Health impact assessment of traffic-related air pollution in Copenhagen Municipality

Brønnum-Hansen, Henrik; Bender, Anne Mette; Andersen, Zorana Jovanovic; Sørensen, Jan; Bønløkke, Jakob Hjort; Boshuizen, Hendrik; Becker, Thomas; Diderichsen, Finn; Loft, Steffen

Published in:
European Journal of Public Health

DOI:
10.1093/eurpub/cky213.204

Publication date:
2018

Document license:
CC BY

Citation for published version (APA):
Ambient air pollution is a significant health risk factor in the Southern European countries: Greece, Italy, Portugal, Slovenia and Spain. Health impacts attributable to PM2.5 and O3 were largest in Greece and lowest in Portugal. Ambient air pollution concentrations in Southern Europe largely exceed the guideline values set by the World Health Organization (WHO) for fine particles (PM2.5) and partly for ozone (O3). Exposure to ambient air pollution has been linked to increased mortality in several European countries. The United Nations Environmental Program (UNEP) estimated 7 million deaths worldwide attributable to ambient air pollution in 2008 and 50% of those deaths were in developing countries.

Methods: We utilized country level population weighted average concentrations generated by the European Environmental Agency (EEA) and background disease burden data by the World Health Organization (WHO) for fine particles (PM2.5) and partly for ozone (O3). Concentration-response functions were selected to prioritize policy actions. Health impacts were estimated using disease burden methods. Quantification of health impacts in comparable measures like disease burden provides important information to decision makers and enables comparison of risks and helps to prioritize policy actions.

Results: Approximately 2000 adolescents (12-17 years) and 4000 adults (18-64 years) were recruited. All participants reported their smoking-related perceptions before (2016) and one year after (2017) the introduction of PP. Smoking has decreased among adolescents. As in Australia, in France the perception of the harmfulness of smoking has increased in disadvantaged groups. The equalizing effect of the intervention in terms of socioeconomic differences, positively contributes to the elimination of inequalities for successful smoking cessation.

Conclusions: The equalizing effect of the intervention in terms of socioeconomic differences, positively contributes to the elimination of inequalities for successful smoking cessation. Moreover, the equalizing effect of the intervention in terms of socioeconomic differences, positively contributes to the elimination of inequalities for successful smoking cessation. WhatsApp support embedded in cessation service delivery increases the success rate and has favorable effects on follow-up. More over, the equalizing effect of the intervention in terms of socioeconomic differences, positively contributes to the elimination of inequalities for successful smoking cessation.
Background:
High-resolution exposure to traffic-related air pollution can be assessed by modelling levels of nitrogen dioxide (NO2) which together with ultrafine particles mainly originate from diesel-powered vehicles in urban areas. The purpose of the study was to estimate the health benefits of reduced exposure to vehicle emissions assessed as NO2 among the citizens of Copenhagen Municipality, Denmark.

Methods:
We utilized residential NO2 concentrations modelled by use of chemistry transport models to calculate contributions from emission sources to air pollution. We used exposure-response functions linking NO2 concentration estimates with the risk of diabetes, cardiovascular diseases, and respiratory diseases derived from a large Danish study. The DYNAMO-HIA model was applied to the population of Copenhagen by using residential NO2 concentrations combined with demographic data and data from nationwide registers on incidence and prevalence of diseases associated with air pollution. Different scenarios were modelled to estimate the impact of NO2 exposure on related diseases and the potential health benefits of lowering the NO2 level in Copenhagen.

Results:
If NO2 exposure was restricted to the rural level life expectancy in 2040 would increase by two years for men and almost a half year for women. The greatest gain in disease-free life expectancy for men would be lifetime without ischemic heart disease (2.2 years), chronic obstructive pulmonary disease (2.1 years), and asthma (2.3 years). Among women the greatest increase would be lifetime without diabetes (1.2 years) and without stroke (1.1 years).

Conclusions:
Reducing the NO2 exposure by controlling traffic-related air pollution reduces the occurrence of some of the most prevalent diseases and increases life expectancy which can be quantified by DYNAMO-HIA with a high resolution exposure modelling. This tool has demonstrated how traffic planners can assess health benefits from reduced levels of traffic-related air pollution.

Key messages:
- Lowering NO2 exposure by reducing traffic-related air pollution would reduce occurrence of cardiovascular, respiratory and metabolic diseases, lung cancer, and increase disease-free life expectancy.
- The full potential of health gain by reducing NO2 exposure level to that of rural areas would increase life expectancy in Copenhagen by two years for men and almost a half year for women.