmetry in the driving process is definitely not respected. Rather, “topological
protection” is engineered in the same sense as “overprotection of children”: many unintended
influence can ruin it. This is (partly) different in the free fermion case: One important symmetry
(particle-hole) is satisfied anyway, and also time reversal is sometimes naturally obeyed in the
absence of magnetic fields. A clear recent indication that discussing the protocol rather than
the overall Floquet operator W came in [38, 52]. They study “loops” for which W = 1I, and get
non-trivial classification. Of interest is also [53], and we are in the process of looking for further
possibilities [7].

• In contrast to much of the literature, our paper concerns only 1D lattice systems. This may look
very constrained, but on the other hand, we allow not just finite jumps, but give a formulation
that allows the longest possible tails for the jump amplitudes. This is closely related to notions
of locality [21] that will be crucial for finding an efficient theory in higher dimension. Locality
as a kind of bound on the jumps allowed in a single walk step is well captured by a so-called
coarse structure [48], and its associated Roe C*-algebra. The main natural choices in one-
dimension relate to either uniformly finite jump lengths (banded matrices) or to finite, but
possibly site dependent jump lengths, which amounts to a compactness condition (“essential
locality”) introduced in [11]. It would seem plausible that in the translation invariant case these
coincide, but as we show in Sect. 2 a subtlety remains, so that we find (Prop. 2.2)that certain
translation invariant walks with discontinuous band structure are nevertheless susceptible to the
classification of [11]. We also take some care to formulate index formulas for merely continuous
band structures, i.e., in a purely topological way, not requiring derivatives.

• In the mathematical literature the classification of topological insulators is usually done in terms
of K-theory [18, 31, 37, 41, 42, 52, 55, 58]. A built-in feature of K-theory is homotopy stabilization,
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by which addition of trivial systems is considered as a neutral operation not changing the K-
group classification. That this stabilization makes a difference for walks is demonstrated by the
additional invariants we derive in our setting. These are “unstabilized homotopy” invariants, but
disappear, when added trivial systems are allowed to be included in a homotopy path Sect. 1.5.

1.2 Recap of the general theory
Before delving into the translation invariant case, let us provide a brief overview of the setting and
results of our index theory for symmetric quantum walks in one spatial dimension [11]. We introduce
the systems we consider, attribute topological invariants and discuss their stability under different
classes of perturbations. Also, we review some of the hallmark results of [11] like the gentle decoupling
theorem and the completeness of the invariants.

The Hilbert spaces of the quantum systems described by the theory in [11] are assumed to have
the form H =

⊕
x∈ZHx, where each Hx is a finite-dimensional Hilbert space which we refer to as the

cell at position x. For a ∈ Z we denote by P≥a the projection onto the subspace
⊕

x≥aHx and often
abbreviate P = P≥0.

On H, we consider discrete, involutive symmetries which act locally in each cell, i.e., unitary or
anti-unitary operators which, by Wigner’s theorem, square to a phase times the identity and which
commute with each P≥a. The set of such operators forms an abstract group which in the setting we
consider consists either only of the identity, the identity and a single involution or the Klein four-
group. In particular, we always choose trivial multiplication phases for the symmetries, i.e. we assume
that they commute exactly. Apart from their square and their unitary or antiunitary character, the
symmetries are distinguished by their relations with “symmetric” operators, i.e. unitary or hermitean
operators W or H that “satisfy the symmetries”. Concretely, we restrict our attention to the following
symmetries which are frequently considered in solid-state physics:

particle-hole symmetry η, which is antiunitary satisfying ηWη∗ = W , resp. ηHη∗ = −H,

time reversal symmetry τ , which is antiunitary satisfying τWτ∗ = W ∗, resp. τHτ∗ = H,

chiral symmetry γ, which is unitary satisfying γWγ∗ = W ∗ resp. γHγ∗ = −H.

For each group of symmetries, the information on the square and the unitary or antiunitary character
of each symmetry together with the relations with symmetric operators constitute a symmetry type.
These symmetry types establish the so-called tenfold way [4]. A unitary or hermitean operator on
H is called admissible for a symmetry type, if it satisfies the relations of the symmetry type and is
essentially gapped, i.e., possesses only finitely degenerate eigenvalues in a small neighborhood around
the symmetry-invariant points ±1 in the unitary and 0 in the hermitean case. A key assumption for
the classification is, that the symmetries are balanced locally, i. e. in each cell there exists a strictly
gapped, admissible unitary (Hermitian) [11].

The physical systems we are concerned with in [11] and in the current paper are quantum walks,
i.e. unitary operators W that additionally satisfy a locality condition. In many earlier papers, this
locality condition is formulated as a finite upper bound on the jump length, in which case we call
W strictly local. If, more generally, P≥a −W ∗P≥aW is a compact operator for all a, we call W
essentially local, and this standing assumption from [11] will also be true for all walks in this paper
(see, however, Sect. 2).

Using elementary group theory we assign an abelian symmetry group I(S) to each symmetry type
S [11]. The symmetry types with I(S) non-trivial are displayed in Table 2. Vaguely speaking, a
topological classification then assigns to each system admissible for a symmetry type S an element
of the corresponding index group I(S), such that this classification is stable under a certain class of
perturbations. To find such a classification for admissible unitaries, we first realize that the eigenspaces
at ±1 of such operators are invariant under the action of the symmetries and therefore play a special
role: we assign elements si+(W ) and si−(W ) of I(S) to the +1- and −1-eigenspaces of unitaries W
admissible for S, respectively. An analogous construction for admissible Hermitean operators assigns
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si+(WL) si+(WR) si+(W )
si−(WL) si−(WR) si−(W )
↼sı(W ) ⇀sı(W ) si(W )

Table 1: A summary of the symmetry indices of a gently decoupled walk W = WL ⊕WR as introduced in [11].
Here, the quantities in the upper left quadrant are neither invariant under gentle nor under compact perturbations
whereas their row and column sums in the bottom row and the right column are.

an element si(H) ∈ I(S) to the symmetry-invariant 0-eigenspace of H. Basic properties of these
symmetry indices are that they are additive with respect to direct sums of operators and prove
to be invariant under gentle perturbations, i.e., they are constant along norm-continuous paths
t 7→Wt for which every Wt is admissible.

The sum si(W ) = si+(W )+si−(W ) is called the symmetry index ofW , and one quickly argues that,
in contrast to si±, si(W ) is invariant not only under gentle but also under compact perturbations,
i.e. admissible operators W ′ for which W − W ′ is compact. This theory of classifying admissible
unitary operators by the symmetry indices si± works independently of any cell structure of the Hilbert
space H.

Taking into account such a cell structure, one can argue that physically relevant perturbations
are local, i.e. supported on a finite number of cells. It is therefore important to find a classification
of physical systems which is stable under such local perturbations. In the Hamiltonian case this is
straightforward, since every compact and therefore every local perturbation H ′ of H is automatically
gentle along the path t 7→ tH ′ + (1 − t)H. The unitary case, however, is more involved as one can
easily construct compact perturbations of a given unitary operator which are not gentle.

To nevertheless find such a classification for admissible walks, in [11] we introduced further invari-
ants which are defined in terms of the cell structure of H: even though not unitary, by the locality
condition the operators P≥aWP≥a and P<aWP<a are essentially unitary on the respective half
chains, i.e. W ∗W − 1I and WW ∗ − 1I are compact on P≥aH and P<aH. Realizing that the imaginary
part of an essentially unitary operator is hermitean, we define the invariants ⇀sı(W ) := si(P≥aWP≥a) ≡
si(=m(P≥aWP≥a)) with a ∈ Z, and similarly for ↼sı(W ). They are independent of a and invariant with
respect to gentle and compact perturbations. Furthermore, like for the “spectral” invariants si± we
have si(W ) = ↼sı(W ) + ⇀sı(W ). An overview of the indices defined in [11] is provided in Table 1.

These “spatial” symmetry indices allow to prove a bulk-boundary-correspondence: whenever
two translation invariant bulks WL and WR are in different topological phases, a crossover walk W
between them hosts topologically protected eigenfunctions. The number of these eigenfunctions is
lower bounded by | si(W )| = |⇀sı(WL) − ⇀sı(WR)| and, as we prove in Sect. 4 of the present paper, for
translation invariant walks they are exponentially localized near the boundary.

Another way to split an admissible walk W into a left and a right half WL and WR, respectively,
is to decouple gently, i.e. to find a gentle perturbation of W such that W ′ = WL⊕WR. The existence
of such decouplings is guaranteed by the gentle decoupling theorem for which a necessary and
sufficient condition is the vanishing of the Fredholm index of PWP , a condition satisfied by every
admissible unitary [11]. Moreover, due to its gentleness, such a decoupling preserves all symmetry
indices discussed so far, whereas W 7→ PWP + (1I − P )W (1I − P ) preserves only ↼sı(W ),⇀sı(W ) and
si(W ).

This existence of gentle decoupling plays an essential role when discussing the completeness of the
topological invariants: having proved that all symmetry indices are invariant under gentle perturbations
evokes the question, whether the converse is also true, i.e. whether two systems which share the same
values for the symmetry indices can always be deformed into each other along an admissible path.
Clearly, the set of symmetry indices suitable for a classification depends on the perturbations one
allows for. In [11], we answered the completeness question in the affirmative for the following settings:

(I) All walks with respect to gentle perturbations and independent invariants ⇀sı,↼sı, si−
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S η2 τ2 γ2 I(S) si
D 1I Z2 dmod2

AIII 1I Z tr γ
BDI 1I 1I 1I Z tr γ
CII −1I −1I 1I 2Z tr γ
DIII 1I −1I −1I 2Z2 dmod4

Table 2: The non-trivial symmetry types of the tenfold way where the first column gives the label of the Cartan
classification [4]. The index groups I(S) are calculated explicitly in [11]. The last column gives an explicit expression
for the symmetry index of finite-dimensional realizations of the symmetry type.

(II) All walks with respect to both gentle and compact perturbations and independent invariants
⇀sı,↼sı.

(III) All admissible unitaries with respect to gentle perturbations and independent invariants si+, si−.

In this paper we restrict our attention to translation invariant systems. For such systems, the gap
condition implies that the indices si±(W ) and therefore also si(W ) vanish. Thus, ⇀sı(W ) or, equivalently,
↼sı(W ) provides the full information on the classification of such systems.

1.3 Translation invariance and band structure
In the translation invariant case the cells Hx all need to be identical so that H =

⊕
Hx ∼= `2(Z)⊗H0.

We will assume that the symmetry operators in each cell are likewise all equal. Then, an operator
W ∈ B(H) is called translation invariant if it commutes with the translations or, equivalently, if

(Wψ)(x) =
∑
y

W (y)ψ(x− y) (1)

for some operators W (y) : H0 → H0. For strictly local walks only finitely many W (y) are non-
zero. The above convolution can be turned into a product by the Fourier transform F : `2(Z) →
L2([−π, π], dk/(2π)) with the convention

(Fψ)(k) =
∑
x

eikxψ(x). (2)

We use the same notation for F ⊗ 1Id, or H0-valued ψ. Of course, the interval [−π, π], or Brillouin
zone, or momentum space, just serves as a parametrization of the circle, and the Fourier transforms of
sufficiently rapidly decaying ψ will be continuous with periodic boundary conditions. Then, the walk
is determined by the function k 7→ Ŵ (k) ∈ U(d) via

(FWψ)(k) = Ŵ (k)(Fψ)(k) , Ŵ (k) =
∑
x

eikxW (x) (3)

For a strictly local walk Ŵ is a matrix valued Laurent polynomial in the variable exp(ik). For rapidly
decreasing W (x) we get smooth Ŵ , see Sect. 2 for more details.

A complete homotopy classification that does not demand any symmetries or gap conditions is
provided by the index (ind ) of a quantum walk, thoroughly studied in the case of strictly local walks
in [23] and extended to essentially local walks in [11]. In this general case the alluded index is given
in terms of the Fredholm index (ind F ) of PWP , in fact ind (W ) = −ind F (PWP ). For translation
invariant W this becomes the total winding number of the quasi-energy spectrum around the Brillouin
zone:
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Figure 1: Examples for band structures with different symmetries. Left: A walk with non-trivial index ind . It
becomes clear, that a non-trivial index is not consistent with a gap condition [11]. Middle: A walk which is only
chiral symmetric. The arrow denotes the action of γ on the spectrum of an admissible walk. Right: A walk with all
three symmetries.

Definition 1.1. Let W be a translation invariant quantum walk with Fourier transform Ŵ (k). Then,
its index is given by the winding number of det Ŵ (k) around the origin, which in the case of a
continuously differentiable Ŵ (k) is given by

ind (W ) = 1
2πi

∫ π

−π
dk

(
∂

∂k
log det Ŵ (k)

)
. (4)

Yet, for the theory we develop in this paper, ind (W ) automatically vanishes by the existence of
essential gaps in the spectrum [11, Proposition VII.1].

Now, turning to the classification of translation invariant walks with symmetries, we need to express
the symmetry conditions in terms of Ŵ . These are then given by

ηŴ (k)η∗ = Ŵ (−k), τŴ (k)τ∗ = Ŵ (−k)∗, and γŴ (k)γ∗ = Ŵ (k)∗, (5)

where the operators η, τ, γ denote the one-cell symmetries acting on H0 ' Cd. Note that the anti-
unitarily implemented symmetries flip the sign of k. This is necessary to guarantee that the position
basis elements, i.e. exp(ik), are invariant under the symmetries.

As a finite-dimensional, k-dependent unitary matrix, Ŵ (k) can be diagonalized, i.e.

Ŵ (k) =
d∑

α=1
eiωα(k)Qα(k), (6)

where ωα(k) are the quasi-energies and Qα the band projections.
Many questions, e.g., the spreading of wave packets under the walk [2], can be answered by studying

the eigenvalues of Ŵ (k) as a function of k. For the topological classification, however, they are
completely irrelevant. Not even the details of the individual band projections Qα(k) play a role, but
only the collective projections expressing the distinction of spectra in the lower vs. the upper half
plane:

Lemma 1.2. Let W be a gapped translation invariant walk of any symmetry type, and let

Q(k) =
∑

α, ωα(k)∈(0,π)

Qα(k) (7)

be the band projection for the upper half plane. Then, there is a continuous path [0, 1] 3 t 7→ Wt of
gapped, translation invariant walks satisfying the same symmetries as W , such that W0 = W , and
Ŵ1(k) = iQ(k)− i(1I−Q(k)) =: Ŵ[(k), the flat-band walk associated with W .
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Proof. Let S1
ε denote the unit circle without an open disc of radius ε around each of +1 and −1.

We choose ε so that the spectrum of W is contained in S1
ε . Now consider a continuous function

f : [0, 1] × S1
ε → S1

ε , which we write as ft(z) := f(t, z), such that f0(z) = z and f1(z) = sign(=mz)i.
For keeping the symmetry properties we also demand ft(z) = ft(z). Then, we define Wt = ft(W )
in the continuous functional calculus. With this all the mentioned properties are preserved, and the
analogue of (6) reads

Ŵt(k) = ft
(
Ŵ (k)

)
=

d∑
α=1

ft

(
eiωα(k)

)
Qα(k). (8)

Clearly, for flat-band walks we have W 2 = −1I, i.e., W ∗ = −W . In what follows, we use this as a
characterization for “flat-band unitaries” independently of any walk-context and the notion of bands.
Note that such continuous transformation also leaves essential locality of a walk under consideration
invariant [11]. For translation invariant walks with continuous band structure we show this explicitly
in Prop. 2.1.

Hence, for the purposes of homotopy classification it is equivalent to study either Ŵ (k) or the band
projections Q(k) of Ŵ (k). The symmetry conditions for these read

ηQ(k)η∗ = 1I−Q(−k), τQ(k)τ∗ = Q(−k), and γQ(k)γ∗ = 1I−Q(k). (9)

These are directly equivalent to (5) for the flat-band walk W[. Fig. 1 shows typical examples of band
structures together with the action of the symmetries.

1.4 Standard Example: The Split-Step Walk
Introduced in [36], this example is also treated in [6, 8, 34, 62], and many other papers. Many aspects
of the current paper can be demonstrated in this example in their simplest form, which is why we
introduce it early on. Some of its features can be explored with an interactive web-based tool [59].

The coin space is two-dimensional, so a basis for H is labelled |x, s〉 with x ∈ Z and s = ±1. We
introduce two separate shift operations, S↑, the right shift of the spin-up vectors and S↓, the left shift
of the spin-down vectors. Explicitly, S↓|x,−〉 = |x− 1,−〉 and S↑|x,+〉 = |x+ 1,+〉, while leaving the
opposite spins invariant, respectively. The split-step walk is then defined as

W = BS↓AS↑B, (10)

where B =
⊕

ZR(θ1/2) and A =
⊕

ZR(θ2) are standard real rotation matrices acting sitewise at each
x ∈ Z.

The symmetry of the model is of type BDI (see Table 2), where η denotes the complex conjugation
in position space (i.e., ηz|x, s〉 = z̄|x, s〉 ∀z ∈ C), and the chiral symmetry acts like σ1 (i.e., γ|x, s〉 =
|x,−s〉). The symmetry condition readily allows for non-translation invariant examples: In (10), take
A =

⊕
xAx and B =

⊕
xBx to be unitary operators, where each Ax, Bx is admissible and acts

sitewise on Hx. This is of importance when speaking of bulk-boundary correspondence, since a system
in which two different phases are joined is per definition non-translation invariant.

In the form of (10) it is straightforward to see that the admissibility of the Ax, Bx suffices for the
admissibility of W . The phase diagram for the index ⇀sı(W ) is shown in Fig. 2. The main differences
to the diagrams in [36] are the signs, which is connected to the difference of methods. In [36] phase
boundaries are identified by tracking the number of bound states of compound walks. This is an
intrinsically unsigned quantity, so positive and negative changes cannot be distinguished. In contrast,
our approach demands also the determination of the symmetry index in the eigenspace, which is a
signed integer quantity. This is crucial for the agreement with the bulk theory, in which the chiral
index is a (signed) winding number.
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Figure 2: Left: Parameter plane with symmetry index ⇀sı for the split-step walk. Middle: Winding of the upper right
component of W in chiral eigenbasis (see Prop. 3.9) for the values (θ1, θ2) = (π/8,−π/4) (black dot in the left
picture). Right: Eigenfunctions for the same values, after decoupling with A0 = −iσy. The labels in the quadrants
denote the indices according to Tab. 1.

An important feature of the index is that it allows to predict the emergence of eigenvectors at the
boundary of two bulk systems in different phases (i.e. that have differing ⇀sı) that are joined (bulk-
boundary correspondence). The split-step walk demonstrates this in a very simple way, by making
use of decouplings: To decouple the split-step walk, we replace one of the coins A0 with a splitting
coin, which forbids transition from the left to the right side and vice versa. Note that the family
of BDI-admissible unitary operators on C2 consists precisely of the rotation matrices R(θ) and ±σ1,
which are in different connected components. This allows for non-gentle decouplings, which leave
si and ⇀sı invariant, but change ⇀sı+ and ⇀sı− [11]. Only the splitting coin chosen from the rotations,
A0 = ±R(π/2) = ±iσ2 is a gentle perturbation, which implies that eigenvalues at +1 (and −1) come
in pairs with opposing chirality (see Fig. 2).

1.5 Dependence on cell structure
The homotopy classification we are aiming at is an equivalence relation of the type “W1 can be trans-
formed into W2”. It clearly depends very sensitively to what kind of transformations are allowed.
Allowing additional operations coarsens the equivalence relation. Therefore, our strategy in the fol-
lowing will be not to allow these operations at first. This leads to a finer classification of translation
invariant walks than our general theory. Apart from continuous deformations there are three oper-
ations we need to consider, all of which are related to reorganizing the cell structure. Our general
theory is naturally insensitive to the first two, and has a predictable behaviour under the third.

1.5.1 Regrouping

For the general theory outlined in Sect. 1.2 the details of cell structure are irrelevant: the local Hilbert
spaces may have different dimensions, and nothing changes, if we decide to consider two neighbouring
cells together as a new single cell. Translation invariance makes sense only if the cells all have the
same dimension. Similarly, only regrouping operations done uniformly throughout the lattice can
be considered, like always grouping cell H2x together with cell H2x+1. The main change introduced
by this operation is a change in the definition of the translations: After regrouping effectively only
translations by an even number of sites are considered. This makes a big difference, if we demand
that translation invariance be conserved on a deformation path. Specifically, it might be impossible
to deform W1 into W2 keeping translation invariance, but it might be possible to do so by breaking
the translation invariance and keeping only the weaker requirement of period-2 translation invariance.
We will see examples of this below.
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Figure 3: Visualization of the different transformations of the cell structure discussed in Sect. 1.5. The red boxes
indicate the different choices of unit cells: a) original cell structure, b) pairwise regrouped cells, c) addition of a
trivial walk, d) skew cut cells.

For later use we record Ŵ for a regrouped walk with the simple pair-regrouping indicated above.
For the regrouped walk we have the double cell dimension, and vectors ψ ∈ H get split into

ψr(x) =
(
ψe(x)
ψo(x)

)
=
(

ψ(2x)
ψ(2x+ 1)

)
. (11)

The regrouped walk Wr acts in position space by convolution with

Wr(x) =
(

W (2x) W (2x− 1)
W (2x+ 1) W (2x)

)
, (12)

and by taking the Fourier transform we get

Ŵr(k) = H(k/2)
(
Ŵ
(
k
2
)

0
0 Ŵ

(
k
2 + π

))H(k/2)∗, where H(k) = 1√
2

(
1 1

e−ik −e−ik
)
. (13)

1.5.2 Adding trivial walks

A second operation which one might consider for transforming W1 into W2 is adding trivial systems,
which have to be returned unchanged after the transformation. A walk W 0 is said to be “trivial” in
this context if it acts cell-wise, i.e. there is no propagation between cells. Note that this condition
immediately implies ⇀sı(W 0) = 0. In this case, althoughW1 could not be transformed intoW2, it might
be possible that “there are trivial walks W 0

1 and W 0
2 so that W1 ⊕W 0

1 can be continuously deformed
into W2⊕W 0

2 ”. It is one of the basic features of our general theory that indices add up for direct sums
of walks, and also that the value of the index lies in a group. Together, this implies a cancellation law,
so that allowing the addition of trivial walks does not change the general classification. Note that since
this classification is a complete homotopy invariant, walks that can be deformed into each other after
adding trivial ones can actually be deformed into each other when a breaking of translation invariance
is allowed on the way. Later, in the discussion of completeness, we will show that such trivial walks
indeed always exist.

There is a general construction for turning an invariant which is additive over direct sums (with val-
ues in a semigroup) into a group-valued invariant with cancellation law. This is called the Grothendiek
group of the semigroup, and is a standard ingredient of K-theory.
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1.5.3 Time frames and skew recutting of cells

Suppose a walk can be written as W = W1W2, i.e., there are two kinds of steps which alternate. Then
there is a closely related walk W ′ = W2W1, alternating the same two steps, but beginning with the
other one. In this sense the two walks differ by a choice of “time frame” [8]. For the long time behaviour
there should be little difference, and indeed the spectra are the same, because W ′ = W ∗1WW1. Hence,
si± are left invariant. But since ⇀sı is sensitive to the cell structure W is defined on, it might change
under such operation, if W1 does not act site-wise, i. e. [W1, P≥0] 6= 0. Consider for example the
split-step walk, with W1 = BS↓

√
A and W2 =

√
AS↑B. W ′ is of the same form as W , with θ1 and θ2

as well as S↑ and S↓ swapped. This results in a π/2-clockwise rotation of the index-plane in Fig. 2 and
hence, trivial phases become non-trivial and vice versa. The dependence on the cell structure is also
easily obtained from the example in Fig. 3 (bottom-right). Assume the original walk to act locally in
each cell, i.e., ker(PWP ) = 0 on PH. Then the new cell structure produces a non-trivial kernel of
PW ′P on PH and hence, ⇀sı might change.

2 Essential locality and continuity of band structure
As for all Fourier transforms, decay properties of W (x) translate into smoothness conditions on Ŵ .
We refer to such conditions as locality conditions, since they express the idea that in a single step the
walker cannot go very far, or at least, that the amplitude for very long jumps goes down sufficiently
fast. Some condition of this kind is needed to make the theory non-trivial: Without a localization
requirement along the path any two unitaries could be continuously connected (see Sect. 2.3.2 for an
example of the kind of locality violation this may imply). In order to classify as many systems as
possible, one would like to assume as little smoothness/locality as possible. For the classification of
band structures the natural smoothness condition appears to be continuity of Ŵ . Indeed, the formulas
discussed below are often in terms of winding numbers, which are well-defined assuming just continuity.
On the other hand, it is easy to see that with admission of discontinuities no classification is possible.
We show here (Prop. 2.1) that in the translation invariant setting this is the same as saying that the
walk operator can be uniformly approximated by walks with strictly finite jump length. This will be
our standing assumption in the sequel.

Of course, we verify also that this condition implies “essential locality” as used in the the general
theory [11]. Surprisingly, however, it turns out that the converse is not true: There are essentially
local, translation invariant walks such that Ŵ is not continuous. Nevertheless these are covered by the
general classification, so we conclude that winding numbers can also be extended as good topological
classifiers beyond continuous curves! This generalization has been noted before, leading to the notion
of “quasi-continuous” [40] functions on the circle. We discuss this in Sect. 2.2. While this distinction
may be a subtlety of little practical value, it needs to be taken seriously, when one wants to go to
higher lattice dimensions. It is not completely clear what locality conditions are appropriate then, and
lead to a manageable theory. Basically, one needs to fix a “coarse structure” [47, 48], and for this, too,
the one-dimensional case already has two natural options: These are “approximability by walks with
uniformly finite jump length” and the “essential locality”, which in the translation invariant case map
to continuity and quasi-continuity of Ŵ , respectively.

2.1 Approximation by strictly local operators
We begin with a general result which relates smoothness conditions on Ŵ to locality properties of the
corresponding W :

Proposition 2.1. Let A ∈ B(H), H = `2(Z)⊗H0 be translation invariant with Fourier transform Â.
Then the following are equivalent:

(1) A can be approximated in norm by strictly local operators.
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(2) A can be approximated in norm by translation invariant operators An with Ân ∈ C∞.

(3) k 7→ Â(k) is a continuous function with periodic boundary conditions.

If A is unitary, the approximating operators in (2) can be chosen to be unitary and admissible for all
symmetries under consideration. Moreover, if one of the above conditions is fulfilled, A is essentially
local, i.e. [P,A] is compact, where P = P≥0 denotes the projection onto the positive positions.

Proof. (3)⇒(1): This is basically the Stone-Weierstraß Theorem [61, 63], which immediately implies
that the algebra of trigonometric polynomials is sup-norm dense in the set of continuous functions.
Detailed error estimates are provided by the theory of Fourier series [17, Sect. 1.4]. There it is shown
that, for any continuous function Â(k) on the circle, a suitable sequence of truncations of the Fourier
series, for example, those given by the Fejér kernels Ân(k), converge uniformly to the given function.
The same estimates work also for matrix valued functions, providing us with a sequence An of strictly
local operators such that ‖An −A‖ ≤ εn → 0.

(1)⇒(2, unitarity)⇒(3): Since the Fourier transform of a strictly local operator is a trigonometric
polynomial, (1) obviously implies (2). While the choice of the Cesàro approximants Ân given by the
Fejér kernels guarantees that An will satisfy the same symmetries as A, and will be hermitian if A
is, unitarity is not preserved, and it is unclear whether one can modify An to be strictly unitary. On
the other hand, supk ‖Ân(k)∗Ân(k) − 1I‖ = ‖A∗nAn − 1I‖ ≤ 2εn, so the inverse square root M̂n(k) =
(Ân(k)∗Ân(k))−1/2 is infinitely differentiable, since it can be obtained by applying a convergent power
series to a polynomial. Moreover, Ûn(k) = Ân(k)M̂n(k) is unitary and converges in norm to A.
Being the polar isometry of an admissible operator, Ûn(k) is also admissible. Admissibility for η
follows trivially, since M̂n(k) is a real function of an admissible operator. For any of the conjugating
symmetries σ ∈ {γ, τ} we get

σU = σA(A∗A)−1/2 = A∗(AA∗)−1/2σ = ((AA∗)−1/2A)∗σ = U∗σ. (14)

For any A allowing such approximation it follows that Â is continuous as the norm limit of contin-
uous functions. Note, that convergence of An → A in norm also implies convergence of the spectra.
Therefore, any gap of A eventually becomes a gap for An for large enough n.

Now suppose A is strictly local. Consider the commutator [P,A] = PA(1I− P )− (1I− P )AP as a
block matrix with respect to the cell decomposition H =

⊕
Hx. It contains only terms between the

subspaces Hx and Hy, where x ≥ 0 and y < 0, or conversely x < 0 and y ≥ 0. Moreover, since A is
local, there are only non-zero blocks with |x − y| ≤ N . Since there are only finitely many such pairs
(x, y) we conclude that [P,A] is a finite rank operator. When A is approximated in norm by such
operators, [P,A] is approximated in norm by finite rank operators, hence compact.

For the homotopy classification of translation invariant quantum walks we will restrict ourselves to
walks, which fulfil the conditions of Prop. 2.1. This guarantees that we never leave the set of essentially
local walks and as we show below the classification of such systems already turns out to be complete.

2.2 Quasi-continuity
Let us, however, state what the condition of essential locality exactly translates to in terms of the
band structure. We need to express that [P,W ] is a compact operator, which is equivalent to the
compactness of the two operators PW (1I− P ) and (1I− P )WP . These are the off-diagonal quadrants
of W in a representation of W as a doubly infinite matrix of d × d blocks. By translation invariance
the (x, y)-block is W (x− y).

Relabelling y 7→ y′ = −y for the quadrant with indices y < 0 ≤ x leads to a block Hankel matrix
M , i.e., a matrix whose block entries M(x, y′) are labelled by x ≥ 0, y′ > 0, and M(x, y′) = m(x+ y′)
depends only on (x + y′). The characterization of compact Hankel matrices with scalar entries is
achieved by a classic result known as Hartman’s Theorem [24]. It says that the numbers m(x) are
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Fourier coefficients of a continuous function. Hartmann’s Theorem generalizes to block matrices. This
is called the “vectorial” case in [40, Ch.2], where the relevant result is Thm. 4.1, and allows even for
block entries that are operators between distinct, possibly infinite Hilbert spaces. The conclusion is
entirely the same, i.e., we get that there is a continuous matrix valued function k 7→ M̂ on [−π, π]
with periodic boundary condition, whose Fourier coefficients for x ≥ 0 equal W (x).

The notion of quasi-continuity arises from the peculiar way in which we have to combine two such
conditions. The function spaces involved are the matrix valued versions of L∞, the Banach algebra of
essentially bounded measurable functions on the unit circle, its subalgebra C of continuous functions,
and H∞, the subalgebra with vanishing Fourier coefficients for negative indices. A (possibly matrix
valued) function f is called quasi-continuous, if f = g + h, with g ∈ C and h ∈ H∞, and such a
decomposition also holds for f∗ [40]. Indeed, this is the required property: We have, on the one hand,
Ŵ = M̂ + (Ŵ − M̂) ∈ C + H∞, because only the negative Fourier coefficients can be non-zero. On
the other, evaluating the compactness condition for the second block, we get the analogous condition
for W (x) with x < 0, which means that Ŵ ∗ ∈ C +H∞. Hence Ŵ , or equivalently each of its entries
is quasi-continuous.

We summarize this discussion in the following proposition.

Proposition 2.2. Let A ∈ B(H), with H = `2(Z)⊗H0, H0 finite dimensional, be translation invariant
and Â its Fourier transform. Then the following are equivalent:

(1) A is essentially local.

(2) Â is quasi-continuous.

Of course, it is a basic fact of this theory that there are quasi-continuous functions which are
not continuous. For a rough sketch how counterexamples arise, note that, for a continuous function
f ∈ C, f(k) traces out a curve in the complex plane, and the H∞ condition makes this the boundary
of the image of the unit disk under an analytic function. On the other hand, the Riemann mapping
theorem also works for open sets which are not bounded by a continuous curve. So discontinuous
examples are constructed in terms of the boundary values of analytic functions mapping the open
unit disk to some such wild region. To build an essentially local walk with discontinuous Ŵ we
disregard the symmetry conditions for the moment, and take dimH0 = 1, i.e., the scalar case. Then
we set Ŵ (k) = exp

(
i=mf(eik)

)
, where f is a conformal mapping with continuous real part, but only

quasi-continuous imaginary part (see [19, p.377] for an explicit example).
Winding numbers still make sense as the limit of the winding numbers of curves just to the

inside of the boundary [40, 56]. They also coincide with the (negative) Fredholm index of PWP

[16], i.e. with the index from Def. 1.1. In the above example we get indW = 0, because Ŵ (k) =
exp
(
−<ef(eik)

)
exp
(
f(eik)

)
. Here the first factor is positive and hence does not contribute to any

winding. The second is the boundary value of a function which is analytic in the open disk, so its
generalized winding number, evaluated close to the boundary, vanishes.

2.3 Examples
2.3.1 Exponentials

Consider an essentially local Hamiltonian H, and define W = exp(iHt), for t ∈ R. Then W is also
essentially local, because [P,H] compact means that the images of P and H commute in the Calkin
algebra (bounded operators modulo compact ones), which implies the same for W . Another way
to put the statement is that the essentially local operators form a C*-algebra, so functions of the
(multivariate) continuous functional calculus will always map essentially local arguments to essentially
local operators.

For translation invariant operators with continuous bands this implication is even simpler, namely
that the continuity of k 7→ Ĥ(k) implies the continuity of k 7→ exp(iĤ(k)t). Note, however, that no
such conclusion is available for strictly local Hamiltonians and their exponentials.

Accepted in Quantum 2018-09-18, click title to verify 14



2.3.2 Contracting the shift

The bilateral shift on `2(Z) is the fundamental example of a strictly local, translation invariant walk,
which cannot be contracted to the identity, while keeping (strict) locality. In fact, the index (4) of
one-dimensional walks can be understood as the “shift content” of W , and at the same time labels the
homotopy classes of walks for deformations keeping strict locality. Here we revisit this example and
show that one can also not contract the shift to the identity under the assumption of mere essential
locality. This follows also from the extension of index theory in [11], which establishes the index as a
Fredholm index. But how badly does essential locality fail on a deformation path?

The Fourier matrix of the shift |x〉 7→ |x + 1〉 is given by Ŵ (k) = exp(ik). A natural attempt to
contract this to the identity, i.e., to make “fractional steps” on the lattice, is by the operator family
Wλ with

Ŵλ(k) = eiλk1I, (15)

where 0 < λ < 1. These interpolate between the identity (λ = 0) and the shift (λ = 1) in a norm-
continuous way. Despite appearances this is not a continuous function of k, since for this we also require
periodic boundary conditions (or else our result would depend on the arbitrary choice of fundamental
domain [k0, k0 + 2π]). Indeed (15) jumps from exp(−iλπ) to exp(+iλπ), as k crosses from −π to π.
However, Wλ is also not essentially local for any λ.

To see this, take the inverse Fourier transform to get the spatial convolution kernel

Wλ(x) = sin(πλ)
π

(−1)x

λ− x
. (16)

We have to decide whether PWλ(1I−P ) is compact. In order to bring it into a more familiar form we
introduce the operator S : PH → (1I− P )H given by (Sψ)(x) = ψ(−1− x), and find

(
PWλ(1I− P )Sψ

)
(x) = sin(πλ)

π

∑
y≥0

(−1)x+y

x+ y + 1− λψ(y). (17)

Up to the prefactor and the conjugation by the unitary operator multiplying with alternating signs,
this is a “generalized Hilbert matrix”, which has been studied in detail in the 50s. It was found [49,
Thm. 5] that it has a continuous spectral component for all λ ∈ (0, 1), and hence cannot be compact.
So indeed Wλ is not essentially local for any 0 < λ < 1.

2.3.3 Decay properties of walk matrix elements

We can write a general walk as (Wψ)(x) =
∑
yW (x, y)ψ(y), where W (x, y) : Hy → Hx, and wave

functions are written in terms of their local components ψ =
⊕

x ψ(x). Strict locality means that
W (x, y) = 0 for |x− y| > L, for some L. More generally one could look at decay properties like

‖W (x, y)‖ ≤ c |x− y|−α, (18)

whenever x 6= y. In the translation invariant case, this can be specialized by setting W (x, y) =
W (x− y).

A simple sufficient criterion is obtained by computing the Hilbert-Schmidt norm of PW (1I−P ). If
this is finite, this operator is compact, and a similar criterion for (1I − P )WP gives the compactness
of [P,W ] = PW (1I− P )− (1I− P )WP . We get

‖PW (1I− P )‖22 =
∑

x≥0>y
trW (x, y)∗W (x, y) ≤ d

∑
x≥0>y

‖W (x, y)‖2 (19)

≤ cd
∑

x≥0>y
|y − x|−2α = cd

∞∑
n=1

n · n−2α, (20)
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where in (19) we used that ‖A‖22 ≤ d‖A‖2 for a complex d × d-matrix A, and in (20) that there are
exactly n terms with x − y = n in the first sum. The estimate converges if 1 − 2α < −1, i.e., α > 1.
This is exactly the condition we get in the translation invariant case for

∑
x ‖W (x)‖ < ∞, which

implies uniform convergence of ŴN (k) =
∑
|x|≤N W (x)eikx to Ŵ (k) and, therefore, by the uniform

convergence theorem will imply the continuity of Ŵ .
To summarize, α > 1 in (18) is sufficient for essential locality. This is optimal, because the

interpolated shift gives a counterexample with α = 1.

3 Homotopy classification for translation invariant systems
In our setting, we distinguish two different kinds of symmetry types with non-trivial index group: those
with index group isomorphic to Z and those with index groups isomorphic to Z2. Bearing in mind the
convention of trivial multiplication phases of the symmetries, the symmetry types with index group Z
are distinguished by the presence of a chiral symmetry which squares to +1I, as can be read off from
Table 2. The index group Z2 is obtained for the symmetry types where there is no chiral symmetry
or where it squares to −1I.

In this section we will first examine the only symmetry type without chiral symmetry, i.e. symmetry
type D. In a later section we consider the symmetry types which include a chiral symmetry, where DIII
plays a special role. Although having a Z2-valued index group we treat it together with the symmetry
types with γ2 = +1I, since the chiral symmetry strongly influences the structure of symmetric unitaries
also in that case.

In both cases we obtain a homotopy classification which we prove to be complete in the sense
that translation invariant walks with equal indices are deformable into each other along an admissible
path of translation invariant walks. However, we caution the reader that for S = D,BDI additional
invariants appear if we insist on a given cell structure. Regrouping of the cells or adding trivial systems
allows us to trivialize these additional invariants. Additionally, we prove concrete index formulas for
all symmetry types.

As already mentioned in the introduction, there is a continuous mapping between translation
invariant quantum walks and “effective Hamiltonians”. The homotopy classification is therefore the
same in both settings, and in particular the completeness results derived in this section carry over to
effective Hamiltonians.

3.1 Particle-hole symmetric walks
Consider the case of symmetry type D, with only the particle-hole symmetry η and η2 = 1I. In this
case the index is just a parity. By Lem. 1.2 we can restrict consideration to flat-band walks, which are
equivalently given by the continuous family of band projections Q(k) satisfying

ηQ(k)η = 1I−Q(−k). (21)

By this equation we only need to specify Q(k) for k ∈ [0, π], and (21) imposes no constraint on Q(k)
for 0 < k < π. However, at the end points we get projections with a special property.

Definition 3.1. Let η be an antiunitary operator on a finite dimensional Hilbert space H with η2 = 1I.
Then we call a projection Q η-flipped if ηQη+Q = 1I. The set of such projections will be denoted by
Pη.

Since Q and ηQη obviously have the same dimension, H must be even dimensional, and we write
dimH = 2d.

The basic observation about Pη is that it has two connected components, described in the following
Lemma.
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Lemma 3.2. In the setting of Def. 3.1 let Q,Q′ ∈ Pη. Introduce orthonormal systems φα ∈ QH and
φ′α ∈ Q′H (α = 1, . . . , d) spanning these spaces, and extend them to bases of H by setting φα+d = ηφα
and φ′α+d = ηφ′α. Let Mαβ = 〈φα, φ′β〉 for α, β = 1, . . . , 2d, and consider s(Q,Q′) = detM . Then

(1) When Q′ = NQN∗ with N unitary and Nη = ηN , s(Q,Q′) = detN .

(2) s(Q,Q′)s(Q′, Q′′) = s(Q,Q′′).

(3) s(Q,Q′) is independent of the choice of φα ∈ QH and φ′α ∈ Q′H.

(4) s(Q,Q′) = ±1.

(5) s(Q,Q′) depends continuously on Q and Q′.

(6) s(Q,Q′) = 1 if and only if Q and Q′ can be connected continuously inside Pη.

Proof. Until (3) is established, consider s(Q,Q′) as a quantity which depends not just on Q and Q′, but
also on the bases chosen. Then (1) is basically a reformulation of the definition: suppose Q′ = NQN∗,
then φ′α = Nφα and therefore M = N .

(2) This is a direct consequence of det(M ′M) = det(M ′) det(M).
(3) It suffices to consider the case Q = Q′ with two arbitrary choices of bases, and to show that

s(Q,Q′) = 1. Indeed, the chain rule (2) then implies the independence of s(Q,Q′) on the choice of
basis for Q′ by setting Q′′ = Q′, and similarly for the independence on the basis of Q.

Suppose Q = Q′. Then M is the unitary matrix describing the basis change from φα to another
basis φ′α, and is of the block matrix form

M =
(
V 0
0 V

)
, (22)

where Vαβ = 〈φα, φ′β〉 for α, β = 1, . . . , d, and V denotes the elementwise complex conjugate. Clearly,
in this case detM = 1.

(4) To any basis φα for QH we can associate an η-real basis ψα forH by setting ψα = (φα+ηφα)/
√

2
and ψα+d = i(φα− ηφα)/

√
2 for α = 1, . . . , d and the corresponding ψ′α and ψ′α+d in terms of φ′α. The

basis change between ψ and φ and between ψ′ and φ′ is then given by a fixed matrix D = D′. We
then get M = D∗M̃D, where M̃αβ = 〈ψα, ψ′β〉 is real. Hence detM = |detD|2 det M̃ is also real.

(5) This is obvious, because the basis φα can be chosen to depend continuously on Q, for example
by projecting and re-orthogonalizing.

(6) The if part is clear from (4) and (5). For the converse, consider the real bases ψ and ψ′, related
by ψ′α =

∑
β M̃βαψβ , where det M̃ = 1. Since SO(2d) is connected, we can find a continuous family

M(t) with M(0) = 1I and M(1) = M̃ . In this way we get a continuous family of bases ψ(t). By
applying D we get φα(t) and hence Q(t) connecting Q = Q(0) and Q′ = Q(1).

This can also be written in terms of Pfaffians: Fix a real basis, and express the projection Q ∈ Pη
in terms of UQ = iQ − i(1I − Q). Then, since ηUQη = UQ, UQ is real. Moreover, U∗Q = −UQ, so UQ
is antisymmetric. Hence the Pfaffian pf(UQ) of UQ is well defined and real. Since pf(A)2 = det(A),
pf(UQ) has modulus 1, and pf(UQ) = ±1 for every η-flipped projection Q. That sign by itself has no
meaning, because it depends on the real basis chosen. This dependence is governed by the identity
pf(RART ) = det(R)pf(A), in particular for orthogonal R. Comparing with the proof it is clear
that with an orthogonal transformation of determinant (−1) one switches between the two connected
components. To summarize: in the setting of the Lemma,

pf(UQ) = s(Q,Q′)pf(UQ′). (23)
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Proposition 3.3. Let W1 and W2 be translation invariant walks with continuous bands on the same
cell structure satisfying the assumptions of symmetry type D for the same symmetry operator η. Let
Qi(k) (i = 1, 2) denote the eigenprojections of Ŵi(k) for the upper half plane. Then Qi(0) and Qi(π)
are η-flipped projections. Between these, consider the four signs s(·, ·) in the following diagram:

Q1(0) Q1(π)

Q2(0) Q2(π)

s1

s2

s0 sπ

Then W1 and W2 are homotopic in the set of such walks if and only if s0 = 1 and sπ = 1. Moreover,
si determines the invariants ⇀sı(Wi) according to the formula

(−1)
⇀sı(W ) = s(Q(0), Q(π)) = pf(W (0))

pf(W (π)) . (24)

Note that a similar formula was found by Kitaev for the Majorana number of a translation invariant
gapped Hamiltonian on a finite chain [33].

Proof. (1) Clearly the condition s0 = 1 = sπ is necessary for homotopy by Lem. 3.2 (6), since a
homotopy between W1 and W2 necessarily needs to continuously connect Ŵ1(k) and Ŵ2(k), and the
band projections are continuous functions of Ŵi({0, π}) into Pη.

(2) For the converse we first show that, when sπ = 1, i.e., when Q1(π) and Q2(π) are homotopic in
Pη, we can deformW1 in such a way that we even have Q1(π) = Q2(π), but leave Q1(0) unchanged. To
this end consider a homotopy of Q1(π) and Q2(π), in the form of a continuous curve k 7→ Vk ∈ SO(2d),
for k ∈ [0, π] such that V0 = 1I and VπQ1(π)V ∗π = Q2(π). Moreover, we extend this to negative values
by setting V−k = Vk. Then consider the walks Wt, t ∈ [0, 1] with

Ŵt(k) = V(1−t)kŴ1(k)V ∗(1−t)k. (25)

First of all this notation makes consistent use of W1 since this equation is an identity for t = 1.
Moreover, it gives a continuous family of D-symmetric walks, Ŵ0(0) = Ŵ1(0), and Ŵ0(π) = Ŵ2(π).
The band projections are then connected as claimed. By replacing W1 with W0 we may hence assume
without loss that Q1(π) = Q2(π). With a completely analogous construction we can achieve Q1(0) =
Q2(0).

(3) What we are now left with are two norm-continuous curves of rank d projections in C2d with
fixed end points Q1(0) = Q2(0) and Q1(π) = Q2(π), where 2d is the local cell dimension. These can
be considered as two curves on the so called Grassmannian manifold Grd(C2d), that is, the manifold
of d-dimensional subspaces of C2d. By Lem. 3.4 below, this manifold is simply connected and hence
the two paths of projections and therefore the walks W1 and W2 are homotopic.

(4) For the first equality in (24) first note that s1sπs2s0 = 1, whence s0 = sπ is equivalent to
s1 = s2. Now assume s0 = 1. Then W1 and W2 are homotopic iff sπ = 1 iff s1 = s2. For the case of
s0 = −1 let N be the unitary that, in the basis of Lem. 3.2 for Q = Q2(0), swaps φ1 and φd+1 and
acts as the identity on the complement. Then ηN = Nη and detN = −1. Now instead of Ŵ2 consider
Ŵ ′2 = N∗Ŵ2N . Conjugation with N leaves s2 invariant, but changes both signs s0 = sπ. Hence we are
left with the case above: s1 = s2 ⇔ ⇀sı(W1) = ⇀sı(W ′2). Since ⇀sı is also invariant under conjugation with
local unitaries, ⇀sı(W2) = ⇀sı(W ′2) and hence ⇀sı(Wi) and si label the same classes. Equation (24) just
translates between Z2 considered as an additive or multiplicative group, respectively. For the correct
assignment of invariants consider a walk with constantQ(k) = Q(0). This clearly has s(Q(0), Q(π)) = 1
and the corresponding walk W acts locally in each cell, which, by the assumption of balanced cells,
implies si(W ) = 0. The second identity follows from (23).
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The following lemma is a well known result from the theory of homogeneous spaces. To give a self
contained description, however, we state it here and also give a sketch of a proof, with references to
more detailed descriptions.

Lemma 3.4. The Grassmannian manifold Grn(Cd) is simply connected.

Sketch of proof . Grn(Cd) is known to be isomorphic to the homogeneous space
SU(d)/ (SU(n)× SU(d− n)) [5]. The fundamental group of this space can be computed using the
exact homotopy sequence of the fibration p : SU(d) → SU(d)/(SU(n) × SU(d − n)), with fibre
SU(n) × SU(d − n), where p is the natural quotient map (for further reading see e. g. [60]). For
any such fibration there is the so called “homotopy sequence of a fibration”, which is exact [50, Thm
11.48]. In our case, by π0(SU(d)) = {0} = π1(SU(d)) (considered as a single-element set or the trivial
group), this gives rise to the exact sequence

{0} → π1
(
SU(d)/(SU(n)× SU(d− n))

)
→ π0

(
SU(n)× SU(d− n)

)
→ {0}, (26)

which implies

π1
(
Grn(Cd)

)
= π0 (SU(n)× SU(d− n)) = {0}, (27)

since SU(n)× SU(d− n) is connected.

3.1.1 Berry phase

For continuously differentiable walks, the symmetry index is connected to the Berry phase of the upper
bands [36]:

Corollary 3.5. When Ŵ is continuously differentiable, ⇀sı(W ) can also be written as twice the Berry
phase for the upper bands, i.e.

⇀sı(W ) ≡ 1
πi

∫ π

−π
dk

d∑
α=1

〈
φα(k), dφα(k)

dk

〉
mod2. (28)

Proof. The continuous differentiability of Ŵ (k) transfers to Q(k). Hence, we find a continuously
differentiable basis {φα(k)}dα=1 for Q(k)H. By (21) and similar to Lem. 3.2 this can be extended to
a continuously differentiable basis of H by setting φα+d(k) = ηφα(−k) and therefore gives rise to a
continuously differentiable family of unitaries M(k), such that Q(k) = M(k)QM(k)∗. Now, by (24),
we have ⇀sı(W ) = log detM(π)/(iπ), where it does not matter which branch we choose, since it will be
evaluated mod2. Using d

dk (log detM(k)) = tr(M∗(k)dM(k)
dk ) this can be expressed as

⇀sı(W ) ≡ 1
πi

∫ π

0
dk

2d∑
n=1

〈
φn(k), dφn(k)

dk

〉
mod2, (29)

which evaluates to the claimed formula, if we plug in the definition of φα+d(k).

3.1.2 Completeness

The completeness result in [11] tells us that walks that have the same indices are homotopic. Prop. 3.3,
however, seems to contradict this by describing two walks W1, W2 with the same indices as non-
homotopic if s0 = sπ = −1. This difference is a consequence of the restriction to the cell structure which
is fixed by the (minimal) translations that translation invariance refers to. Our general theory and
the completeness result therein is entirely independent of translation invariance. Therefore, changing
the assumptions by adding translation invariance with respect to a fixed cell structure one can expect
additional invariants which reveal an even finer structure of the set of admissible walks. As Prop. 3.3
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shows, this is indeed the case. Yet, if we only demand homotopies to respect translation invariance
with respect to shifts by an even number of sites, e.g. by regrouping neighbouring even and odd sites
as if putting up domino tiles (see Fig. 3 and Sect. 1.5.1), the additional invariant is rendered useless,
i.e. the regrouped walks become homotopic on the coarser lattice:

Lemma 3.6. Let W1 and W2 be translation invariant walks with continuous bands on the same cell
structure satisfying the assumptions of symmetry type D for the same symmetry operator η. Assume
that ⇀sı(W1) = ⇀sı(W2), which by Prop. 3.3 means that s1 = s2. This does not fix the values of s0 and
sπ, but only their equality. Then:

(1) After regrouping neighbouring cells pairwise, the regrouped walks W1,r and W2,r are homotopic.

(2) There are trivial (i.e., cell-wise acting), D-admissible walks W 0
1 and W 0

2 such that W1⊕W 0
1 and

W2 ⊕W 0
2 are homotopic.

Proof. (1) Let s = s0 = sπ, which are equal by s1s2s0sπ = 1 and s1 = s2. If s = 1, W1 and
W2 are homotopic on the original lattice by Prop. 3.3. This transfers to the regrouped lattice in
the obvious way. Suppose now, that s = −1. As a first step transform W1 and W2 into their
corresponding flat-band, as described in Lem. 1.2. We get Ŵj(k) = i(2Qj(k) − 1I), with j = 1, 2.
Then, by Lem. 3.2 (1), there are unitaries N,M , commuting with η, with detN = detM = −1 s.t.
Ŵ2(0) = NŴ1(0)N∗ and Ŵ2(π) = MŴ1(π)M∗. Relabelling a walk W as shown in Fig. 3 leads to
a regrouped walk Wr which has Fourier transform Ŵr(k) as given by (13). Then, if W1 and W2 are
related as above, Ŵ1,r(0) and Ŵ2,r(0) are related by conjugation with Nr = H(0)(N ⊕ M)H(0)∗.
Hence s0,r = det(Nr) = detN detM = 1. For sπ,r, note that by (24) s1 and s2 are invariant under
regrouping, since the right symmetry index ⇀sı does not change under such operation. Therefore, by
s0s1sπs2 = 1, which also holds for the regrouped walks, we get sπ,r = s0,r = 1 and hence W1 and W2
are connected by a period-2 homotopy.

(2) Now let W 0
i =

⊕
Z Ŵi(0) be the walk, which is block diagonal, with Ŵi(0) acting locally in

each cell and W̃i = Wi ⊕W 0
i . Then W 0

i clearly fulfils the right symmetry condition and has trivial
symmetry index (si = 1). We get s̃0 = s2

0 = 1 (= s̃π) and hence W̃1 and W̃2 are homotopic by
Prop. 3.3.

3.1.3 Example: Building bridges

The phenomenon of period two homotopies for walks of type D also occurs in the split-step walk
W (θ1, θ2) (see Sect. 1.4). As the phase diagram indicates by the white lines between the plaquettes, it
is not possible to continuously connect two split-step walks from two plaquettes with the same phase,
e. g. W0 = W (θ1, θ2) and W1 = W (θ1, θ2 + π), by varying the two parameters θ1, θ2. Also leaving
the class of split-step walks while keeping the cell structure fixed does help: to see this, we restrict
ourselves to flat-band walks (centers of the plaquettes), since any two walks can always be deformed to
the respective flat-band candidates in their plaquettes. We then get W0 = −W1, which for flat-band
walks implies

Q1(k) = 1I−Q0(k). (30)
The intertwining unitary for k = 0, π is then always of the form M = UσxU

∗, which yields s0 = sπ =
−1. Hence, sticking to two dimensional cells, W0 and W1 are not homotopic. If we now regroup the
cell structure, (30) remains true. But now an intertwining unitary is of the form M = U(σx ⊗ 1I2)U∗,
which has detM = +1.

For an explicit example consider W0 = W (0, π/2) = −iσy and W1 = W (0,−π/2) = iσy. A
homotopy between the two regrouped versions is then given by

Wt =


0 − cos(πt) − sin(πt) 0

cos(πt) 0 0 sin(πt)
sin(πt) 0 0 − cos(πt)

0 − sin(πt) cos(πt) 0

 . (31)
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θ2

θ1

Figure 4: The “Bridge over troubled gap closings” vizualizing the homotopy (31) of trivial walks with respect to
the period-two regrouping. Without the regrouping, and hence the breaking of translation symmetry, all symmetry
preserving paths would have to contain a gapless walk, because the end points of the bridge are related by s0 = −1.
In particular, paths in the split-step parameter plane (Fig. 2) have to cross a white line.

3.2 Chiral reduction
In contrast to D, the symmetry types AIII, BDI, CII and DIII all contain a chiral symmetry. The
admissibility condition for this chiral symmetry leads to a particular structure for admissible operators
with respect to the eigenbasis of γ. Combining this structure with the flattening of the bands (see
Lem. 1.2 and the accompanying discussion) leads to a process which we call the chiral reduction. We
begin with discussing the structure of chirally symmetric unitaries:

Lemma 3.7. Let H be a Hilbert space equipped with a chiral symmetry γ with γ2 = (−1)s1I, s ∈ {0, 1},
whose ±is-eigenspaces H± have the same dimension. Let U be a unitary operator which is admissible
for this symmetry, i. e. γU = U∗γ. With respect to the decomposition H = H+ ⊕H−, these operators
can be written in blocks as

γ = is
(

1I 0
0 −1I

)
and U =

(
A B
C D

)
(32)

with

A = A∗ BB∗ +A2 = 1I
D = D∗ B∗B +D2 = 1I (33)
C = −B∗ AB −BD = 0

Then

(1) B has a bounded inverse iff U has proper gaps at 1 and −1.

(2) B is Fredholm iff U has an essential gap.

(3) U is a flat-band unitary, i. e. U2 = −1I, iff A = D = 0 and B is unitary.

Note that by the assumption that each cell is balanced, the condition that the dimensions of H+
and H− agree is automatically fulfilled in our walks setting.

Proof. The algebraic relations between the blocks are direct consequences of the admissibility and the
unitarity. Consider the hermitian operator

=mU = 1
2i (U − U

∗) =
(

0 −iB
iB∗ 0

)
. (34)

Clearly, it is invertible iff B is invertible. Moreover, this is equivalent to the absence of any eigenvalues
z or other spectrum in a strip |=mz| < ε. This proves (1). Stating (1) for the image dUe of U in the
Calkin algebra is exactly (2). (3) is a direct consequence of the flat-band condition U = −U∗.
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S BDI DIII CII
S′ η′Bη′∗ = B η′Bη′∗ = −B∗ η′Bη′∗ = B
η′2 1I 1I −1I

Table 3: Reduction procedure for chiral symmetry types.

For the homotopy classification it turns out to be useful to consider flat-band walks only, since
the classification of admissible unitaries U then reduces to the classification of the upper right matrix
blocks B, which are also unitary and have an effectively smaller symmetry group. Note that the flat-
band condition U2 = −1I guarantees a proper gap for U . Therefore we do not need to impose such
condition on B. Since the flattening procedure will be important when we discuss completeness of
the invariants in Sect. 3.3.2, we will take a closer look at it in the context of the chiral eigenbasis in
Sect. 3.3.1.

In case of AIII no further symmetries are present and the problem reduces to the homotopy classi-
fication of essentially local unitaries B with no further restriction. As will be made explicit later, this
task is completely covered by the index for quantum walks (see Sect. 1.3, [23]). Adding a second (and
hence also a third) symmetry yields different conditions on B, depending on the symmetry type this
new symmetry belongs to. We will always choose to add the particle-hole symmetry η. For the cases
BDI, DIII and CII η takes the form

η =
(
η′ 0
0 η′

)
or η =

(
0 η′

η′ 0

)
, (35)

where the first case is present for the symmetry types BDI (with η′2 = 1I) and CII (with η′2 = −1I)
and the second case covers type DIII (with η′2 = 1I). The new symmetry conditions for B are then
η′Bη′∗ = B for BDI and CII and η′Bη′∗ = −B∗ for DIII. The block form of η is a consequence of the
commutation relations between the symmetries: In order to commute with the chiral symmetry in its
eigenbasis, η has to either leave the γ-eigenspaces invariant (for γ2 = 1I) or swap them (for γ2 = −1I).
Of course, a priori the two blocks of η might not be the same, but we can always choose bases in the
γ-eigenspaces separately to obtain (35). The three reducible cases are collected in Tab. 3.

The chiral reduction seems to raise a contradiction in the cases of BDI and CII, since they seem to
reduce to D and C, which both have different index groups than BDI and CII. This contradiction is
resolved by the gap condition. Since we don’t have to impose this on B, more homotopies are allowed,
and hence the classification changes. In the case of DIII the chiral reduction leads to a new symmetry
type, which is not contained in the tenfold way. This raises the question which other new types might
be considerable, a question that will be tackled in [12].

3.3 Index formulas for chiral symmetric walks
Before we start the discussion of index formulas for translation invariant walks, let us first sharpen a
result from [11]. Recall that a bounded operator A is said to be a Fredholm operator, if it is invertible
up to a compact error, i.e., there is B with AB − 1I and BA − 1I both compact. In this case the
Fredholm index of A is defined as

ind FA = dim kerA− dim kerA∗. (36)

The following Lemma connects the symmetry index of operators of symmetry type AIII, BDI or CII
to the Fredholm index of a certain matrix block. The symmetry index of such operators U is given by

si(U) = trN γ, (37)

where N = ker(U − U∗) [11].

Accepted in Quantum 2018-09-18, click title to verify 22



Lemma 3.8. Let U be an essentially local unitary operator of symmetry type AIII, BDI or CII with an
essential gap at ±1 (not necessarily flat-band) in the form (32). Then

si(U) = −ind F(B). (38)

Proof. The kernel of the matrix on the right hand side of (34) is the set of vectors of the form φ1⊕φ2
such that B∗φ1 = 0 and Bφ2 = 0, i.e., the space

N = ker(U − U∗) = ker(B∗)⊕ ker(B). (39)

The chiral operator γ acts on the first summand as +1I and on the second as −1I, so that on this
subspace

si(U) = trN γ = dim ker(B∗)− dim ker(B) = −ind F(B). (40)

For symmetry type CII this automatically yields an even number since the reduced symmetry with
η′2 = −1I forces the kernel of B (and B∗) to be even dimensional [64]. Note, that (38) is a generalized
version of the index for quantum walks [11, 23], which provides a complete homotopy classification for
essentially local unitaries without any gap condition and without considering symmetries.

Let us now consider translation invariant walks with continuous band structure. Then, by assump-
tion the chiral symmetry acts cell-wise. So we have two d-dimensional eigenspaces for each cell, in
which γ acts as in (32). This structure survives Fourier transformation, so that

Ŵ (k) =
(

Â(k) B̂(k)
−B̂∗(k) D̂(k)

)
. (41)

The essential gap assumption demands that each Ŵ (k) has a gap, so by Lem. 3.7 B̂(k) is non-singular
for all k. Continuity of Ŵ (k) trivially transfers to continuity of B̂(k), and therefore, the formula (42)
in the following proposition makes sense. It connects our symmetry index ⇀sı and our formulation of
the bulk-boundary-correspondence to the earlier literature [6], where the formula was already given.

Proposition 3.9. Let W be a translation invariant walk with continuous bands, satisfying the as-
sumptions of Sect. 1.2, of symmetry type AIII, BDI or CII. Then

⇀sı(W ) = wind
(
k 7→ det B̂(k)

)
, (42)

where wind denotes the winding number of an origin-avoiding 2π-periodic continuous function in the
complex plane. When Ŵ is continuously differentiable this can also be written as

⇀sı(W ) = 1
2πi

∫ π

−π
dk tr

(
B̂−1(k)dB̂(k)

dk

)
. (43)

Proof. Let P = P≥0 be the half space projection, then ⇀sı(W ) = si(PWP ) [11]. We now apply Lem. 3.8
to the essentially unitary operator PWP to get ⇀sı(W ) = −ind F(PBP ). Now the half-space compres-
sion of a translation invariant operator (in this case B) is a Toeplitz operator, which is Fredholm iff
its “symbol” B̂(k) is invertible. By a classic result [10, 20] the Fredholm index is then the winding
number of its determinant relative to the origin. This is the formula given in the proposition.

In the differentiable case we can represent the winding number of f as the integral of the logarithmic
derivative of f , and use the differentiation formula for determinants to get (43).

For an interactive tool, illustrating (42) for the split-step walk, see [59].
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3.3.1 Flattening the band structure

The flattening of the band structure, described in 1.3 can also be done directly in the basis of Lem. 3.7.
Since B is non-singular, its polar isometry is unitary. The polar isometry also shares the symmetry
conditions with B. Hence, continuously interpolating between B and its polar isometry, together
with an appropriate deformation of A and D does the job. This raises the question, if the flattening
construction from Lem. 1.2 and the one sketched above are compatible. Indeed, they are essentially
the same: Consider a translation invariant walk in the chiral eigenbasis (see (41)). Then, it suffices
to flatten the finite dimensional matrix Ŵ (k) for each k (we will omit the k dependence and the
hat for readability). Let B =

∑d
i=1 βi|φi〉〈ψi| be the singular value decomposition of B, where {φi}

({ψi}) is an orthonormal basis for H+ (H−) and since B is non-singular we have βi > 0. For non-
degenerate βi’s (33) immediately implies A (D) to be diagonal in the basis {φi} ({ψi}), with eigenvalues
ai = di = ±

√
1− β2

i . Since we can diagonalize A (D) in each degenerate block this is also true for
degenerate singular values βi. To summarize: we have

B =
d∑
i=1

βi|φi〉〈ψi|, A2 =
d∑
i=1

(1− β2
i )|φi〉〈φi| and D2 =

d∑
i=1

(1− β2
i )|ψi〉〈ψi|. (44)

The eigenvalues λn of W then evaluate to

λn = ±
√

1− β2
i ± iβi. (45)

Hence, flattening the band structure by deforming the eigenvalues to ±i is equivalent to deforming all
βi to 1 and therefore to deforming B to its polar isometry.

Having established the explicit flattening construction in the chiral eigenbasis, let us use the struc-
ture to connect the index for chiral symmetric walks with the index for particle-hole walks:

Corollary 3.10. When Ŵ is a continuously differentiable flat-band walk ⇀sı(W ) can also be written as
twice the Berry phase for the upper band, i.e.

⇀sı(W ) = 2
2πi

∫ π

−π
dk

d∑
α=1

〈
φα(k), dφα(k)

dk

〉
. (46)

Proof. For flat-band walks, the eigenvectors corresponding to eigenvalues +i can be chosen to be of
the form

φα(k) = 1/
√

2
(
−iB̂(k)χα

χα

)
, (47)

where {χα}dα=1 is any orthonormal basis for H− (independent of k). Now in (43) tr
(
B̂∗(k)dB̂(k)

dk

)
evaluates to

tr
(
B̂∗(k)dB̂(k)

dk

)
=

d∑
α=1

〈
B̂(k)χα,

dB̂(k)
dk

χα

〉
= 2

d∑
α=1

〈
φα(k), dφα(k)

dk

〉
, (48)

which is twice the Berry connection for the upper band.

3.3.2 Completeness

For symmetry type AIII the index classification of translation invariant walks with a fixed cell structure
is complete. Each walk W defines a loop Ŵ (k) in the unitary group U(2d), which in the flat-band case
is completely characterized by the unitary loop B̂(k) ∈ U(d). There are then no further restrictions
on B̂(k) and hence completeness follows from the classic result, that two unitary loops are homotopic
iff the winding numbers of their determinants coincide. Such continuous deformation automatically
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preserve locality on the way. In the case of strict locality this was already shown in [23]. For essentially
local walks this follows from Prop. 2.1, as the continuity of a loop guarantees for the essential locality
of the corresponding walk.

For the symmetry types BDI and CII we also have to take care of the particle-hole symmetry. Let
c : [−π, π)→ C, c(k) = det(B̂(k)). The symmetry condition on B (see Tab. 3) then implies

c(k) = c(−k). (49)

The effect of this restriction is, that similar to D, ⇀sı is no longer complete for a fixed cell structure.
Indeed, consider e. g. the BDI-symmetric walks with constant loops B1(k) = 1 and B2(k) = −1, which
both yield walks with trivial symmetry index on the cells Hx = C2. But it is clearly not possible
to transform them into each other, without violating the gap condition for the corresponding walks
(Lem. 3.7), since such path would have to cross the origin for k ∈ {0, π}. This example indicates an
additional invariant, similar to the regrouping-invariant in case D.

Lemma 3.11. Let W1 and W2 be two translation invariant walks with continuous bands on the same
cell structure. Assume W1 and W2 to be admissible for the same symmetries of type BDI, with
wind(c1) = wind(c2), where ci(k) = det B̂i(k). Then W1 and W2 are homotopic iff sign(c1(0)) =
sign(c2(0)).

Proof. As a first step, we deform both walks to their respective flat-band forms to reduce the problem
to the upper right blocks B̂i(k) in the chiral eigenbasis. Since B̂i(k) is then unitary, ci(k) lies on
the unit circle for all k. In particular we have ci(k) = exp(2πiai(k)), with a(k) ∈ R and ai(π) =
ai(−π) + wind(ci). Moreover the symmetry condition (49) implies ci(k) = ±1 for k ∈ {0,±π} and the
corresponding B̂i(k) to be orthogonal with respect to an η′ invariant basis. In order to deform Ŵ1
into Ŵ2 it is now enough to only consider the paths k 7→ ci(k) for k ∈ [0, π], since the second half of
the loop is then determined by (49) and we have to show, that these two paths are homotopic. To do
so we need that the two endpoints can be connected by a continuous path inside the set of orthogonal
matrices. A necessary and sufficient condition for this is c1(0) = c2(0) and c1(π) = c2(π), since the
connected components of the orthogonal group are labeled by the values ±1 of the determinant. If
this is fulfilled, we are left with a closed loop in the unitary group, which by wind(c1) = wind(c2)
does not wind around the origin and is therefore contractible. Moreover, if c1(k = 0) = c2(k = 0),
the same already follows for k = π: by symmetry it is a(k) + a(−k) = const. = 2a(0) and therefore
wind(c) = 2(a(π)− a(0)). This gives c(π) = (−1)pc(0), with p = wind(c)mod2, which is the same for
both ci.

Similar to the case of symmetry type D, the additional invariant can be trivialized, by either
regrouping neighbouring cells once or by adding trivial systems to the respective walks under consid-
eration:

Lemma 3.12. Consider the setting of Lem. 3.11. Then:

(1) After regrouping neighbouring cells pairwise, the regrouped walks W1,r and W2,r are homotopic.

(2) There are trivial (i.e., cell-wise acting), BDI-admissible walks W 0
1 and W 0

2 such that W1 ⊕W 0
1

and W2 ⊕W 0
2 are homotopic.

Proof. If we regroup a given walk once, according to (13), we get cr(k) = c(k/2)c(k/2 + π) and hence
cr(0) = c(0)c(π) = c(0)2(−1)p = (−1)p, which only depends on the winding number and is therefore
the same for W1 and W2.

Now let W 0
i =

⊕
Z Ŵi(0) be the walk, which is block diagonal, with Ŵi(0) acting locally in each

cell. It fulfils the right symmetry and has trivial symmetry index. We get c̃i(0) = ci(0)2 > 0, where
c̃i(k) denotes the determinant of the upper right chiral block of Wi ⊕W 0

i . Now, since sign(c̃1(0)) =
sign(c̃2(0)), W1 ⊕W 0

1 and W2 ⊕W 0
2 are homotopic.
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Note that the construction of the trivial walks is exactly the same as for symmetry type D
(Lem. 3.6).

For symmetry type CII the additional regrouping invariant does not appear:

Lemma 3.13. LetW be a translation invariant walk with continuous bands of symmetry type CII. Then
sign(c(0)) = sign(c(π)) = 1. Moreover, two translation invariant walks W1,W2, which are admissible
for the same symmetries of type CII on the same cell structure are homotopic iff wind(c1) = wind(c2).

Proof. Consider again the flat-band case, where B̂(k) is unitary. For k ∈ {0, π}, B̂(k) commutes with
η′, with η′2 = −1I. This implies det(B̂(0)) = det(B̂(π)) = 1: Let Bφ = λφ, with B finite dimensional
and commuting with η′, Then Bη′φ = λη′φ such that the non-real eigenvalues of B come in complex
conjugate pairs. Since η′2 = −1I any real eigenvalue occurs with an even multiplicity and we get
det(B) = 1.

The rest of the proof is now similar to the proof of Lem. 3.11 and the only thing we need to show
is, that the set of finite dimensional unitaries which commute with a given η′ is connected. Consider
such a unitary B. Since the eigenvalues of B come in complex conjugate pairs, we can continuously
shift each pair to +1, without changing the eigenvectors, and thus keeping the symmetry. Hence,
every such unitary is connected to the identity. Note that the only difference to the reduced symmetry
condition for symmetry type BDI is the even dimensional−1-eigenspace which makes such deformations
possible.

3.4 Symmetry type DIII
In the case of symmetry type DIII, Lem. 3.8 does not apply. In fact, due to the effective symmetry of B
after the chiral reduction process (η′Bη′∗ = −B∗), the Fredholm index of B always evaluates to zero.
For such operators, there is, however, a similar invariant [58]. It is defined for odd symmetric Fredholm
operators, i. e. Fredholm operators T satisfying (IK)T (IK)∗ = T ∗, with I being a real unitary with
I2 = −1I, and K the complex conjugation with respect to a suitable basis. For such operators the
index is defined as the parity of the dimension of the kernel, i.e.

ind 2(T ) = dim(ker(T )) mod 2, (50)

which is a complete homotopy invariant and invariant under compact perturbations that respect the
odd symmetry [58]. The following Lemma connects the symmetry index of a unitary operator of
symmetry type DIII given by si(U) = dimN mod 4, with N defined in (39), with ind 2:

Lemma 3.14. Let U be an essentially gapped unitary of symmetry type DIII. Then

si(U) = 2 ind 2(I∗B), (51)

where I is a real unitary with I2 = −1I and B is the upper right block of the decomposition given in
(32).

Proof. From the DIII-admissibility condition in Table 3, (39) yields

dimN = 2 dim ker(B), (52)

and hence si(U) = 2 dim ker(B) mod 4. By [58, Proposition 1], an operator T is odd symmetric with
respect to I, iff T = I∗B̃, for a skew-symmetric operator B̃. Choosing a basis in which η′ = K we
have BT = −B, where BT denotes the matrix transpose with respect to this basis. Thus, in this basis
I∗B is odd symmetric with respect to any real unitary I with I2 = −1I. By the invertibility of I we
have dim ker(B) = dim ker(I∗B), which completes the proof.

In [58, Sect. 4] also an odd symmetric Gohberg-Krein theorem is derived. It states, that ind 2 of
an odd symmetric Toeplitz operator (with continuous symbol, compare with Prop. 3.9) is equal to the
spectral flow of its symbol modulo 2.
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A
B̂(0)

B̂(π)

B̂(k)

B̂c(k)

B̂c′(k)

Figure 5: Visualization of two antisymmetric closures. The path B̂(k), for k ∈ [0, π] is depicted in red. The two
different antisymmetric closures B̂c(k) and B̂c′ (k), for k ∈ [π, 2π], are depicted in blue. Their difference is a closed
path inside the antisymmetric manifold (blue loop).

Here we give an alternative derivation of the right symmetry index of DIII symmetric walks in terms
of a winding number. In order to derive the index formula, we combine ideas from the two previous
sections. Roughly speaking, we on the one hand start with the same quantity as for other chiral walks
(det(B̂)) but on the other, only the path for k ∈ [0, π] matters, similar to symmetry type D.

Proposition 3.15. Let W be a translation invariant walk of symmetry type DIII with continuous
bands, and let B̂(k) be the component of the chiral reduction (41). Then, there is a continuous closed
curve [0, 2π] 3 k 7→ B̂c(k) of operators such that B̂(k) = B̂c(k) for k ∈ [0, π] and B̂c(k) antisymmetric
and non-singular for k ∈ [π, 2π]. Let c(k) = det B̂c(k) be the corresponding closed curve in C. Then
wind(c) mod 2 is a complete homotopy invariant and

⇀sı(W ) ≡ 2 wind(c) mod4. (53)

Proof. For a translation invariant walk Ŵ (k) the reduced symmetry condition for B̂ gives B̂(k) =
−B̂(−k)T , in an η′- invariant basis. Hence B̂(0) and B̂(π) are antisymmetric and non-singular but not
necessarily real matrices. Since the manifold of antisymmetric non-singular matrices A is connected
[66], we can find a continuous connection from B̂(π) to B̂(0), which gives the antisymmetric closure
B̂c described in the proposition.

We have to show that wind(c) mod2 is independent of the antisymmetric closure we choose. So
let B̂c(k) and B̂c′(k) be two different closures. By concatenating the two closure segments (see Fig. 5)
we get a closed path in A. The winding number of its determinant will be wind(c)− wind(c′). Hence
we need to show that any closed path in A has even winding number. Indeed, for A ∈ A we have
detA = pf(A)2 where also pf(A) 6= 0. Hence, for a closed path wind

(
detA(·)

)
= 2wind

(
pfA(·)

)
∈ 2Z.

For a continuous deformation of B̂ the end points B̂(0) and B̂(π) in A move continuously, so the
closures can also be made to change continuously by considering as deformed closures those obtained
by joining the deformations of B̂(0) and B̂(π) to the original closure. Hence wind(c) is a homotopy
invariant. It is also a complete invariant. To see this, we can first deform each walk to a flat band one.
Moreover, we can choose the antisymmetric closure to be unitary, since for a flat-band walk the B̂(k)
are unitary and the restriction of A to unitary elements remains connected [66]. We choose it so that
wind(c) ∈ {0, 1}, and B̂c(3π/2) = A for some fixed A ∈ A. By including parts of the antisymmetric
closure as initial and final segments of B̂ we deform to a path with B̂(0) = B̂(π) = A. In this normal
form no closure operation is needed, and wind(c) is just the winding number of the determinant of a
closed path in the unitary group. Since the fundamental group of the unitary group is Z, equality of
wind(c) implies that two walks can be deformed into each other.

To get formula (53) it now suffices to check it on a generating example. The case of trivial index is
straightforward: if ⇀sı(W ) = 0, W (k) is homotopic to a trivial walk with c(k) = c for all k and therefore
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2 wind(c) ≡ 0 mod4.
A non-trivial generating example for symmetry type DIII is given by

B̂(k) =
(

0 −e−ik
eik 0

)
, (54)

with η′ = K being the complex conjugation. A possible closure is then given by −ieikσ2, where σ2
denotes the second Pauli matrix. Then wind(c) = 1, in accordance with the claimed formula, since,
by W 2 = −1I, ⇀sı(W ) = ker

(
=m(PWP )

)
= ker

(
−iPWP

)
= 2.

For continuously differentiable bands, we then get an index formula with two contributions. A
Berry type integral, stemming from the winding of the determinant of B̂(k) (compare Cor. 3.10)
and the quotient of Pfaffians, resembling the invariant for D-walks (Prop. 3.3). For DIII-symmetric
superconductors a formula similar to (55) was derived in [44].

Corollary 3.16. Let W be a flat-band walk of symmetry type DIII. When Ŵ is continuously differen-
tiable, ⇀sı(W ) can be written in a Berry phase type formula minus a correction term, i. e.

⇀sı(W ) ≡ 2
πi

(∫ π

0
dk

d∑
α=1

〈
φα(k), dφα(k)

dk

〉
− log

(
pf(B̂(π))
pf(B̂(0))

))
mod4. (55)

Proof. The winding integral of c has two contributions, one from det(B̂(k)), for k ∈ [0, π] and one
from the antisymmetric closure for k ∈ [π, 2π]. The first summand is the integral over the Berry
connection, according to Cor. 3.10. We already showed, that, evaluated mod2, the second contribution
is independent of which closure we choose. Hence it depends only on the endpoints and evaluates to
the correction term in (55), if we use det(A) = pf(A)2 and B̂(2π) = B̂(0).

4 Decay properties of boundary eigenfunctions
In this section we consider a translation invariant walk W with strictly finite propagation. Suppose
we have joined it with another walk on the negative half axis, so we possibly get some eigenfunctions
φ for eigenvalue ±1. We claim that in this case |φ(x)| ≤ λx as x → ∞. Knowing the decay rate is
crucial for applications of the theory to finite systems (see Sect. 9 in [11]): When the bulk does not
extend all the way to +∞ but only has length L we still expect to find eigenvalues near ±1, whose
distance from ±1 is of the order λL.

Restricting, without loss, to the eigenvalues at +1, we have to characterize the solutions of the
equation (W − 1I)φ(x) = 0 for x ≥ 0, where we assumed the transition region to lie somewhere
on the negative half-axis and does not intersect with x = 0. This is a Cd-valued linear recursion
relation of finite order which, however, is not explicit usually: Using (1) we cannot simply solve for
the highest occurring ψ(y), because W (x) need not be invertible for the lowest value of x where
this is non-vanishing. Nevertheless, one can usually find an appropriate selection of components of
φ(x), φ(x + 1), . . . , φ(x + r) for which the recursion can be solved by iterating a fixed matrix. This
is called the transfer matrix method. But does it always work? Consider, e.g., a walk in which one
component of Cd is simply left invariant. Then this component in φ(x) drops out of the equation
altogether, so we can say nothing about decay. In this case, we can also make eigenfunctions on the
whole line, so the gap condition is violated. This means that we have to turn a spectral condition
(existence of the gap) into an algebraic property (existence of a transfer matrix).

Even if we cannot directly turn the eigenvalue equation into a matrix iteration, we can try the
exponential ansatz φ(x) = λxφ0. Using (1), the eigenvalue equation Wφ(x) = φ(x) then becomes

W̃ (λ)φ0 = φ0, where (56)
W̃ (λ) =

∑
y

W (y)λ−y. (57)
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Comparison with (6) implies that Ŵ (k) = W̃
(
e−ik

)
, so W̃ is an analytic continuation of Ŵ from

the unit circle to the unit disc. Clearly, a necessary condition for solving (56) is det(W̃ (λ) − 1I) = 0,
which is an algebraic equation for λ. The following proposition confirms that the strategy based on
the exponential ansatz is indeed valid.

Proposition 4.1. Let W be a strictly local translation invariant quantum walk with spectral gap at
1. Let φ ∈ H satisfy (W − 1I)φ(x) = 0 for x ≥ 0. Then, there are vectors φλ,i ∈ Cd, and exponents
mλ,i ∈ N so that, for x ≥ 0,

φ(x) =
∑
λ

∑
i

xmλ,iλx φλ,i, (58)

where λ runs over the finite set of solutions of det
(
W̃ (λ)−1I

)
= 0 with |λ| < 1, and, for each λ, i runs

from 1 to the algebraic multiplicity of the zero.

Proof. Let ψ = (W − 1I)φ, which is a function vanishing for x ≥ 0. Let ψ̃(λ) =
∑
x<0 ψ(x)λ−x, which

is absolutely convergent and analytic for |λ| < 1. The boundary value ψ̃(e−ik) = ψ̂(k) is the Fourier
transform of ψ. Now pick some x ≥ 0 and a vector χ ∈ Cd, and let δx ⊗ χ ∈ H be the vector equal to
χ at x and zero otherwise. Then

〈χ|φ(x)〉 = 〈δx ⊗ χ|(W − 1I)−1ψ〉 =
∫

dk

2π e
−ikx〈χ|(Ŵ (k)− 1I)−1ψ̂(k)〉 (59)

= i

2π

∫
du ux

〈
χ
∣∣∣ (W̃ (u)− 1I)−1 1

u
ψ̃(u)

〉
, (60)

where we have substituted u = e−ik, and the integral is around the unit circle. Now ux and u−1ψ̃(u)
are analytic on the unit disc, and (W̃ (u) − 1I)−1 is analytic except at the points where the operator
(W̃ (u) − 1I) becomes singular. These are the solutions of det

(
W̃ (u) − 1I

)
= 0, the order of the pole

being at most the order of the algebraic multiplicity of this zero. Hence by the Residue Theorem, we
can write the integral as a sum of evaluations of ux, and possibly some derivatives of ux, at u = λ.

Example

Let us confirm Prop. 4.1 with the split-step example (Sect. 1.4). Eigenvectors of a decoupled version
are determined by solving the eigenvalue equations Wφ = sφ and γφ = χφ (s, χ = ±1) as a recursion
relation in the bulk, giving exponential solutions, and then selecting those solutions satisfying the
boundary conditions. Let us sketch this explicitly for s = 1, to keep the example concise:

Solving det
(
W̃ (λ)− 1I

)
= 0 (with W̃ as in Prop. 4.1) for the decay coefficients λ results in exactly

two solutions, one for each value χ of the chirality (both are non-degenerate), with θ± = 1
2 (θ1 ± θ2)

[46]:

λχ = 2 cos θ−
cos θ− + χ sin θ+

− 1. (61)

Since λ+λ− = 1, we know that there is always at most one candidate for an exponentially decaying
solution to the right. Prop. 4.1 then yields the ansatz

φ(x) = λxχφ0, x ≥ 0, (62)

where φ0 = (1, χ) is determined (up to normalization) by γφ = χφ. The splitting coin now decides,
which of these potential solutions can be made to fit at the boundaries, e.g., by shifting this solution to
the right and inserting a finite number of transition components to match the boundary conditions. In
this example, the walk affects only its direct neighbours, hence there is at most one transition element.

Since we know that every eigenvector of a decoupled walk can be chosen to be localized on one
side of the cut, we can choose φ(x) = 0 for all x < 0, and check if φ fulfils the eigenvalue equation for
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each of the four differently decoupled walks. We note that in this simple example, inserting transition
elements could never make a modified φ′ solve an eigenvalue equation, that φ did not solve before.

This, together with the eigenvectors for the eigenvalue s = −1, analyzed on both sides of the cut,
leads to Fig. 2. Consistent with the general theory of our classification [11], each eigenvector found this
way contributes its chirality χ to the corresponding indices si±,⇀sı,↼sı, depending on whether they stem
from s = ±1 and whether they are exponentially decaying to the left or right (while vanishing on the
other side). This is an explicit demonstration of bulk-boundary-correspondence. A web-application
allows to check these results dynamically [59].

5 Summary and Outlook
We gave a homotopy classification of the systems with non-trivial index group considered in [11] under
the additional assumption of translation invariance, i.e. essentially gapped one-dimensional quantum
walks with discrete symmetries which commute with lattice translations. In doing so we generalized
the correspondence between strictly local walks and analytic band structures and proved that the
continuity of the bands implies essentially locality. This classification is complete within the class of
translation invariant systems, i.e. two translation invariant walks obeying the same symmetries can
be deformed into each other if and only if their invariants agree. For the symmetry types S = D,BDI
we found an additional invariant, which depends on the cell structure and trivializes after regrouping
neighbouring cells or adding trivial systems. For each symmetry type with non-trivial index group,
concrete index formulas were derived. In particular, the classification was obtained without referring
to topological K-theory.

Possible directions for future research include the generalization of the results obtained here to
higher dimensional lattices. For Hamiltonian systems, such a program leads to the now famous periodic
table for the index groups [31]. This corresponds to the classification of vector bundles over higher-
dimensional Brillouin zones. Proving a bulk-boundary correspondence in higher dimensions, from
analogy with the Hamiltonian case one expects to observe (directed) transport along edges if the edge
is chosen along one of the principal directions of the lattice.
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