Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at \( \sqrt{s(\text{NN})}=2.76 \text{ TeV} \)

Acharya, S.; Adam, J.; Adamova, D.; Adolfsson, J.; Aggarwal, MM.; Rinella, G.A.; Agnello, Maria; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S.U.; Aiola, S.; Al-Turany, M.; Aleksandrov, D.; Molina, Rafael A.; Alessandro, B.; Akindinov, A.; Albuquerque, DSD; Alam, S.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Bearden, Ian; Bourjau, Christian Alexander; Bilandzic, Ante; Gaardhøje, Jens Jørgen; Gajdosova, Katarina; Chojnacki, Marek; bsm989, bsm989; Christensen, Christian Holm; Nielsen, Børge Svane; Ozelin De Lima Pimentel, Lais; Thoresen, Freja; Zhou, You

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2017.12.021

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration*

**Abstract**

In ultrarelativistic heavy-ion collisions, the event-by-event variation of the elliptic flow $v_2$ reflects fluctuations in the shape of the initial state of the system. This allows to select events with the same centrality but different initial geometry. This selection technique, Event Shape Engineering, has been used in the analysis of charge-dependent two- and three-particle correlations in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The two-particle correlator $\langle \cos(\varphi_\alpha - \varphi_\beta) \rangle$, calculated for different combinations of charges $\alpha$ and $\beta$, is almost independent of $v_2$ (for a given centrality), while the three-particle correlator $\langle \cos(\varphi_\alpha + \varphi_\beta - 2\varphi_2) \rangle$ scales almost linearly both with the event $v_2$ and charged-particle pseudorapidity density. The charge dependence of the three-particle correlator is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity violating effect of the strong interaction. However, its measured dependence on $v_2$ points to a large non-CME contribution to the correlator. Comparing the results with Monte Carlo calculations including a magnetic field due to the spectators, the upper limit of the CME signal contribution to the three-particle correlator in the 10–50% centrality interval is found to be 26–33% at 95% confidence level.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Parity symmetry is conserved in electromagnetism and is maximally violated in weak interactions. In strong interactions, global parity violation is not observed even though it is allowed by quantum chromodynamics. Local parity violation in strong interactions might occur in microscopic domains under conditions of finite temperature [1–4] due to the existence of the topologically non-trivial configurations of the gluonic field, instantons and sphalerons. The interactions between quarks and gluonic fields with non-zero topological charge [5] change the quark chirality. A local imbalance of chirality, coupled with the strong magnetic field produced in heavy-ion collisions ($B \sim 10^{15}$ T) [6–8], would lead to charge separation along the direction of the magnetic field, which is on average perpendicular to the reaction plane (the plane of symmetry defined by the impact parameter vector and the beam direction), a phenomenon called Chiral Magnetic Effect (CME) [9–12]. Since the sign of the topological charge is equally probable to be positive or negative, the charge separation averaged over many events is zero. This makes the observation of the CME experimentally difficult and possible only via correlation techniques.

Azimuthal anisotropies in particle production relative to the reaction plane, often referred to as anisotropic flow, are an important observable to study the system created in heavy-ion collisions [13, 14]. Anisotropic flow arises from the asymmetry in the initial geometry of the collision. Its magnitude is quantified via the coefficients $v_n$ in a Fourier decomposition of the charged particle azimuthal distribution [15,16]. Local parity violation would result in an additional sine term [17]

$$
\frac{dN}{d\Delta \varphi_A} \sim 1 + 2v_{1,A} \cos(\Delta \varphi_A) + 2a_{1,A} \sin(\Delta \varphi_A) + 2v_{2,A} \cos(2\Delta \varphi_A) + ..., \quad (1)
$$

where $\Delta \varphi_A = \varphi_A - \Psi_{R_0}$, $\varphi_A$ is the azimuthal angle of the particle of charge $A$ (+, −) and $\Psi_{R_0}$ is the reaction-plane angle. The first $\langle v_{1,A} \rangle$ and the second $\langle v_{2,A} \rangle$ coefficients are called directed and elliptic flow, respectively. The $a_{1,A}$ coefficient quantifies the effects from local parity violation. Since the average $\langle a_{1,A} \rangle = 0$ over many events, one can only measure $\langle a_{1,A}^+ \rangle$ or $\langle a_{1,A}^- \rangle$. The charge-dependent two-particle correlator

$$
\delta_{A,B} \equiv \langle \cos(\varphi_A - \varphi_B) \rangle = \langle \cos(\Delta \varphi_A) \cos(\Delta \varphi_B) \rangle + \langle \sin(\Delta \varphi_A) \sin(\Delta \varphi_B) \rangle, \quad (2)
$$

* E-mail address: alice-publications@cern.ch.

https://doi.org/10.1016/j.physletb.2017.12.021

0700-2693/2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
is not convenient for such a study, because along with the signal \(\langle q_1,q_1\rangle\) (\(q\) denotes the charge) there is a much stronger contribution from correlations unrelated to the azimuthal asymmetry in the initial geometry (“non-flow”). These correlations largely come from the inter-jet correlations and resonance decays. To increase the CME contribution it was proposed to use the following correlator [17]

\[
Y_{q\beta} = \langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_R) \rangle = \langle \cos(\Delta\phi_\alpha) \cos(\Delta\phi_\beta) \rangle - \langle \sin(\Delta\phi_\alpha) \sin(\Delta\phi_\beta) \rangle
\]

(3)

that measures the difference between the correlation projected onto the reaction plane and perpendicular to it. In practice, the reaction-plane angle is estimated by constructing the event plane angle \(\Psi_2\) using azimuthal particle distributions, which is why this correlator is often described as a three-particle correlator. This correlator suppresses background contributions at the level of \(v_2^s\), the difference between the particle production in-plane and out-of-plane. Examples of such background sources are the local charge conservation (LCC) coupled with elliptic flow [18,19], momentum conservation [19–21], and directed-flow fluctuations [22]. The most significant background source for CME measurements is the LCC.

The measurements of charge-dependent azimuthal correlations performed at the Relativistic Heavy Ion Collider (RHIC) [23–26] and the Large Hadron Collider (LHC) [27,28] are in qualitative agreement with the expectations for the CME. However, the interpretation of these experimental results is complicated due to possible background contributions. The Event Shape Engineering (ESE) technique was proposed to disentangle background contributions from the potential CME signal [29]. This method makes it possible to select events with eccentricity values significantly larger or smaller than the average in a given centrality class [30,31] since \(v_2^s\) scales approximately linearly with eccentricity [32]. Centrality estimates the degree of overlap between the two colliding nuclei, with low percentage values corresponding to head-on collisions. The CME contribution is expected to mainly scale with the magnetic field strength and to not have a strong dependence on the eccentricity [33], while the background varies significantly. Therefore ESE provides a unique tool to separate the CME signal from the background for the three-particle correlator.

The CMS Collaboration has recently reported the measurement of the three-particle correlator \(Y_{q\beta}\) in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV [34], where the direction of the magnetic field is expected to be uncorrelated to the reaction plane [35]. The magnitude of the correlator in p–Pb and Pb–Pb collisions is comparable for similar final-state charged-particle multiplicities. This measurement indicates that the contribution of the CME to this observable in this multiplicity range is small.

In this paper we report the measurements of the two-particle correlator \(\delta_{q\beta}\), the three-particle correlator \(Y_{q\beta}\), and the elliptic flow \(v_2\) of unidentified charged particles. These measurements are performed for shape selected and unbiased events in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. An upper limit on the CME contribution is deduced from comparisons of the observed dependence of the correlations on the event \(v_2\) to that estimated using Monte Carlo (MC) simulations of the magnetic field of spectators with different initial conditions. While this paper was in preparation, a paper employing a similar approach to estimate the fraction of the CME signal in the three-particle correlator was submitted by the CMS Collaboration [36].

The data sample recorded by ALICE during the 2010 LHC Pb–Pb run at \(\sqrt{s_{NN}} = 2.76\) TeV is used for this analysis. General information on the ALICE detector and its performance can be found in [37,38]. The Time Projection Chamber (TPC) [37,39] and Inner Tracking System (ITS) [37,40] are used to reconstruct charged-particle tracks and measure their momenta with a track-momentum resolution better than 2% for the transverse momentum interval \(0.2 < p_T < 5.0\) GeV/c [38]. The two innermost layers of the ITS, the Silicon Pixel Detector (SPD), are employed for triggering and event selection. Two scintillator arrays (V0) [37,41], which cover the pseudorapidity ranges \(-3.7 < \eta < -1.7\) (VOC) and \(2.8 < \eta < 5.1\) (VOA), are used for triggering, event selection, and the determination of centrality [42] and \(\Psi_2\). The trigger conditions and the event selection criteria are described in [38]. An offline event selection is applied to remove beam induced background and pileup events. Approximately \(9.8 \cdot 10^6\) minimum-bias Pb–Pb events with a reconstructed primary vertex within \(\pm 10\) cm from the nominal interaction point in the beam direction belonging to the 0–60% centrality interval are used for this analysis.

Charged particles reconstructed using the combined information from the ITS and TPC in \(|\eta| < 0.8\) and \(0.2 < p_T < 5.0\) GeV/c are selected with full azimuthal coverage. Additional quality cuts are applied to reduce the contamination from secondary charged particles (i.e., particles originating from weak decays, conversions and secondary hadronic interactions in the detector material) and fake tracks (with random associations of space points). Only tracks with at least 70 space points in the TPC (out of a maximum of 159) with an average \(\chi^2\) per degree-of-freedom for the track fit lower than 2, a distance of closest approach (DCA) to the reconstructed event vertex smaller than 2.4 cm in the transverse plane \((xy)\) and 3.2 cm in the longitudinal direction \((z)\) are accepted. The charged particle track reconstruction efficiency was estimated from HIJING simulations [43,44] combined with a GEANT3 [45] detector model, and found to be independent of the collision centrality. The reconstruction efficiency of primary particles defined in [46], which may bias the determination of the \(p_T\) averaged charge-dependent correlations and flow, increases from 70% at \(p_T = 0.2\) GeV/c to 85% at \(p_T \sim 1.5\) GeV/c where it has a maximum. It then gradually decreases and is flat at 80% for \(p_T > 3.0\) GeV/c. The systematic uncertainty of the efficiency is about 5%.

The event shape selection is performed as in [30] based on the magnitude of the second-order reduced flow vector, \(q_2\) [47], defined as

\[
q_2 = \frac{Q_2}{\sqrt{M}}
\]

(4)

where \(|Q_2| = \sqrt{Q_{2,x}^2 + Q_{2,y}^2}\) is the magnitude of the second order harmonic flow vector and \(M\) is the multiplicity. The vector \(Q_2\) is calculated from the azimuthal distribution of the energy deposition measured in the V0C. Its \(x\) and \(y\) components and the multiplicity are given by

\[
Q_{2,x} = \sum_i w_i \cos(2\phi_i), \quad Q_{2,y} = \sum_i w_i \sin(2\phi_i), \quad M = \sum_i w_i,
\]

(5)

where the sum runs over all channels \(i\) of the V0C detector \((i = 1 - 32)\), \(\phi_i\) is the azimuthal angle of channel \(i\) and \(w_i\) is the amplitude measured in channel \(i\). The large gap in pseudorapidity \(|\Delta \eta| > 0.9\) between the charged particles in the TPC used to determine \(v_2\), \(\delta_{q\beta}\) and \(Y_{q\beta}\) and those in the V0C suppresses non-flow effects. Ten event-shape classes with the lowest (highest) \(q_2\) value corresponding to the 0–10% (90–100%) range are investigated for each centrality interval.

The flow coefficient \(v_2\) is measured using the event plane method [16]. The orientation of the event plane \(v_2\) is estimated from the azimuthal distribution of the energy deposition measured by the V0A detector. The event plane resolution is calculated from correlations between the event planes determined in the TPC and
the two V0 detectors separately [16]. The non-flow contributions to the $v_2$ coefficient and charge-dependent azimuthal correlations are greatly suppressed by the large rapidity separation between the TPC and the V0A ($|\Delta \eta| > 2.0$).

The absolute systematic uncertainties are evaluated from the variation of the results with different selection criteria on the reconstructed collision vertex, different magnetic field polarities, as well as by estimating the centrality from multiplicities measured by the TPC or the SPD. Changes of the results due to variations of the track-selection criteria (e.g. changing the DCA $xy$ and $z$ ranges, number of the TPC space points, using tracks reconstructed by the TPC only) are considered as part of the systematic uncertainties. The effect of reconstruction efficiency on the measurements is checked by randomly rejecting tracks to ensure a flat acceptance in $p_T$. The detector response is studied using HIJING and AMPT [48] simulations, where the $v_2$ coefficients and the charge-dependent azimuthal correlations obtained directly from the models are compared with those from reconstructed tracks. The largest contribution to the systematic uncertainties is given by the detector response. The checks related to the reconstruction efficiency, magnetic field polarity and track-selection criteria also yield significant deviations from the nominal values for $v_2$, $\gamma_{\alpha\beta}$ and $\delta_{\alpha\beta}$, respectively. The contributions from all sources are added in quadrature as an estimate of the total systematic uncertainty. The resulting systematic uncertainties are summarized in Table 1.

![Fig. 1. (Colour online.) Unidentified charged particle $v_2$ for shape selected and unbiased events as a function of collision centrality. The event selection is based on $q_2$ determined in the V0C with the lowest (highest) value corresponding to 0–10% (90–100%) $q_2$. Points are slightly shifted along the horizontal axis for better visibility. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.](image)

![Fig. 2. (Colour online.) Top: Centrality dependence of $\gamma_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased events. Bottom: Centrality dependence of $\delta_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased events. The event selection is based on $q_2$ determined in the V0C with the lowest (highest) value corresponding to 0–10% (90–100%) $q_2$. Points are slightly shifted along the horizontal axis for better visibility in both panels. Error bars (shaded boxes) represent the statistical (systematic) uncertainties.](image)

| Table 1 | Summary of absolute systematic uncertainties. The uncertainties depend on centrality and shape selection, whose minimum and maximum values are listed here. |
|------|----------|----------|
| | Opposite charge | Same charge |
| $\delta_{\alpha\beta}$ | $(3.4 - 25) \times 10^{-5}$ | $(3.1 - 10) \times 10^{-5}$ |
| $\gamma_{\alpha\beta}$ | $(2.6 - 34) \times 10^{-6}$ | $(4.1 - 74) \times 10^{-5}$ |
| $v_2$ | $(1.2 - 4.7) \times 10^{-3}$ | |

50–60% centrality class) due to the low multiplicity and for central collisions due to the reduced magnitude of flow [30].

The centrality dependence of $\gamma_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased events is shown in the top panel of Fig. 2. The same charge results denote the average between pairs of particles with only positive and only negative charges since the two combinations are found to be consistent within statistical uncertainties. The correlation of pairs with the same charge is stronger than the correlation for pairs of opposite charge for both shape selected and unbiased events. The ordering of the correlations of pairs with same and opposite charge indicates a charge separation with respect to the reaction plane. The magnitude of the same and opposite charge pair correlations depends weakly on the event-shape selection ($q_2$, i.e. $v_2$) in a given centrality bin.

The bottom panel of Fig. 2 shows the centrality dependence of $\delta_{\alpha\beta}$ for pairs of particles with same and opposite charge for shape selected and unbiased samples. As reported in [27], the magnitude of the correlation for the same charge pairs is smaller than for the opposite charge combinations. This is in contrast to the CME expectation, indicating that background dominates the correlations. The same and opposite charge pair correlations are insensitive to the event-shape selection in a given centrality bin.

The difference between opposite and same charge pair correlations for $\gamma_{\alpha\beta}$ can be used to study the charge separation effect. This difference is presented as a function of $v_2$ for various centrality classes in the top panel of Fig. 3. The difference is positive.
for all centralities and its magnitude decreases for more central collisions and with decreasing \( v_2 \) (in a given centrality bin). At least two effects could be responsible for the centrality dependence: the reduction of the magnetic field with decreasing centrality and the dilution of the correlation due to the increase in the number of particles \([24] \) in more central collisions. The difference between opposite and same charge pair correlations multiplied by the charged-particle density in a given centrality bin, \( dN_{ch}/d\eta \) (taken from \([49] \)), to compensate for the dilution effect, is presented as a function of \( v_2 \) in the bottom panel of Fig. 3. All the data points fall approximately onto the same line. This is qualitatively consistent with expectations from LCC where an increase in \( v_2 \), which modulates the correlation between balancing charges with respect to the reaction plane \([50] \), results in a strong effect. Therefore, the observed dependence on \( v_2 \) points to a large background contribution to \( \gamma_{\alpha\beta} \).

The expected dependence of the CME signal on \( v_2 \) was evaluated with the help of a Monte Carlo Glauber \([51] \) calculation including a magnetic field. In this simulation, the centrality classes are determined from the multiplicities of charged particles in the acceptance of the V0 detector following the method presented in \([42] \). The multiplicity is generated according to a negative binomial distribution with parameters taken from \([42] \) based on the number of participant nucleons and binary collisions. The elliptic flow is assumed to be proportional to the eccentricity of the participant nucleons and approximately reproduces the measured \( p_T \)-integrated \( v_2 \) values \([52] \). The magnetic field is evaluated at the geometrical centre of the overlap region from the number of spectator nucleons following Eq. (A.6) from \([11] \) with the proper time \( \tau = 0.1 \) fm/c. The magnetic field is calculated in 1% centrality classes and averaged into the centrality intervals used for data analysis. It is assumed that the CME signal is proportional to \( \langle |B|^2 \cos(2(\Psi_2 - \Psi_1)) \rangle \), where \( |B| \) and \( \Psi_2 \) are the magnitude and direction of the magnetic field, respectively. Fig. 4 presents the expected dependence of the CME signal on \( v_2 \) for various centrality classes. Similar results are found using MC-KLN CGC \([53,54] \) and EKRT \([55] \) initial conditions. The MC-KLN CGC simulation was performed using version 32 of the Monte Carlo \( kT \)-factorization code (mc\( kT \)) available at \([56] \), while the TRENTO model \([57] \) was employed for EKRT initial conditions.

To disentangle the potential CME signal from background, the dependence on \( v_2 \) of the difference between opposite and same charge pair correlations for \( \gamma_{\alpha\beta} \) and the CME signal expectations are fitted with a linear function (see lines in Figs. 3 (top panel) and 4, respectively):

\[
F_1(v_2) = p_0(1 + p_1(v_2 - \langle v_2 \rangle))/\langle v_2 \rangle),
\]

where \( p_0 \) accounts for the overall scale, which cannot be fixed in the MC calculations, and \( p_1 \) reflects the slope normalised such that in a pure background scenario, where the correlator is directly proportional to \( v_2 \), it is equal to unity. The presence of a significant CME contribution, on the other hand, would result in non-zero intercepts at \( v_2 = 0 \) of the linear functions shown in Fig. 3. The ranges used in these fits are based on the \( v_2 \) variation observed in data and the corresponding MC interval within each centrality range. The centrality dependence of \( p_1 \) from fits to data and to the signal expectations based on MC-Glauber, MC-KLN CGC and EKRT models is reported in Fig. 5. The observed \( p_1 \) from data is a superposition of a possible CME signal and background. Assuming a pure background case, \( p_1 \) from data and MC models can be related according to

\[
f_{\text{MC}} \times p_1, MC \sim f_{\text{MC}}(1 - f_{\text{MC}}) \times 1 = p_1, \text{data},
\]

where \( f_{\text{MC}} \) denotes the CME fraction to the charge dependence of \( \gamma_{\alpha\beta} \) and is given by

\[
f_{\text{MC}} = \frac{(\gamma_{\text{opp}} - \gamma_{\text{same}})\text{CME}}{(\gamma_{\text{opp}} - \gamma_{\text{same}})\text{Bkg}}.
\]
\[ \gamma_{\alpha\beta} \] dependence in a given centrality bin, \( \gamma_{\alpha\beta} \) is found to be almost linearly dependent on \( v_2 \). When the charge dependence of \( \gamma_{\alpha\beta} \) is multiplied by the corresponding charged-particle density, to compensate for the dilution effect, a linear dependence on \( v_2 \) is observed consistently across all centrality classes. Using a Monte Carlo simulation with different initial-state models, we have found that the CME signal is expected to exhibit a weak dependence on \( v_2 \) in the measured range. The observations imply that the dominant contribution to \( \gamma_{\alpha\beta} \) is due to non-CME effects. In order to get a quantitative estimate of the signal and background contributions to the measurements, we fit both \( \gamma_{\alpha\beta} \) and the expected signal dependence on \( v_2 \) with a first order polynomial. This procedure allows to estimate the fraction of the CME signal in the centrality range 10–50%, but not for the most central (0–10%) and peripheral (50–60%) collisions due to large statistical uncertainties. Averaging over the centrality range 10–50% gives an upper limit of 26% to 33% (depending on the initial-state model) at 95% confidence level for the CME contribution to the difference between opposite and same charge pair correlations for \( \gamma_{\alpha\beta} \).

\[ \Delta v_2 \] dependence in a given centrality bin, \( \gamma_{\alpha\beta} \) is found to be almost linearly dependent on \( v_2 \). When the charge dependence of \( \gamma_{\alpha\beta} \) is multiplied by the corresponding charged-particle density, to compensate for the dilution effect, a linear dependence on \( v_2 \) is observed consistently across all centrality classes. Using a Monte Carlo simulation with different initial-state models, we have found that the CME signal is expected to exhibit a weak dependence on \( v_2 \) in the measured range. The observations imply that the dominant contribution to \( \gamma_{\alpha\beta} \) is due to non-CME effects. In order to get a quantitative estimate of the signal and background contributions to the measurements, we fit both \( \gamma_{\alpha\beta} \) and the expected signal dependence on \( v_2 \) with a first order polynomial. This procedure allows to estimate the fraction of the CME signal in the centrality range 10–50%, but not for the most central (0–10%) and peripheral (50–60%) collisions due to large statistical uncertainties. Averaging over the centrality range 10–50% gives an upper limit of 26% to 33% (depending on the initial-state model) at 95% confidence level for the CME contribution to the difference between opposite and same charge pair correlations for \( \gamma_{\alpha\beta} \).

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research – Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religion, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional
ALICE Collaboration


1 A.I. Alibikanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
3 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkota, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, CA, United States
7 Central China Normal University, Wuhan, China
8 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
9 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
10 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12 Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
13 Chicago State University, Chicago, IL, United States
14 China Institute of Atomic Energy, Beijing, China
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Departamento de Fisica de Particulas and ICFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Ohio State University, Columbus, OH, United States
19 Department of Physics, Pusan National University, Pusan, Republic of Korea
20 Department of Physics, Seoul National University, Seoul, Republic of Korea
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università e Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università e Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università e Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Padova, Italy
29 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Pisa, Italy
30 Dipartimento di Fisica e Astronomia dell’Università e Sezione INFN, Torino, Italy
31 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
32 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
33 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
34 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
35 Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
36 European Organization for Nuclear Research (CERN), Geneva, Switzerland
37 Excellence Cluster Universe, Technische Universität München, Munich, Germany
38 Faculty of Engineering, Bergen University College, Bergen, Norway
39 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
40 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
41 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
42 Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
43 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
44 Gangneung-Wonju National University, Gangneung, Republic of Korea
45 Gauberti University, Department of Physics, Cavaialat, Italy
46 Helmholtz-Institut für Strahlen- and Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
47 Helsinki Institute of Physics (HIP), Helsinki, Finland
48 Hiroshima University, Hiroshima, Japan
49 Indian Institute of Technology Bombay (IIT), Mumbai, India
50 Indian Institute of Technology Indore, Indore, India
51 Indonesian Institute of Sciences, Jakarta, Indonesia
52 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
53 INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
54 INFN, Sezione di Bari, Bari, Italy