Biomasse til energiformål
tilbageføring og bevaring af næringsstoffer i skovbrugssystemer - slutrapport
Callesen, Ingeborg; Ingerslev, Morten; Stupak, Inge; Raulund-Rasmussen, Karsten

Publication date:
2004

Document version
Også kaldet Forlagets PDF

Citation for published version (APA):
Biomasse til energiformål
- tilbageføring og bevaring af næringsstoffer i skovbrugssystemer

I. Callesen, Morten Ingerslev, Inge Stupak Møller og Karsten Raulund Rasmussen

Arbejdsrapport Skov & Landskab nr. 8-2004
Rapportens titel
Biomasse til energiformål: tilbageføring og bevaring af næringsstoffer i skovbrugssystemer - slutrapport

Forfatter
Ingeborg Callesen, Morten Ingerslev, Inge Stupak Møller og Karsten Raulund-Rasmussen

Serie
Arbejdsrapport Skov & Landskab Nr. 8-2004
Rapporten publiceres på www.SL.kvl.dk

Projektet
Energistyrelsens udviklingsprogram for vedvarende energi
Projekt journalnr.: 51161

Bedes citeret

ISBN
87-7903-190-0

Udgiver
Skov & Landskab
Hørsholm Kongevej 11
2970 Hørsholm
Tlf. 35281500
E-post: sl@kvl.dk

Gengivelse er tilladt med tydelig kildeangivelse
I salgs- eller reklameøjemed er eftertryk og citering af rapporten samt anvendelse af navnet Skov & Landskab kun tilladt efter skriftlig tilladelse.

Skov & Landskab er et selvstændigt center for forskning, undervisning, formidling og rådgivning vedr. skov, landskab og planlægning ved Den Kgl. Veterinær- og Landbohøjskole (KVL)
1. FORORD .. 4
2. SUMMARY (IN ENGLISH) .. 6
3. SAMMENDRAG ... 7
4. PROJEKTETS BAGRUND OG PROBLEMSTILLING ... 9
5. AKTIVITETER ... 9
6. TRÆASKES KEMISKE SAMMENSÆTNING ... 10
 NÆRINGSSTOFFER ... 11
 TUNGMETALLER ... 13
 ORGANISKE FORBINDELSER; PAH'ER OG DIOXINER ... 15
7. FORBEHANDLING AF ASKE OG EFFEKTER PÅ OPLØSELIGHED .. 17
8. EFFEKTER PÅ SKOVØKOSYSTEMET VED ASKEUDBRINGNING ... 18
 JORDBUNDENS PH, ACIDITET OG KATIONBYTNINGSKAPACITET .. 18
 NÆRINGSSTOFFTILÆNGELIGHED I JORD OG VÆKSTRESPONS .. 19
 JORDVAND OG UDVASKNING AF NÆRINGSSTOFFER OG TUNGMETALLER 20
 VIRKNING PÅ MOSSER OG LAVER ... 20
9. FORSØG MED UDLÆGNING AF ASKE I POSER PÅ TO LOKALITETER I DANMARK:
 EFFEKTER AF JORDTYPE OG TRÆART ... 20
10. FORSØG MED SPREDNING AF ASKE PÅ THY STATSSKOVDISTRIKT ... 21
11. BEREGNING AF ASKENS KOMPENSATIONSEVNED VED FORSKELIGE SCENARIER FOR
 BIOMASSEUDNYTTELSE ... 23
 KOMPENSATIONSGØDSKNING SOM PRINCIP ... 23
 BEREGNINGER AF NÆRINGSSTOFFER ... 24
 BEREGNINGER AF ASKEKOMPENSATIONSMÆNGDER .. 24
 SCENARIER FOR HUGST OG TILBAGEFØRSEL AF ASKE ... 25
12. KONKLUSION ... 28
13. PERSPEKTIVER ... 30
14. PUBLIKATIONER ... 32
 PUBLICERede ARTIKLER MED RELATION TIL PROJEKTET .. 32
 UPUBLIKERede RAPPORTER OG ARTIKLER ... 32
15. REFERENCER .. 33
16. BILAG I FRIGIVELSE AF NÆRINGSSTOFFER FRA GRANULERET FLISASKE EFTER 7 ÅR I
 JORDMILJØET ... 46
17. BILAG II ASKEANALYSERESULTATER .. 48
18. ANDRE PUBLIKATIONER MED RELATION TIL EMNET .. 53
1. Forord

Udbringning af flisaske i dansk skovbrug – Økologiske konsekvenser.

(Produktudviklingsfonden i skovbruget og træindustrien). Projektleder er Morten Ingerslev.

I denne rapport er alle koncentrationer i analyser af aske opgivet på tørstofbasis. Der korrigeres ikke for glødetab.

Skov & Landskab, 9. januar 2004

Karsten Raulund-Rasmussen Morten Ingerslev
Afdelingsleder Projektleder
2. Summary (in english)

Ecological aspects of wood ash recycling to forests were investigated and included: a) ash concentrations of nutrients, heavy metals and toxic organic compounds (PAH’s and dioxin), b) effects on forest soils by application of different doses of untreated and hardened wood ash, c) nutrient release of in-situ incubated granulated fly ash, and d) nutrient release in relation to harvest scenarios and nutrient uptake in a typical spruce forest stand.

Wood ash properties were investigated by literature studies and analyses of wood ash samples from power- and heat-plants in Denmark and paper mills in Sweden. Wood ash contains calcium, potassium, magnesium and phosphorus in significant concentrations, and micro-nutrients. The concentration of cadmium and other heavy metals is variable. Cadmium concentrations often exceed legal limits for wood ash to be spread on soils. In general, PAH and dioxin concentrations are lower than legal limits.

The effects of wood ash application on soil chemistry and leaching were extracted from a large number of Swedish and Finnish experiments, and one Danish experiment. Generally, pH and nutrient concentrations increase, and acidity decrease in soils. These effects are most commonly seen in the organic layer. Increased leaching of calcium, magnesium and potassium has been observed, especially by application of high doses (>7.5 t ha⁻¹) of untreated wood ash. In comparison, application of hardened ash produce only small effects.

Nutrient release was investigated by incubation of hardened, granulated fly ash in the forest floor under four tree species at two sites. In 1999, after seven years, 19% (w/w) of the ash was dissolved. About 35% of the calcium, potassium and magnesium and about 19% of the phosphorus was dissolved. There was no significant effect of tree species (oak, beech, Norway spruce and Douglas-fir) or site on the nutrient release. A PC-program for nutrient balance calculations in Norway spruce forests including options for nutrient removals and wood ash compensasin, ESBEN, was developed being a major result of the project. In a theoretical calculation of a harvest scenario of including stems only, application of 3 t ha⁻¹ of wood ash could compensate the removal of calcium, magnesium and potassium, but not phosphorus. To compensate whole-tree harvest in thinnings and slash removal after clear-cut higher doses were required. The nutrient release from the ash during the seven growing seasons corresponded well with seven years’ nutrient uptake in a 60-year-old Norway-spruce stand.
3. Sammendrag

Projektets formål var at undersøge økologiske aspekter af askerecirkulering, herunder a) askens indhold af næringsstoffer, b) askens virkning på jordbundskemi og flora ved spredning i forskellige doser, c) opløsningshastigheden af hærdet, coated aske, og d) frigivelsen af næringsstoffer i relation til næringsbevoksning på næringsfattig jord. Projektet er udvidet med en undersøgelse af tungmetaller og toksiske organiske forbindelser i aske.

Askens virkning på jordbundskemi og flora er behandlet med baggrund i publicerede og unpublcerede resultater fra talrige svenske og finske forsøg og et enkelt nyt dansk forsøg. Generelt ses en stigning i pH i jordens organiske lag, forøgelse af næringskoncentrationer og reduceret aciditet. Forøget udvaskning af kalcium, magnesium og kalium observeres i nogle tilfælde, men mest udtalt, når der spredes større doser uhærdet aske (fx > 7,5 t ha\(^{-1}\)). Udvaskning af kadmium er ikke observeret. Spredning af uhærdet aske kan også medføre farveændringer hos mosser og laver i en kort årrække. Virkningerne er størst, når der spredes uhærdet aske, idet hærdet aske giver langt færre og mindre effekter. Spredning af 4 t ha\(^{-1}\) selvhærdet aske førte ikke til øgede koncentrationer af dioxin og PAH’er i jordbunden i det danske forsøg.

Opløsningshastigheden blev undersøgt ved udlægning af askeposer i skovbunden under fire træarter på to lokaliteter i 1991. Der var tale om granuleret. Efter syv år blev poserne taget op og analyseret. Da var 19% af asken opløst. Omtrent 35% af næringsstofferne kalcium, kalium
og magnesium, og 19% af fosforindholdet var opløst. Træart og lokalitet havde ingen indflydelse på frigivelsen af næringsstoffer.

Frigivelsen blev sammenholdt med forskellige scenarier for næringsstoffjernelse ved hugst. Scenarierne blev beregnet i PC-programmet ESBEN. Ved tilførsel af tre tons aske kunne udtaget af kalcium, magnesium og kalium kompenseres ved hugst af stammer, men ikke ved hugst, der inkluderer fortrørede heltræer og hugstaffald. I begge tilfælde var denne dosis utilstrækkelig til at kompensere for fosforudtaget. I en teoretisk beregning svarede frigivelsen af næringsstoffer i de syv vækstsæsoner, forsøget varede, godt til optaget i en 60-årig rødgranbevoksning i samme periode ved en aske dosis på 3 t ha⁻¹.
4. Projektets baggrund og problemstilling

Værkerne har store omkostninger til deponering af aske. Såvel askens indhold af næringsstoffer som værkernes omkostninger til deponering peger på, at askerecirkulering er økonomisk attraktivt og økologisk fornuftigt.

5. Aktiviteter

Aktiviteterne i projektperioden har omfattet egne eksperimenter og studier er publicerede undersøgelser fra lande, hvor problemstillingen har været i fokus i mange år, fx Sverige og Finland.
Der er udført mange forsøg med askespredning i skoven i de nordiske lande siden 1950’erne. Derfor er der publiceret resultater fra talrige videnskabelige undersøgelser af effekter på vækst, vandkvalitet, vegetation og fauna, og rapporter med anbefalinger fra myndighederne. De tidlige forsøg er udført i Finland, mens der har været stor aktivitet i Sverige i 1990’erne, som har resulteret i Ph.d. afhandlinger af Eva Ring, Mahmoud El Make, Staffan Jacobson, Ulf Sikstrøm og Thorbjørn Nilsson. I en række forskellige forsøg, som er sammenstillet af Karlton et al. (2003), er uhærdet, hærdet og forbehandlet aske i doser fra 1 t ha\(^{-1}\) til 20 t ha\(^{-1}\) afprøvet i nåleskove med forskellige vækstbetingelser, hvad angår klima og jordbund. Arbejdet i Sverige har medført, at der foreligger svenske anbefalinger til askeudbringning (Skogsstyrelsen, 2002), som sætter standarder for krav til askens gødningsværdi og maksimale indhold af tungmetaller. Udover litteraturstudier bygger rapporten på følgende aktiviteter:

1) I Danmark blev der i 1991 etableret et forsøg med opløsningshastighed af granuleret aske i skovbunden. Formålet var at undersøge, hvordan denne type forbehandlet aske omdannes og opløses over tid. To forskellige jordtyper, en næringsrig og en næringsfattig og fire forskellige træarter indgår i forsøget. Forsøget og dets resultater er beskrevet i afsnit 9 og vedlagt som manuskript (bilag I).

3) Et forsøg med spredning af flisaske i yngre sitkagranbevoksninger på Thy Statsskovdistrikt blev startet i år 2000 (Ingerslev 2001a,b). Resultater af undersøgelser af effekter på jordbundens kemiske egenskaber foreligger og refereres kort her (afsnit 10).

6. Træaskes kemiske sammensætning

og bly er lavere i asker fra afbrænding af flis fra løvtræer i forhold til nåletræer (data er ikke vist her).

De her anvendte koncentrationer angiver askernes samlede indhold af stoffer. Data for udvalgte resultater er vist i tabel 1 – 3 og i bilag 2. Endvidere indeholder PC-programmet ESBEN (i den udvidede version, som endnu ikke er offentliggjort, men sendt til Energistyrelsen ved afslutningen af dette projekt) disse data samt hyppighedsfordelinger for udvalgte stoffer (ESBEN er beskrevet senere i denne rapport). Ud af de i alt 39 analyserede askeprøver var det kun 10 af askerne, der overholdt miljøkravene til udspredning i skoven, og kun to af dem kunne spredes med den store dosering (7,5 tørr aske pr ha.) jf. Bioaskebekendtgørelsen.

Næringsstoffer

Undersøgelser af aske fra danske værker viser, at indholdet af næringsstoffer og tungmetaller (tabel 1 og bilag 2) varierer relativt meget fra aske til aske, og at det er svært at generalisere vedr. indholdet i bund-, flyve- eller blandasker. Der er dog en tendens til at koncentrationerne ofte er lavere i bundaskerne i forhold til flyve- og blandaskerne. Indholdet af kvælstof er altid meget lavt, og asken skal derfor betragtes som uegnet til kvælstof-gødning. Der er fundet en relativ god sammenhæng mellem koncentrationen af kalium og fosfor, og en noget dårligere sammenhæng mellem koncentrationen af kalium og kalcium samt kalium og magnesium (bilag 2). Der er ikke i øvrigt fundet tydelige sammenhænge mellem indholdet af forskellige næringsstoffer.

Kulstofindholdet i askerne varierer forholdsvis meget, og det tyder på, at der er relativ stor forskel på, hvor effektivt biomassen er blevet afbrændt. Kulstofindholdet er i nogle tilfælde højere i blandaskerne i forhold til flyve- og bundaskerne, hvilket kunne hænge sammen med, at blandaskerne ofte kommer fra mindre værker, der muligvis kan have en mindre effektiv forbrænding. Denne sammenhæng kan dog på ingen måde bevises med det forhåndenværende materiale. Indholdet af kulstof spiller en væsentlig rolle for askens evne til at hærde uden brug af tilsætningsstoffer. Hvis askens indhold af kulstof er lavt (< 100 mg pr g tørstof, denne grænse kan dog i praksis være endnu lavere afhængigt af hærdningsproceduren) vil asken kunne hærde på samme måde som brændt kalk. Denne proces er vigtig for forbehandlingen af aske inden spredning i skoven, da det ofte vil være ønskeligt at sænke askens reaktivitet og opløselighed i skovbunden ved brug af en hærdningsproces.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Middel</th>
<th>Min.</th>
<th>Max.</th>
<th>Stdf.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(mg/g TS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kulstof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 1</td>
<td>1</td>
<td>6,6</td>
<td>6,6</td>
<td>6,6</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske 3</td>
<td>3</td>
<td>33,8</td>
<td>13,6</td>
<td>56,8</td>
<td>21,8</td>
</tr>
<tr>
<td>Blandaske 8</td>
<td>8</td>
<td>79,9</td>
<td>10,8</td>
<td>179,5</td>
<td>59,6</td>
</tr>
<tr>
<td>Kvalestof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 1</td>
<td>1</td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske 3</td>
<td>3</td>
<td>0,52</td>
<td>0,24</td>
<td>0,92</td>
<td>0,35</td>
</tr>
<tr>
<td>Blandaske 8</td>
<td>8</td>
<td>0,71</td>
<td>0,24</td>
<td>1,53</td>
<td>0,48</td>
</tr>
<tr>
<td>Fosfor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 19</td>
<td>19</td>
<td>15,5</td>
<td>3,6</td>
<td>34,8</td>
<td>8,7</td>
</tr>
<tr>
<td>Flyveaske 10</td>
<td>10</td>
<td>20,7</td>
<td>7,9</td>
<td>30,9</td>
<td>7,8</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>20,4</td>
<td>8,1</td>
<td>27,9</td>
<td>6,8</td>
</tr>
<tr>
<td>Kalium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 19</td>
<td>19</td>
<td>54,1</td>
<td>8,5</td>
<td>114,6</td>
<td>30,2</td>
</tr>
<tr>
<td>Flyveaske 10</td>
<td>10</td>
<td>61,7</td>
<td>35,9</td>
<td>91,0</td>
<td>21,0</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>65,4</td>
<td>41,9</td>
<td>91,3</td>
<td>18,4</td>
</tr>
<tr>
<td>Kalcium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 17</td>
<td>17</td>
<td>166</td>
<td>59</td>
<td>350</td>
<td>80</td>
</tr>
<tr>
<td>Flyveaske 8</td>
<td>8</td>
<td>222</td>
<td>102</td>
<td>302</td>
<td>74</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>181</td>
<td>48</td>
<td>242</td>
<td>59</td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 17</td>
<td>17</td>
<td>17,8</td>
<td>4,4</td>
<td>37,1</td>
<td>9,4</td>
</tr>
<tr>
<td>Flyveaske 8</td>
<td>8</td>
<td>23,8</td>
<td>11,5</td>
<td>44,4</td>
<td>11,3</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>35,9</td>
<td>8,9</td>
<td>52,5</td>
<td>13,8</td>
</tr>
<tr>
<td>Jern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 17</td>
<td>17</td>
<td>11,8</td>
<td>4,8</td>
<td>23,5</td>
<td>5,3</td>
</tr>
<tr>
<td>Flyveaske 8</td>
<td>8</td>
<td>13,7</td>
<td>7,8</td>
<td>18,8</td>
<td>4,1</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>16,0</td>
<td>6,4</td>
<td>28,1</td>
<td>8,8</td>
</tr>
<tr>
<td>Mangan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 17</td>
<td>17</td>
<td>11,0</td>
<td>0,6</td>
<td>42,0</td>
<td>12,0</td>
</tr>
<tr>
<td>Flyveaske 8</td>
<td>8</td>
<td>10,3</td>
<td>1,0</td>
<td>22,9</td>
<td>8,8</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>8,4</td>
<td>1,2</td>
<td>14,0</td>
<td>3,4</td>
</tr>
<tr>
<td>Svovl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 1</td>
<td>1</td>
<td>1,6</td>
<td>1,6</td>
<td>1,6</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske 3</td>
<td>3</td>
<td>8,5</td>
<td>5,7</td>
<td>11,1</td>
<td>2,7</td>
</tr>
<tr>
<td>Blandaske 8</td>
<td>8</td>
<td>6,2</td>
<td>2,5</td>
<td>10,8</td>
<td>3,1</td>
</tr>
<tr>
<td>Natrium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 17</td>
<td>17</td>
<td>7,5</td>
<td>2,7</td>
<td>13,3</td>
<td>3,1</td>
</tr>
<tr>
<td>Flyveaske 8</td>
<td>8</td>
<td>9,0</td>
<td>4,3</td>
<td>15,7</td>
<td>4,2</td>
</tr>
<tr>
<td>Blandaske 9</td>
<td>9</td>
<td>12,9</td>
<td>5,0</td>
<td>18,5</td>
<td>5,3</td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 1</td>
<td>1</td>
<td>17,6</td>
<td>17,6</td>
<td>17,6</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske 3</td>
<td>3</td>
<td>30,5</td>
<td>8,4</td>
<td>66,7</td>
<td>31,6</td>
</tr>
<tr>
<td>Blandaske 8</td>
<td>8</td>
<td>16,7</td>
<td>11,2</td>
<td>22,1</td>
<td>3,5</td>
</tr>
<tr>
<td>Silicium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 1</td>
<td>1</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske 3</td>
<td>3</td>
<td>95</td>
<td>37</td>
<td>193</td>
<td>86</td>
</tr>
<tr>
<td>Blandaske 8</td>
<td>8</td>
<td>122</td>
<td>102</td>
<td>161</td>
<td>19</td>
</tr>
<tr>
<td>Titanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske 1</td>
<td>1</td>
<td>0,50</td>
<td>0,50</td>
<td>0,50</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske 3</td>
<td>3</td>
<td>2,94</td>
<td>0,29</td>
<td>6,54</td>
<td>3,23</td>
</tr>
<tr>
<td>Blandaske 8</td>
<td>8</td>
<td>0,64</td>
<td>0,49</td>
<td>0,92</td>
<td>0,15</td>
</tr>
</tbody>
</table>
Tungmetaller

Indholdet af tungmetaller varierer også relativt meget fra aske til aske (tabel 2 og bilag 2) og det er igen svært at generalisere vedr. indholdet i bund-, flyve- eller blandasker. Der er dog en tendens til, at der er flere bund- og blandasker med en relativ lav koncentration af kadmium og kviksølv i forhold til flyveaskerne. Ifølge Bioaskebekendtgørelsen må man sprede hhv. 0,5, 1,0 eller 7,5 ton tør aske pr. ha over en periode på 10 år afhængig af askens indhold af først og fremmest kadmium (hhv. 15, 8 og 0,5 mg kadmium pr. kg tørstof, som modsværer askekategorierne hhv. T1, T2 og T3 i Bioaskebekendtgørelsen). Derfor spiller koncentrationen af kadmium en central rolle for mulighederne for at anvende askespredning i skovbruget. Flyveaske kan sjældent opfylde bioaskebekendtgørelsens to laveste grænseværdier for tungmetalindhold, hvorimod bundaske oftere ligger i området for de to laveste grænseværdier. Tungmetallerne stammer først og fremmest fra den afbrændte biomasses indhold af tungmetaller. Indholdet i biomassen varierer formodentlig med bevoksningens afstand til punktkilder samt jordens naturlige indhold af tungmetaller, som er også meget variabel. Indholdet kan være stort i kalkrig morænelerjord, mens sandjorde normalt har et lavere indhold (Andersen, 2001).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Middel (µg/g TS)</th>
<th>Min.</th>
<th>Max.</th>
<th>Stdaf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadmium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>19</td>
<td>4,7</td>
<td><0,1</td>
<td>16,0</td>
<td>4,4</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>10</td>
<td>22,4</td>
<td>5,0</td>
<td>58,0</td>
<td>17,1</td>
</tr>
<tr>
<td>Blandaske</td>
<td>9</td>
<td>9,0</td>
<td>0,1</td>
<td>19,5</td>
<td>7,3</td>
</tr>
<tr>
<td>Zink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>17</td>
<td>539</td>
<td>45</td>
<td>1700</td>
<td>534</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>8</td>
<td>1355</td>
<td>250</td>
<td>2830</td>
<td>786</td>
</tr>
<tr>
<td>Blandaske</td>
<td>9</td>
<td>462</td>
<td>192</td>
<td>836</td>
<td>224</td>
</tr>
<tr>
<td>Bly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>19</td>
<td>89</td>
<td>3</td>
<td>220</td>
<td>71</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>10</td>
<td>147</td>
<td>50</td>
<td>450</td>
<td>117</td>
</tr>
<tr>
<td>Blandaske</td>
<td>9</td>
<td>228</td>
<td>15</td>
<td>1320</td>
<td>419</td>
</tr>
<tr>
<td>Kobber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>17</td>
<td>147</td>
<td>24</td>
<td>250</td>
<td>78</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>8</td>
<td>149</td>
<td>69</td>
<td>250</td>
<td>66</td>
</tr>
<tr>
<td>Blandaske</td>
<td>9</td>
<td>170</td>
<td>54</td>
<td>264</td>
<td>68</td>
</tr>
<tr>
<td>Kobolt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>17</td>
<td>15,9</td>
<td>6,0</td>
<td>27,0</td>
<td>6,4</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>8</td>
<td>16,6</td>
<td>7,2</td>
<td>26,0</td>
<td>6,8</td>
</tr>
<tr>
<td>Blandaske</td>
<td>9</td>
<td>7,5</td>
<td>5,9</td>
<td>10,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Krom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>3</td>
<td>58</td>
<td>20</td>
<td>127</td>
<td>60</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>5</td>
<td>53</td>
<td>22</td>
<td>107</td>
<td>32</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>24</td>
<td>12</td>
<td>35</td>
<td>8</td>
</tr>
<tr>
<td>Kviksølv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>3</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>5</td>
<td>0,37</td>
<td><0,1</td>
<td>0,83</td>
<td>0,32</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>0,13</td>
<td><0,1</td>
<td>0,38</td>
<td>0,16</td>
</tr>
<tr>
<td>Nikkel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>3</td>
<td>36</td>
<td>22</td>
<td>61</td>
<td>22</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>5</td>
<td>48</td>
<td>26</td>
<td>79</td>
<td>20</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>34</td>
<td>29</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>Arsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>1</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>3</td>
<td>6,5</td>
<td>3,9</td>
<td>8,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>5,7</td>
<td>3,7</td>
<td>10,5</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Organiske forbindelser; PAH’er og dioxiner

Data for analyseresultaterne vedr. indholdet af Polyaromatiske hydrocarboner (PAH’er) i aske er givet i tabel 3 og i bilag 2. EPA-PAH er den oftest anvendte samle-parameter for PAH’er i international sammenhæng. Den består af summen af 16 PAH’er (Naftalen, Acenaftylen, Acenaften, Fluoren, Fenantren, Antracen, Fluoranten, Pyren, Bens(a)antracen, Krysen, Bens(b)fluoranten, Bens(k)fluoranten, Bens(a)pyren, Dibens(ah)antracen, Benso(ghi)perylen, Indeno(123cd)pyren) jf. standard fra United States Environmental Protection Agency. PAH-can er summen af de 7 EPA-PAH’er (Bens(a)antracen, Krysen, Bens(b)fluoranten, Bens(k)fluoranten, Bens(a)pyren, Dibens(ah)antracen, Indeno(123cd)pyren), der er cancerogene. Generelt er de målte værdier relativt lave i forhold til Bioaskebekendtgørelsens grænseværdi på max 3 mg pr. kg tørstof, selvom grænseværdien kun omfatter en del af de PAH’er, der er medtaget under EPA-PAH. Der er dog tre af de 12 målte prøver, der overstiger denne grænseværdi. Det skal her bemærkes, at de to flyveasker, der har det højeste indhold af PAH’er, er de to svenske asker (bilag 2). Indholdet af de cancerogene PAH’er er ofte under detekitionsgrænsen (0,05 mg pr. kg tørstof).

Indholdet af dioxiner varierer relativt meget fra aske til aske (tabel 3 og bilag 2) og det er svært at generalisere vedr. indholdet i bund-, flyve- eller blandasker. Gennemsnitskoncentrationen for alle askeprøverne er 22 ng per kg TS (I-TEQ), hvilket er højere end det, der er fundet i halmasker (3,7 ng per kg TS I-TEQ) (Hansen et al. 2003). Der findes ingen offentliggjorte analyser af dioxinindholdet i danske skovjorde, men indholdet kan formodentlig skønnes til ca. 100 ng per m² (I-TEQ) (DMU, personlig kommunikation). Spredning af 4 tons aske med et
dioxinindhold på 22 ng per kg TS (I-TEQ) på en skovjord svarer således til en forøgelse af skovjordens dioxinindhold på ca. 9 %.

Tabel 3. PAH’er og dioxiner. Gennemsnitskoncentrationen, antallet af prøver (N), min. og max. koncentrationer samt standardafvigelse (Stdaf.) for EPA-PAH (summen af 16 PAH’er jf. standard fra United States Environmental Protection Agency), PAH-can. (summen af de 7 EPA-PAH’er der er cancerogene), PAH-andre (summen af de EPA-PAH’er der ikke er cancerogene), WHO-TEQ (toxicitets-ækvivalenter jf. standard fra World Health Organisation), I-TEQ (Internationale toxicitets-ækvivalenter). (Se teksten for en mere uddybende forklaring af disse parametre.) Datamaterialet indeholder en del ekstraordinært høje observationer, som kan ses i bilag 2.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Middel</th>
<th>Min.</th>
<th>Max.</th>
<th>Stdaf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA-PAH (µg/g TS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>1</td>
<td><0,24</td>
<td><0,24</td>
<td><0,24</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>3</td>
<td>4,02</td>
<td><0,24</td>
<td>7,60</td>
<td>3,78</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>0,91</td>
<td><0,24</td>
<td>6,00</td>
<td>2,07</td>
</tr>
<tr>
<td>PAH-can. (µg/g TS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>1</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>3</td>
<td>1,23</td>
<td><0,05</td>
<td>3,70</td>
<td>2,14</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>0,10</td>
<td><0,05</td>
<td>0,82</td>
<td>0,29</td>
</tr>
<tr>
<td>PAH-andre (µg/g TS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>1</td>
<td><0,2</td>
<td><0,2</td>
<td><0,2</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>3</td>
<td>2,79</td>
<td>0,07</td>
<td>4,40</td>
<td>2,37</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>0,81</td>
<td><0,2</td>
<td>5,20</td>
<td>1,79</td>
</tr>
<tr>
<td>WHO-TEQ (ng/kg TS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>1</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>3</td>
<td>10,23</td>
<td>2,02</td>
<td>26,34</td>
<td>13,96</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>40,26</td>
<td>0,12</td>
<td>100,43</td>
<td>42,95</td>
</tr>
<tr>
<td>I-TEQ (ng/kg TS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundaske</td>
<td>1</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>-</td>
</tr>
<tr>
<td>Flyveaske</td>
<td>3</td>
<td>8,07</td>
<td>1,59</td>
<td>20,91</td>
<td>11,12</td>
</tr>
<tr>
<td>Blandaske</td>
<td>8</td>
<td>30,55</td>
<td>0,12</td>
<td>73,84</td>
<td>31,79</td>
</tr>
</tbody>
</table>
7. Forbehandling af aske og effekter på opløselighed

Formålet med forbehandlingen er at gøre størrelsesfordelingen mere ensartet, lette håndteringen ved spredningen og reducere reaktivitet og opløsningshastighed. Derved bliver støvgenerne fra den alkaliske aske også reduceret. Asken kan også hærdes til piller eller granulat ved at iblande vand og evt. bindemiddel. Bindemiddel er påkrævet, hvis kulindholdet er højere end 10%. Praktisk erfaring har vist, at denne grænse måske nærmere bør være maksimalt 5% kulstof. Massen presses derpå gennem et anlæg, og produktet bliver piller med en ensartet partikelstørrelse end uhærdet aske. Metoden er blevet til gennem et svensk udviklingsarbejde. Man opnåede, at ca. 75% af de producerede piller var større end 2 mm, og kun ca. 10% var mindre end 0,5 mm i en partikelstørrelsesanalyse (Lövgren et al., 200x). Granulering foregår på en anden type anlæg, og produktionen er lidt dyrere.

Selvhærdning og knusning er den billigste metode, men giver ikke ensartet størrelsesfordeling og stabiliteten bliver dårlig, hvis restkulindholdet i asken er højt. Undersøgelser af opløseligheden af piller og granuleret aske i sammenligning med uhærdet aske er gennemført ved laboratorieforsøg og feltforsøg. Pelletteret og granuleret aske opløses meget langsommere end ubehandlet aske og langsommere end selvhærdet knust aske (Ring et al., 1999). Frigivelseshastigheden af de enkelte næringsstoffer bliver mere ensartet ved pellettering eller granulering. Den store variation i restkulindhold i træaske kræver, at indholdet kendes ved
forbehandlingen af asken for at sikre, at askepillerne får så ensartede opløsningsegenskaber som muligt.

8. Effekter på skovøkosystemet ved askeudbringning

Generelt afhænger størrelsen af effekterne på skovøkosystemet af den udbragte mængde aske og af askens reaktivitet. De største effekter ses ved spredning af store doser, fx over 7,5 t ha⁻¹ uhærdet aske, mens spredning af hærdet, knust aske og granuleret og pelleteret aske giver langt færre og mindre virkninger på skovøkosystemet. I forbindelse med askerecirkulering spiller askens reaktivitet en central rolle, fordi denne egenskab kan manipuleres ved forbehandling.

Jordbundens pH, aciditet og kationbytningskapacitet

Effekterne på jordbunden undersøges ved at analysere jordprøver 1 - 20 år efter spredning af aske og ved sammenligning med tilsvarende jordegenskaber i kontrolparceller. På en sur skovjord, som typisk har pH 3-4 i humuslaget, virker aske som et kalkningsmiddel på samme måde som jordbrugskalk. I mange forsøg er der registreret stigning i pH i det organiske lag med typisk 0,5 –1 enhed i årene efter sprede, og effekten kan ofte registreres mere end 10 år efter askespredning. Denne virkning er størst hos uhærdet aske. pH stigningen ved spredning af granuleret aske er i intervallet 0-0,5 enheder.

I mineraljordens øverste lag er ændringerne små, pH stiger typisk 0-0,3 enheder. pH stigningen vil reducere aktiviteten af aluminium og mangan, der begge kan virke som plantegift. Aciditeten, som bestemmes ved titrering af jord og jordvæske til neutralitet (ofte pH 6,5), udgøres af surt reagerende metalkationer og protoner. Aciditeten sænkes ved askespredning, idet opløseligheden af aluminium falder. Kationbytningskapaciteten (CEC) i jordens organiske

Næringsstoftilgængelighed i jord og vækstrespons

aske på næringsfattige jorde kunne sikre en bedre udnyttelse af den luftbårne kvælstofdeposition på 15-40 kg ha\(^{-1}\) per år.

Jordvand og udvaskning af næringsstoffer og tungmetaller

Virkninger på jordvandet undersøges fx ved kontinuert sugning af jordvand ved brug af lysimetre i jordbunden. I større dybde end 30 cm nede i mineraljorden ses der generelt ingen eller meget begrænsede ændringer i jordvandets pH. Stigninger i pH i jordvandet er kun set ved doser på over 10 t aske ha\(^{-1}\).

Mobiliten af tungmetaller sænkes, når pH hæves, som det ofte ses i det organiske lag. Udvaskning af tungmetaller efter askespredning i niveauer, der overstiger krav til rent drikkevand, er ikke registreret, idet tilførte tungmetaller synes at være bundet i det organiske lag. For nogle tungmetaller, fx kadmium, er bindingen elektrostatisk, mens den for andre fx kobber kan være specifikt knyttet til organisk stof.

Virkning på mosser og laver

Ved spredning af aske reagerer mosser og laver ofte med misfarvning. Virkningen ses dog kun, når der er tale om uhærdet aske. Efter nogle år aftager virkningen. I almindelighed er virkningerne, udover de helt kortvarige, begrænsede, når der er tale om normale askedoser i intervallet 2-4 t ha\(^{-1}\).

9. **Forsøg med udlægning af aske i poser på to lokaliteter i Danmark: effekter af jordtype og træart**

Afsnittet bygger på artikelmanuskriptet i bilag I, hvor undersøgelsen uddybes. Granuleret aske i finmaskede net af polyethylen blev inkuberet i jordbunden på en næringsrig og en næringsfattig skovlokalitet under træarterne bøg, eg, douglasgran og rødgran. Formålet var at undersøge, hvor hurtigt næringsstofferne i asken blev frigivet fra askeposerne. Efter syv år blev askens kemiske ændringer analyseret og intensiteten af mykorrhizasvampe bestemt. Efter syv år var askens masse kun reduceret med 19%, mens en større andel af næringsstofferne var forsvundet fra
askeposerne: for kalcium, magnesium og kalium ca. 35%, og for fosfor ca. 19%. Mængderne repræsenterer nettoændringer i perioden, og det kan ikke udelukkes, at nogle poser midlertidigt har optaget næringsstoffer under inkuberingen.

Nedbrydningsmiljøet på de to jordtyper og under de fire forskellige træarter havde ikke indflydelse på opløsningshastigheden af flisasken. Forsøget var ikke anlagt for at undersøge effekter af askens forbehandling, og derfor indgik kun en enkelt type aske i forsøget. I fremtidige forsøg vil det være relevant at teste reaktiviteten af forskellige typer forbehandlet aske på samme lokalitet.

Intensiteten af mykorrhizasvampe efter 7 års inkubering var generelt større på den næringsfattige lokalitet i sammenligning med den næringsrige. Rødgranparcellen på den næringsrige lokalitet var dog en undtagelse, idet intensiteten var på højde med den næringsfattige lokalitet. Resultatet peger på, at mykorrhizasvampe spiller en relativt større rolle i nedbrydningen på næringsfattige lokaliteter end på næringsrige lokaliteter. Det var dog uden betydning for askens opløsningshastighed, idet poserne indeholdt de samme mængder på begge lokaliteter efter 7 år.

10. Forsøg med spredning af aske på Thy Statsskovdistrikt

Virkninger på jordbunden og jordvandskvaliteten ved spredning af flisase blev undersøgt i to sitkagranbevoksninger på Thy statsskovdistrikt. Forsøget er så vidt vides den eneste danske undersøgelse af økologiske virkninger af askespredning til dato. I maj 2000 spredtes ca. 4 t ha⁻¹ flisase af fyr og sitkagran på i en sitkagranbevoksning i Nystryp plantage. Behandlingerne blev gentaget i tre blokke. Den anvendte aske fra Hurup Varneværk var delvis selvhærdet ved opbevaring i skoven inden udbringning. Asken fra Vestervig Varneværk var vådudasket og dårligt hærdet under afvanding, der foregik ved udsprede på et åbent areal i skoven. I den forbindelse kan en del letpløselige næringsstoffer være tabt.

På et forsøgsareal i Stenbjerg plantage blev der spredt 2 ton aske per ha i 1991 (Ingerslev, 2001b). Jordene, som i begge forsøg er udviklet på flyvesand, har lavt pH (3-4,5) og et lavt indhold af tilgængelige næringsstoffer. Kullstof og kvælstofpuljen er hovedsageligt bundet i morlaget ovenpå mineraljorden (Callesen & Ingerslev, 200x).

Askebehandlingerne ændrede de kemiske egenskaber i det organiske lag, mens mineraljorden var opåvirket. I det organiske lag steg pH med 1 enhed fra ca. 3 til ca. 4. Koncentrationerne af ombytteligt kalcium var mere end fordoblet fra 26,2 mmolₖg⁻¹ til 78,8
mmol$_c$ kg$^{-1}$ i Hurup og 92,8 mmol$_c$ kg$^{-1}$ i Vestervig. Tilsvarende koncentrationsstigninger sås for magnesium. Aciditeten faldt, og CEC (kationbytningskapacitet) og basemætning steg i sammenligning med de ubehandlede kontrolparceller. Koncentrationen af ombytteligt kalium i O-horisonten øgedes svagt fra 6,7 mmol$_c$ kg$^{-1}$ til 7,6 – 8 mmol$_c$ kg$^{-1}$. Koncentrationen af ekstraherbart fosfor steg ligeledes. I den øverste del af mineraljorden var stigningen i fosforkoncentration tydelig i de behandlede parceller, hvorimod kaliumkoncentrationen i parceller, behandlet med aske fra Vestervig, kun var marginalt højere end kontrollen. I parceller behandlet med aske fra Hurup sås ingen tendens til øget kaliumkoncentration.

Asken fra de to varmeværker havde en ensartet effekt på pH og aciditet. Undersøgelsen skulle bl.a. vise, om der var belæg for et mere intensivt analyseprogram, der også inddrager blokkeffekt og tillader statistisk analyse. Ved prøvetagning blev 5 delprøver per parcel derfor slået sammen med prøver fra samme behandling i de to andre blokke til kemisk analyse. Effekterne på pH og aciditet i det organiske lag er så tydelige, at separate analyser af hver forøgseflej (behandling og blok) formodentlig ville vise statistisk signifikante ændringer i pH og aciditet i det organiske lag. Ændringerne i pH og basemætning i det organiske lag svarer godt til erfaringer, der er gjort i tilsvarende svenske og finske forsøg med spredning af uhærdet aske i doser mellem 1 til 7 t ha$^{-1}$, hvor effekterne er undersøgt op til 19 år efter udspredning. pH stigninger på 0,5 – 2 enheder er observeret i 14 forskellige publikationer fra feltforsøg (Karltun et al., 2003).

Tungmetaller, PAH’er og dioxin blev analyseret, og resultaterne for Nystryp forsøget refereres her. Koncentrationer af ombyttelige tungmetaller i mineraljorden var under bestemmelsesgrænsen, som er 0,05 mg kg$^{-1}$ tørstoff (TS) for kadmium. I det organiske lag var koncentrationerne meget lave, omkring 0,1 mg kadmium kg$^{-1}$ TS. Lave blykoncentrationer blev fundet i den øverste del af mineraljorden, men var i det organiske lag lavere end bestemmelsesgrænsen på 0,5 mg kg$^{-1}$ TS. Jordkvalitetskriteriet (Miljøstyrelsen, 2003) for tungmetaller baseres på ekstraktion i 7 møler salpersyre1. Denne ekstraktion frigør en større fraktion, end den, der er umiddelbart tilgængelig i en sur skovjord. Undersøgelsen af den omyttelige fraktion kan derfor ikke sammenlignes med jordkvalitetskriteriernes grænseværdi på 0,5 mg kg$^{-1}$ TS for kadmium. Det konkluderes, at askespredningen ikke har ført til en målbar forøgelse i koncentrationen af tungmetaller i sammenligning med kontrolparcellerne.

1 Metoden er beskrevet i Dansk Standard 259
PAH’er i målelige niveauer blev fundet i det organiske lag på begge lokaliteter, og ikke i de øverste 5 cm af mineraljorden. Sum-PAH koncentrationerne lå i intervallet 0,27 – 0,44 mg kg\(^{-1}\) TS og dermed under grænseværdien på 1,5 mg kg\(^{-1}\) TS (Miljøstyrelsen, 2000). De askebehandlede parceler havde ikke forhøjede niveauer i sammenligning med kontrollen.

Dioxinforbindelser blev kun fundet i det organiske lag og ikke i prøver fra de øverste 5 cm af mineraljorden. Koncentrationen i kontrolparceller og behandlede parceller adskilte sig tilsyneladende ikke fra hinanden. De dioxinforbindelser, som blev fundet, var 1,2,3,4,6,78 hepta CDD (polychloreret dibenzodioxin) med koncentrationer på 35 til 39 ng kg\(^{-1}\) TS, 1,2,3,4,6,78 hepta CDF (polychloreret dibenzofuran) med 20 til 49 ng kg\(^{-1}\) TS, oktaklordibensdioxin med ca 120 ng kg\(^{-1}\) TS og oktaklordibensfuran med 38 til 62 ng kg\(^{-1}\) TS. Dioxiner figurerer ikke på Miljøstyrelsens liste over jordkvalitetskriterier.

På basis af forsøget kan det konkluderes, at spredning af 4 t ha\(^{-1}\) delvis hærdet aske tilsyneladende ikke har øget koncentrationerne af tungmetaller, PAH’er og dioxiner. Stigningen i pH i det organiske lag svarer til, hvad man har set i udenlandske undersøgelser ved tilsvarende doser uhærdet aske.

11. Beregning af askens kompensationsevne ved forskellige scenarier for biomasseudnyttelse

Kompensationsgødsning som princip

Man anbefaler, på visse særligt udsatte lokaliteter, at der kompenseres med den mængde næringsstoffer, der fjernes med træbiomassen fra et givet areal.

Beregninger af næringsstoffjernelse

Beregninger af askekompensationsmængder

Scenarier for hugst og tilbageførsel af aske

Tabel 4 Næringspuljer i granuleret flyveske (kg ha⁻¹) ved to doser i Ulborg træartsforsøget (bilag I) sammenholdt med to scenarier for flishugst i rødgran, produktionsklasse 10 (Møller & Ingerslev 2001). Akkumulering af næringsstoffer i 60-årig rødgran (Ingerslev & Hallbäcken, 1999).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A: kun stammer</td>
<td>B: fortørede heltærer i tyndinger samt hugstaffald efter renafdrift</td>
</tr>
<tr>
<td></td>
<td>kg ha⁻¹ pr 7 år</td>
<td>kg ha⁻¹</td>
<td>kg ha⁻¹</td>
<td>kg ha⁻¹</td>
<td></td>
</tr>
<tr>
<td>Kalcium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>363</td>
<td>242</td>
<td>121</td>
<td>105</td>
<td>280</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>909</td>
<td>605</td>
<td>304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>42</td>
<td>28</td>
<td>14</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>105</td>
<td>69</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>120</td>
<td>78</td>
<td>42</td>
<td>66</td>
<td>110</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>299</td>
<td>195</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosfor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>22</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Over en 60-årig omdrift, produktionsklasse 10, varierer udtaget af kalcium med biomassen fra 280 kg/ha, når kun stammer fjernes, til 400 kg/ha når de to første tyndinger og hugstaffaldet efter renafdrift udnyttes til flis efter fortørring i bevoksningen. De tilsvarende tal for magnesium, kalium og fosfor er 50/80 kg/ha, 110/220 kg/ha og 20/40 kg/ha (tabel 4). Sammenlignes med indholdet af næringsstoffer i den træaske, der blev benyttet i et eksperiment med udlægning af granuleret flisaske (refereret i afsnit 9 og mere detaljeret i bilag I), kan 3 tons aske kompensere for udtaget af næringsstoffer med stammer alene for kalcium, magnesium og kalium. For fosfor skal man op omkring den maksimalt tilladte dosis på 7,5 t ha⁻¹ per 100 år for at kompensere for udtaget af stammer alene. Ved udtag af flis efter fortørring, som nævnt ovenfor, er den
maksimalt tilladte dosis på 7,5 t ha\(^{-1}\) nødvendig for at kompensere for udtaget af kalcium, magnesium og kalium, mens det ikke er tilstrækkeligt for at kunne kompensere for udtaget af fosfor. For en aske fra Kofman (1987) er den kompenserende mængde aske i Møller & Ingerslev (2001) dog beregnet til at ligge i intervallet 2,2-3,1 t ha\(^{-1}\) tør råaske per omdrift, når kun stammer udtages, og i intervallet 4,8-6,9 t ha\(^{-1}\) tør råaske per omdrift, når de to første tyndinger og hugstaffaldet efter renafdrift udnyttes til flis efter fortørring i bevoksningen. Dvs. også fosfor kan i dette tilfælde kompenseses med de maksimalt tilladte 7,5 t ha\(^{-1}\) tør råaske per omdrift. I ESBEN kan flere scenarier gennemregnes, og askekonzentrationer og kompensationsmængder kan sammenholdes med dele af gældende lovgivning på området, bl.a. den maksimale tilladte dosis, og den mængde der må spredes per gang. For T1 aske er det 0,5 t/ha per 10 år og for T2 aske 1,0 t/ha for 10 år. Sidstnævnte afhænger af kadmium indholdet i asken. I T1 asken skal indholdet være lavere end 15 mg Cd kg\(^{-1}\) TS og i T2 asken skal indholdet være lavere end 8 mg Cd kg\(^{-1}\) TS (Miljøstyrelsen, 2000).

Beregning af massebalancer for udtag af næringsstoffer og kompensationsgødning over en omdrift, bør følges op af betragtninger om dynamikken i næringsstofkredsløbet. Den granulerede aske, som blev brugt i forsøget (afsnit 9), frigav 35% af næringsstofferne kalcium, magnesium og kalium i løbet af de syv år, forsøget varede. For kalium svarer den frigivne mængde efter 7 år til, hvad der fjernes med stammer i en hel omdrift (tabel 4).

Frigivne næringsstoffer kan også optages af flora og fauna i jordbunden, som ikke er indregnet. Tab af næringsstoffer vil kunne måles som udvaskning. Et forsøg med udsprening af granuleret aske i en dosage på 2 t ha⁻¹ i en 70-årig fyrrebevoksning viste ingen signifikant forøget koncentrationer af kali um i nedsvinningsvandet i de fire år, forsøget blev fulgt (Ring et al., 1999). Ved udsprening af uhærdet aske ses ofte en forøget kaliumkoncentration, som hurtigt aftager (Karltun et al., 2003). Forbehandling af asken sikrer en langsom frigivelse af næringsstoffer, og reducerer dermed en eventuel udvaskning.

12. **Konklusion**

Askens indehold af næringsstoffer varierer og svarer ikke til næringsindholdet i biomasse. Calcium, magnesium, kalium og fosfor forekommer i størst mængde. Eksperimentelt arbejde med granuleret aske udlagt i poser viser, at forbehandlingen sikrer en ensartet frigivelse af næringsstoffer. Efter syv år i jorden er ca. 35% af næringsstofferne opløst, dog kun 19% af fosformængden. Tre tons aske per ha kan kompensere udtag af kalcium, magnesium og kalium ved udnysstelsen af stammer til flis over en omdrift i 60-årig rødgran, produktionsklasse 10. Fosforindholdet i aske er variabelt, og i det her benyttede eksempel skal der nærmere 7 tons aske per ha til at erstatte fosforudtaget. Ved hugst af fortørrede heltræer inkl. grene og kviste, kræves op mod 7 tons aske per ha for at kompensere udtaget. Negative virkninger på skovbundsflora, og tab af næringsstoffer er markant lavere, når asken er forbehandlet.

Askens forbehandling har stor indflydelse på reaktiviteten, og det anbefales derfor, at aske forbehandles ved hærdning og granulering eller pellettering inden spredning. Derved undgåes også spredning af store slaggeklumper, der er visuelt skæmmende i skovbilledet.

Risikoen for opkoncentrering af tungmetaller, PAH’er og dioxiner i jordmiljøet og udvaskning til grundvandet ved spredning af moderate askemængder må betragtes som meget lav.
13. Perspektiver

I de seneste år er en stadig større mængde skovflis blevet benyttet i de danske kraft-varmeværker og denne udvikling må forventes at fortsætte jf. “Energi 21”. I Gødskningsstrategien for Skov- og Naturstyrelsens skovarealer m.m. står der, at man så vidt muligt skal anvende gødskningsstyper, som fremmer en recirkulering af næringsstoffer, og herunder nævnes aske i forbindelse med kompensationsgødskning. Behovet for kompensation er størst på de næringsfattige jorde i Jylland. Det er også på disse lokaliteter, at der er blevet peget på en sammenhæng mellem næringsstofmangel og en svækket sundhedstilstand. Ved tilbageførsel af flisasken bliver dette affaldsprodukt et vigtigt element i det bæredygtige skovbrug.

På trods af vedtagelsen af Bioaskebekendtgørelsen er aske fra flisforbrænding stadig et affaldsprodukt, som kun i ringe grad udynttes i Danmark. Bioaskebekendtgørelsen har således ikke gjort det attraktivt at recirkulere asken til skoven.

En af de væsentligste årsager til, at asken ikke recirkuleres, er, at det er uhensigtsmæssigt i praksis. Endvidere kan der være risiko for at skade miljøet ved spredning af den største dosering aske, som Bioaskebekendtgørelsen giver mulighed for, såfremt asken ikke hæres tilstrækkeligt. Ifølge Bioaskebekendtgørelsen må man sprede hhv. 0,5, 1,0 eller 7,5 ton tør aske pr. ha over en periode på 10 år afhængig af askens indhold af først og fremmest kadmium og fosfor (dog maximalt 7,5 ton pr. ha over en periode på 100 år). Mængden af aske, der skal spredes for at kompensere for de udtagne næringsstoffer, ligger typisk på 3-5 ton tør aske pr. omdrift. Ofte må der, ifølge den nuværende Bioaskebekendtgørelse, kun spredes 0,5 eller 1 ton tør aske pr. ha over en periode på 10 år. Det betyder, at der skal spredes aske 3-10 gange for at dække næringsbehovet. Denne praksis er dyr og medfører, at asken i praksis ikke bliver spredt.

Svenske undersøgelser viser endvidere, at når 7,5 ton frisk ubehandlet aske spredes på en gang, risikerer man udvaskning af næringsstoffer fra jorden, svidning af planter og rødder samt nedgang i områdets biodiversitet. Ved udbringning af store doser ubehandlet aske er problemet, at asken påvirker systemet for kraftigt. Der er altså både problemer med at udbringe små og store doser aske. Dette kan løses ved at nedsætte askens reaktivitet.

Askens reaktivitet og dermed påvirkningen af skovøkosystemet og det omgivende miljø kan dæmpes ved at forbehandle/hærde asken inden spredning. Dette giver mulighed for at sprede asken, så doseringen i højere grad tager højde for behovet, samtidig med at man undgår uheldige effekter på skovøkosystemet og det omgivende miljø. Den nuværende Bioaskebekendtgørelse omhandler ikke aske, der er forbehandlet/hærdet. Hvis Bioaskebekendtgørelsen skal revideres, så
den kommer til at medtage disse asketyper, bør redigeringen baseres på veldokumenteret viden om samspillet mellem forbehandling/hærdning af aske og askens effekt i skoven. Det er specielt følgende spørgsmål, der bør belyses:

- Hvordan påvirker forbehandling/hærdning askens reaktivitet, opløselighed samt effekten på udvaskningen af næringsstoffer mm. ?
- Hvilke praktisk anvendelige metoder kan benyttes til dokumentation af at asken er tilstrækkeligt forbehandlet/hærdet,
- Kan bær og svampe spises i områder hvor man har spredt forbehandlet/hærdet aske?
- Hvor hurtigt frigiver forbehandlet/hærdet aske økotoksikologiske komponenter?
- Kan man med en tilstrækkelig forbehandling/hærdning af asken opnå et askeprodukt der ad én gang kan spredes i doseringer på 3-5 tons tør aske pr. omdrift så skovøkosystemets kompensationsbehov dækkes, samtidig med at effekten på skovøkosystemet samt det omgivende miljø er acceptabelt?
14. Publikationer

Publicerede artikler med relation til projektet

Møller, I. S. (2001) ESBEN - guided tour. Videnblade Skovbrug 8.5-17

Upublicerede rapporter og artikler

15. Referencer

16. Bilag I Frigivelse af næringsstoffer fra granuleret flisask efter 7 år i jordmiljøet

Af Ingeborg Callesen, Morten Ingerslev og Karsten Raulund-Rasmussen

1. Resume

Granuleret flisask sigtet til 2-4 mm størrelse fra et svensk anlæg blev placeret i jordbunden under fire træarter på en næringsrig og en næringsfattig lokalitet i 1991. I 1999 blev poserne taget op og analyseret. Da var 33,4 % - 37,7 % af næringsstofferne kalcium, magnesium og kalium opløst, og ca. 19% af fosforen var opløst. Der var ikke nogen forskelle mellem træarter og lokaliteter. Andre undersøgelser viser, at askens forbehandling, partikelstørrelsen og restkulindhold har stor indflydelse på opløsningsdynamikken. Resultatet gælder derfor ikke andre asketyper, som fx uhærdet og selvhærdet aske.

2. Introduktion

Intensiv biomasseudnyttelse ved heltræudnyttelse til bioenergi kan reducere økosystemets næringsstofkapital, som er bundet i jord og biomasse. På fattige sandjorde er muligheden for mineralforvitring stærkt begrænset pga. udgangsmaterialets ringe indhold af forvitterbare mineraler (Callesen & Raulund-Rasmussen, upubl.). Atmosfærisk nedfald sikrer i et vist omfang forsyningen med kvælstof, kalcium, magnesium, kalium og sporstoffer (Andersen et al., 2003). Det gælder ikke fosfor, som kan blive begrænsende for træernes vækst (Vejre et al., 2001). Hvis asken recirkuleres ved spredning i skoven, tilnærmes det naturligt kredsløb, som bl.a. kendes fra urørte skove. Her sørger mineralisering af de næringsstoffer, som bindes i humus og biomasse, for at de bliver recirkuleret til planterne. I urørte skove på vore breddegrader sker mineralisering af litter fortrinsvis ved biologisk nedbrydning, mens brand er en faktor, som indgår i boreale skovvaskosystemer.

I forbindelse med tilbageførsel af aske til skoven er det interessant at undersøge, hvor hurtigt asken opløses. Hvis store doser aske opløses hurtigt, kan rødder og bundflora svides som følge af salteffekt og pH ændring (Karlton et al., 2003). Samtidig kan næringsstofferne bliver udvasket fremfor at blive optaget i ny biomasse.

Opløsningshastigheden afhænger af askepartiklernes overflade, hårdhed og kemiske egenskaber. Opløsningsmediets pH og indhold af organiske ligander har også indflydelse,

Forskellige træarter, som plantes på den samme jord, giver forskelle i pH i det organiske lag (Vesterdal & Raulund-Rasmussen, 1998, Augusto et al., 2002), forskelle i koncentrationen af opløst organisk stof (Strobel et al., 2001), forskelligt indfald af lys og nedbør, bundflora, træproduktion (Callesen et al., upubl.), og svampeflora (Lange, 1993). Generelt skaber nåletræer, som dyrkes på næringsfattig jord, lav pH (i intervallet 3-4), mørke bevoksninger, stort interceptionstab, mange mykorrhizasvampe og en relativt høj træproduktion (Augusto et al., 2002). Løvtærer på næringsfattig jord har lavere produktion og en mindre fordampning end nåletræerne. På næringsrig jord er stofomsætningen hurtigere og den relative forskel i produktion mellem løv og nål mindre (Thomsen et al., 2003). I Danmark skaber jordbunden og forskellige træarter de væsentligste miljøgradienter. Derfor er det forventeligt, at også nedbrydningsmiljøet i skovbunden påvirkes af jordtypen og træarten. Her er det undersøgt, hvordan granuleret aske reagerer på ophold i jordbunden, hvor en væsentlig del af stofomsætningen i økosystemet sker. Virkningen af nedbrydningsmiljø på opløsning af asken er undersøgt ved udlægning af granuleret træaske på en næringsrig og en næringsfattig jord under fire forskellige træarter.

3. Materialer og metoder

Forsøgslokaliteter

En kalkrig morænerjord på Lolland (Christianssæde) og en sandjord i Vestjylland (Ulborg) blev udvalgt som forsøgslokaliteter. Lokaliteterne indgår i et træartsforsøg fra 1964-65, hvor 10 nåletræarter, bøg og eg blev plantet på 13 lokaliteter i Danmark i naboparceller af størrelsen 0.25 - 0.4 ha (Holmsgaard & Bang, 1977).
Ulborg er en næringsfattig, sur podsoleret jord udviklet på grovsandet Saale moræne i Vestjylland. Forsøgsarealet var lyngbevokset, før der blev plantet skov. Christianssæde er en tidligere landbrugsjord på sandblandet ler, udviklet på stærkt kalkholdig bundmoræne. Tilgængeligheden af kvælstof og mineraler er lav på Ulborg i sammenligning med Christianssæde, når man ser på puljer af tilgængeligt fosfor, kalium og kalcium og magnesium, og kulstof:kvælstof forholdet i de øverste 15 cm mineraljord (tabel 1). Kvælstofmuljen er 0,54 kg m⁻² på Ulborg og 0,79 kg m⁻² på Christianssæde til 50 cm’s dybde beregnet på baggrund af koncentrationer, horisonttykkelse (tabel 2) og estimerede volumenvægte. Omsætningen er, bedømt ved det lave kulstof:kvælstof forhold, meget større på Christianssæde og planternes kvælstofforsyning er derfor bedre.

Klimaet er også forskelligt. Ulborg er lidt koldere end Christianssæde som årgennemsnit. I Ulborg er der nedbøroverskud i vækstsesonen, mens Christianssæde har en potentiel fordampning, der er 147 mm større end gennemsnitsnedbøren (tabel 1).
Tabel 1 Jordprofiler fra Ulborg (ULB) og Christianssæde (CHR). Klimanormaler 1961-1990. Årlig gennemsnitstemperatur og nedbøroverskud i vækstsesonen. Tekstur og pH i dybden 50 -100 cm. Næringsstofpuljer i 0-100 cm dybde. Ler 0-2 μm, silt 2-20 μm, finsand 20-200 μm.

<table>
<thead>
<tr>
<th>Lok</th>
<th>T</th>
<th>P-Ep</th>
<th>Ler</th>
<th>Silt</th>
<th>Finsand</th>
<th>pH</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>N</th>
<th>C:N 0-15 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[°C]</td>
<td>[mm]</td>
<td>[% (w)]</td>
<td></td>
<td></td>
<td>[kg ha⁻¹], 0-100 cm</td>
<td>[kg m⁻²], 0-50 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ULB</td>
<td>7,5</td>
<td>37</td>
<td>2</td>
<td>2</td>
<td>31</td>
<td>4,6</td>
<td>147</td>
<td>103</td>
<td>109</td>
<td>82</td>
<td>0,54</td>
<td>33</td>
</tr>
<tr>
<td>CHR</td>
<td>8,1</td>
<td>-147</td>
<td>13</td>
<td>18</td>
<td>46</td>
<td>7,7</td>
<td>2518</td>
<td>660</td>
<td>29041</td>
<td>789</td>
<td>0,79</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabel 2 Jordbundskemiske egenskaber i jordprofiler gravet i forsøgene (Raulund-Rasmussen & Vejre, 1995).

<table>
<thead>
<tr>
<th>Horisont</th>
<th>Dybde cm</th>
<th>volv. g cm⁻³</th>
<th>pH</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>P</th>
<th>N</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulborg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O lfh</td>
<td>-8</td>
<td>0</td>
<td>0,08</td>
<td>3,2</td>
<td>52,2</td>
<td>44,4</td>
<td>7,6</td>
<td>58</td>
<td>14,9</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>18</td>
<td>0,51</td>
<td>2,7</td>
<td>3,9</td>
<td>6,7</td>
<td>2,3</td>
<td>22</td>
<td>3,3</td>
</tr>
<tr>
<td>E</td>
<td>18</td>
<td>30</td>
<td>1,39</td>
<td>3,4</td>
<td>0,3</td>
<td>0,1</td>
<td>0,0</td>
<td>6</td>
<td>0,1</td>
</tr>
<tr>
<td>B h</td>
<td>30</td>
<td>34</td>
<td>0,72</td>
<td>3,5</td>
<td>2,0</td>
<td>1,3</td>
<td>0,9</td>
<td>24</td>
<td>2,4</td>
</tr>
<tr>
<td>B hs</td>
<td>34</td>
<td>40</td>
<td>0,96</td>
<td>4,1</td>
<td>0,6</td>
<td>0,4</td>
<td>0,4</td>
<td>20</td>
<td>1,3</td>
</tr>
<tr>
<td>B s</td>
<td>40</td>
<td>60</td>
<td>1,48</td>
<td>4,4</td>
<td>0,2</td>
<td>0,0</td>
<td>0,1</td>
<td>16</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>100</td>
<td>1,53</td>
<td>4,5</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>10</td>
<td>0,3</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td>130</td>
<td>1,65</td>
<td>4,6</td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
<td>11</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Christians-	Dybde cm	volv. g cm⁻³	pH	Ca	Mg	K	P	N	C	
sæde										
O	-2	0	0,12	4,42	15,1	385,2				
A 1	0	5	1,14	3,8	46,0	6,0	1,2	110	2,1	28,0
A 2	5	25	1,32	5,2	93,0	4,0	1,0	110	1,7	15,0
B t	25	50	1,57	6,2	122,0	6,0	1,8	240	0,5	4,0
B tg*	50	73	1,73	7,5	(217,0)	5,0	1,2	380		
C gk*	73	110	7,7	3,0	0,7					

volumenvægt: Estimeret jf. Vejre et al., 2003
P: Ekstraktion i to timer i 0,1 M H₂SO₄
pH: 0,01 M CaCl₂
Ombyttelige kationer: mineraljord NH₄-Ac ved pH 7, organisk lag: 1 M NH₄NO₃

* indeholder 1% CaCO₃, ** indeholder 28% CaCO₃.
Udlægning af askeposer, forsøgsdesign

Nabobevoksninger af bøg, rødgran, douglasgran og stilkeg indgik i forsøget. Poser af bioresistent polyamid med maskevidden 53 µm og dimensionen 5x10 cm blev fyldt med 10,00 gram aske. Askegranula var fremstillet af det samme parti aske fra et varmeværk i Eskilstuna, Sverige. Asken var forbehandlet for at sikre en langsommere opløsning. Der er tale om granuleret flyveaske, fremstillet i en mekanisk proces, hvor asken opfugtes, hærder og agglomererer. Ved knusning og signning to gange, blev 2-4 mm fraktionen frasepareret og anvendt i forsøget. Asken blev fremstillet i to forskellige batches, men fra samme parti, da der ikke var tilstrækkelig prøvemængde i første batch. Poserne blev placeret i jordbunden i september 1991 ved nedgravning i skovbunden i otte delplots per bevoksning (El Make, 2000). Der var otte poser per træart, således at fire kunne tages op efter to år og fire poser efter 7 år. Poserne blev placeret i det jordlag, hvor der er megen biologisk aktivitet og dermed stofomsætning. På Ulborg lå askeposerne i overgangen mellem morlaget og mineraljorden i et surt miljø. På Christianssæde lå poserne begravet 5 cm nede i den humusholdige mineraljord. Den lave pH på 3,8 på Christianssæde skyldes formodentlig, at det organiske lag er dannet af den rødgranbevoksning, som profilen er gravet i (tabel 2).

Prøverne blev analyseret på Kemisk Institut, Den Kongelige Veterinær- og Landbohøjskole og på Forskningscentret for Skov & Landskab. Asken blev opløst i fluss-syre (HF) og elementindholdet (fosfor, kalium, kalcyum og magnesium) bestemt på ICP-AES. Glødetabet (LOI), som repræsenterer organisk stof og evt. krystalbundet vand, blev bestemt på de tørrede prøver. Elementindholdet er opgivet på basis af den tørre prøve og er ikke justeret for glødetab. Ombyttelige kationer blev ekstraheret i ammoniumnitrat (1 M NH₄NO₃) og bestemt på
ICP, og pH blev bestemt i ekstraktet. En kontrolprøve af den udlagte aske blev analyseret som reference til askens kemiske egenskaber efter opholdet i jorden.

Beregninger og statistisk analyse

Med to forskellige oplukningsmetoder, henholdsvis lithiumborat og fluss-syre, bør analyseresresultater efter 2 år og 7 år ikke sammenlignes. Resultatbehandlingen beskæftiger sig derfor kun med ændringer efter 7 år og 9 måneder, herefter betegnet 7 år.

Ændringen i massen af næringsstofferne kalcium (Ca), magnesium (Mg), fosfor (P) og kalium (K) i asken blev bestemt ved at beregne massen ved udlægning (vægt år 0 x C kontrol) og fratrække massen ved optagning (vægtår7 x Cår7), jf. 1, under antagelse af, at kontrolprøvens koncentration er gældende for askens koncentrationer ved udlægning.

\[
\Delta \text{Ca, Mg, K, P}(g) = (\text{vægtår}0, g \times C_{\text{kontrol}}, \text{mg/g}) - (\text{vægtår}7, g \times C_{år7}, \text{mg/g})
\]

Ændringer i koncentrationer og masser blev analyseret ved hjælp af Student's t-test med en enkelt kontrolprøves koncentration som reference, efter at det var testet om hver variabel fulgte normalfordelingen i en Shapiro-Wilk test (Proc Univariate, SAS) for at identificere afvigende observationer. I variansanalyse er de fire enkeltobservationer fra hver træart betragtet som ægte gentagelser, hvilket strenget taget ikke er korrekt. Et plot med en træart indenfor lokaliteten er forsøgsenhed. Envejs variansanalyse af virkningen af træart indenfor lokalitet er udført, mens veckselvirkningen mellem træart og lokalitet ikke testes statistisk.

4. Resultater

Næringsstoffrigivelse, ændring i koncentrationer

pH i asken var faldet fra 7.6 til 7.3 på begge lokaliteter. Det viser, at der er tale om hærdet aske, hvor oxider og hydroxider har reageret med vand og luftens kuldioxid, idet uhærdet aske ved opløsning har en pH i intervallet 10-13 (Karltun et al., 2003).

Ombyttelige næringsstoffer og totalindholdet af næringsstoffer i asken blev sammenlignet med kontrolprøven af den oprindelige aske. Forholdet mellem de ombyttelige elementer og totalkoncentrationen viser, om næringsstoffet adsorberes til ombytningsskompleksset på overflader i askegranula i samme grad, som det frigives ved opløsning. Den gennemsnitlige koncentration af elementerne Ca, Mg, P, K for hver lokalitet samt for kontrollen er vist i tabel 3.
I forhold til kontrollen var koncentrationen af ombytteligt calcium faldet fra 18,4 mg g⁻¹ til 13,7 mg g⁻¹, mens totalindholdet var faldet fra 120,4 mg g⁻¹ til 93,7 – 98,3 mg g⁻¹. Ændringerne i koncentration var signifikante, mens forholdet mellem ombytteligt calcium og totalindhold (ombytteligt:totalt) var uændret 14-15%. Koncentrationen af ombytteligt magnesium faldt fra 1,6 mg g⁻¹ til 0,5-0,6 mg g⁻¹, og totalkoncentrationen fra 13,9 mg g⁻¹ til 11,3 mg g⁻¹. Forholdet ombytteligt:totalt faldt fra 11% til 4-6%.

Kalium havde den højeste ombyttelige koncentration. Kalium koncentrationen faldt fra 14,0 mg g⁻¹ i kontrollen til 2,1 – 2,5 mg g⁻¹ efter syv år i jordmiljøet. Relativt var faldet i totalelementindholdet mindre; fra 39,6 mg g⁻¹ til 31,9 mg g⁻¹ (CHR) og 31,7 mg g⁻¹ (ULB), og derfor faldt forholdet ombytteligt:totalt fra 35% i kontrollen til 7-8% efter 7 år. Det viser, at den mængde kalium, der opløses, kun i ringe grad adsorberes til asken.

Totalindholdet af fosfor var næsten konstant, 2,9 mg g⁻¹ i kontrollen og 2,9 – 3.0 mg g⁻¹ efter syv år. Fosforkoncentrationen var steget på Christianssæde og ændringen var signifikant forskellig fra kontrollen. Forholdet mellem ombytteligt fosfor og totalindholdet faldt en smule fra 9% til 7%. Ammoniumekstraktionen frigav 0,2 mg g⁻¹ fosfor.

Tabel 3 Koncentrationer af ombyttelige elementer og totalkemisk elementindhold, år 7.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>pH</th>
<th>N</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>omb.</td>
<td>tot.</td>
<td>omb.</td>
<td>tot.</td>
<td>omb.</td>
<td>tot.</td>
</tr>
<tr>
<td>Chr.</td>
<td>7,3</td>
<td>13,7</td>
<td>93,7</td>
<td>15</td>
<td>0,46</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Ulborg</td>
<td>7,3</td>
<td>16</td>
<td>98,3</td>
<td>14</td>
<td>0,63</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Kontrol</td>
<td>7,6</td>
<td>1</td>
<td>18,4</td>
<td>120,4</td>
<td>15</td>
<td>1,59</td>
</tr>
</tbody>
</table>

Næringsstoffrigivelse, ændring i masse efter 7 år

Inkubering af askeposer i jordbunden medførte ændringer i koncentrationer og i den tilbageværende masse af de enkelte elementer. Det typiske billede var nedgang i både mængde og koncentration i totalelementer. Massen af aske blev reduceret signifikant med 19.8 % i
gennemsnit, svarende til et tab på 2 g per pose. Tabet var lige stort på begge lokaliteter. Askens glødetab var uændret 10,9%.

Efter syv år var 37,7% kalcium, 35,1% magnesium, 36,5% kalium og 17,8% fosfor forsvundet fra asken på Christianssæde (tabel 4). På Ulborg var der forsvundet stort set den samme andel: 33,4% kalcium, 33,9% magnesium, 35,0% kalium og 19,2% fosfor.

Tabel 4 Procentdel af næringsstoffer i asken opløst fra 1991-1999.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr. særde</td>
<td>37,7</td>
<td>35,1</td>
<td>36,5</td>
<td>17,8</td>
</tr>
<tr>
<td>Ulborg</td>
<td>33,4</td>
<td>33,9</td>
<td>35,0</td>
<td>19,2</td>
</tr>
</tbody>
</table>

Tabel 5 Ændring i mængden af næringsstoffer fra 1991 til 1999 (gram).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr.særde</td>
<td></td>
</tr>
<tr>
<td>BØG 4</td>
<td>3</td>
<td>1,21</td>
<td>0,76</td>
<td>0,45</td>
<td>37,5</td>
<td>0,14</td>
<td>0,08</td>
<td>0,06</td>
<td>40,0</td>
<td>0,40</td>
<td>0,25</td>
<td>0,15</td>
<td>36,6</td>
<td>0,029</td>
<td>0,023</td>
<td>0,006</td>
<td>20,6</td>
</tr>
<tr>
<td>DGR 4</td>
<td>1,20</td>
<td>0,80</td>
<td>0,41</td>
<td>33,7</td>
<td>0,14</td>
<td>0,10</td>
<td>0,04</td>
<td>31,6</td>
<td>0,40</td>
<td>0,26</td>
<td>0,14</td>
<td>34,5</td>
<td>0,029</td>
<td>0,024</td>
<td>0,005</td>
<td>17,5</td>
<td></td>
</tr>
<tr>
<td>EG 2</td>
<td>1,21</td>
<td>0,58</td>
<td>0,63</td>
<td>52,0</td>
<td>0,14</td>
<td>0,08</td>
<td>0,06</td>
<td>44,0</td>
<td>0,40</td>
<td>0,24</td>
<td>0,16</td>
<td>39,8</td>
<td>0,029</td>
<td>0,024</td>
<td>0,005</td>
<td>17,2</td>
<td></td>
</tr>
<tr>
<td>RGR 4</td>
<td>1,21</td>
<td>0,80</td>
<td>0,41</td>
<td>33,8</td>
<td>0,14</td>
<td>0,10</td>
<td>0,04</td>
<td>29,7</td>
<td>0,40</td>
<td>0,25</td>
<td>0,14</td>
<td>36,4</td>
<td>0,029</td>
<td>0,024</td>
<td>0,005</td>
<td>16,1</td>
<td></td>
</tr>
<tr>
<td>Gns 13</td>
<td>1,21</td>
<td>0,75</td>
<td>0,46</td>
<td>37,7</td>
<td>0,14</td>
<td>0,09</td>
<td>0,05</td>
<td>35,1</td>
<td>0,40</td>
<td>0,25</td>
<td>0,15</td>
<td>36,5</td>
<td>0,03</td>
<td>0,02</td>
<td>0,01</td>
<td>17,8</td>
<td></td>
</tr>
<tr>
<td>Ulborg</td>
<td></td>
</tr>
<tr>
<td>BØG 4</td>
<td>1,22</td>
<td>0,81</td>
<td>0,40</td>
<td>33,0</td>
<td>0,14</td>
<td>0,10</td>
<td>0,04</td>
<td>30,8</td>
<td>0,40</td>
<td>0,27</td>
<td>0,13</td>
<td>32,6</td>
<td>0,029</td>
<td>0,025</td>
<td>0,004</td>
<td>13,4</td>
<td></td>
</tr>
<tr>
<td>DGR 4</td>
<td>1,21</td>
<td>0,78</td>
<td>0,43</td>
<td>35,5</td>
<td>0,14</td>
<td>0,09</td>
<td>0,05</td>
<td>36,2</td>
<td>0,40</td>
<td>0,25</td>
<td>0,15</td>
<td>37,0</td>
<td>0,029</td>
<td>0,022</td>
<td>0,006</td>
<td>22,3</td>
<td></td>
</tr>
<tr>
<td>EG 4</td>
<td>1,21</td>
<td>0,81</td>
<td>0,41</td>
<td>33,4</td>
<td>0,14</td>
<td>0,09</td>
<td>0,05</td>
<td>34,4</td>
<td>0,40</td>
<td>0,26</td>
<td>0,14</td>
<td>35,0</td>
<td>0,029</td>
<td>0,024</td>
<td>0,005</td>
<td>17,4</td>
<td></td>
</tr>
<tr>
<td>RGR 4</td>
<td>1,21</td>
<td>0,83</td>
<td>0,38</td>
<td>31,3</td>
<td>0,14</td>
<td>0,09</td>
<td>0,05</td>
<td>34,5</td>
<td>0,40</td>
<td>0,26</td>
<td>0,14</td>
<td>35,4</td>
<td>0,029</td>
<td>0,022</td>
<td>0,007</td>
<td>25,2</td>
<td></td>
</tr>
<tr>
<td>Gns 16</td>
<td>1,21</td>
<td>0,81</td>
<td>0,40</td>
<td>33,4</td>
<td>0,14</td>
<td>0,09</td>
<td>0,05</td>
<td>33,9</td>
<td>0,40</td>
<td>0,26</td>
<td>0,14</td>
<td>35,0</td>
<td>0,03</td>
<td>0,02</td>
<td>0,01</td>
<td>19,2</td>
<td></td>
</tr>
</tbody>
</table>

Effekt af jordbund og træart på næringskonzentrationer, massetab og glødetab

Kontrasten mellem den meget næringsrige lokalitet Christianssæde og den næringsfattige lokalitet Ulborg afspejlede sig ikke i askens massetab efter 7 år (tabel 5).

Der var stort set ingen effekter af træart og lokalitet på total koncentrationer. Dog havde aske fra bøgeparcellen på Ulborg en kalium koncentration på 32,9 mg g⁻¹, hvilket var signifikant
højere end i rødgran (31,4 mg g⁻¹) og i douglasgran (31,0 mg g⁻¹). Den samme forskel sås ikke på Christianssæde (Tabel 6).

Tabel 6 Gennemsnit af total elementanalyse for hver lokalitet og træart (7år). Træartseffekt er testet indenfor lokalitet.

<table>
<thead>
<tr>
<th>Lokalitet</th>
<th>Træart</th>
<th>N</th>
<th>Ca</th>
<th>Mg</th>
<th>K</th>
<th>P</th>
<th>Al</th>
<th>Fe</th>
<th>Si</th>
<th>Mn</th>
<th>Na</th>
<th>Massetab 1991-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr. sæde</td>
<td>BØG</td>
<td>3</td>
<td>98,3</td>
<td>10,8</td>
<td>32,8</td>
<td>3,0</td>
<td>50,3</td>
<td>23,9</td>
<td>200,4</td>
<td>0,7</td>
<td>8,8</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>DGR</td>
<td>4</td>
<td>94,7</td>
<td>11,4</td>
<td>32,2</td>
<td>2,9</td>
<td>51,7</td>
<td>28,6</td>
<td>211,3</td>
<td>0,7</td>
<td>9,3</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>EG</td>
<td>2</td>
<td>76,4</td>
<td>10,3</td>
<td>31,7</td>
<td>3,2</td>
<td>53,1</td>
<td>46,3</td>
<td>187,3</td>
<td>0,8</td>
<td>9,0</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>RGR</td>
<td>4</td>
<td>98,0</td>
<td>12,0</td>
<td>31,0</td>
<td>3,0</td>
<td>50,9</td>
<td>30,6</td>
<td>203,7</td>
<td>0,7</td>
<td>9,3</td>
<td>1,9</td>
</tr>
<tr>
<td>Kontrol</td>
<td></td>
<td>1</td>
<td>120,4</td>
<td>13,9</td>
<td>39,6</td>
<td>2,9</td>
<td>47,7</td>
<td>14,0</td>
<td>226,0</td>
<td>0,7</td>
<td>10,1</td>
<td></td>
</tr>
<tr>
<td>Ulborg</td>
<td>BØG</td>
<td>4</td>
<td>99,0</td>
<td>11,8</td>
<td>32,9a</td>
<td>3,1</td>
<td>51,7</td>
<td>24,8</td>
<td>203,2</td>
<td>0,7</td>
<td>9,4</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>DGR</td>
<td>4</td>
<td>96,4</td>
<td>11,0</td>
<td>31,0b</td>
<td>2,8</td>
<td>49,5</td>
<td>36,0</td>
<td>215,1</td>
<td>0,7</td>
<td>9,2</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>EG</td>
<td>4</td>
<td>98,8</td>
<td>11,2</td>
<td>31,7ab</td>
<td>2,9</td>
<td>49,8</td>
<td>26,8</td>
<td>217,3</td>
<td>0,7</td>
<td>9,1</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>RGR</td>
<td>4</td>
<td>98,8</td>
<td>11,1</td>
<td>31,4b</td>
<td>2,7</td>
<td>49,9</td>
<td>27,6</td>
<td>220,1</td>
<td>0,7</td>
<td>9,5</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Effekt af jordbund og træart på intensiteten af mykorrhizaindvækst

Intensiteten af mykorrhizasvampe efter 7 års inkubering var generelt større på den næringsfattige lokalitet i sammenligning med den næringsrige lokalitet. Rødgranparcellen på den næringsrige lokalitet var dog en undtagelse, idet intensiteten var på højde med den næringsfattige lokalitet. Resultatet peger på, at mykorrhizasvampe spiller en relativt større rolle i nedbrydningen på den næringsfattige lokalitet end på næringsrige lokalitet. Det var dog uden betydning for askens opløsningshastighed, idet poserne indeholdt de samme mængder på begge lokaliteter efter 7 år.

5. Diskussion

Frigivelse af næringsstoffer fra granuleret flyveyske

Det er kun nettoændringer i elementmasser og koncentrationer, der er registreret efter syv år i jordmiljøet. Der kan både være fluxe ud af poserne og ind i poserne, der ikke ses i en nettoopgørelse. Fortolkningerne er underlagt dette forbehold. Den anvendte aske var hærdet og granuleret. Derfor kan kuldioxid, som er optaget ved neutralisering af oxiderne eller indvækst af rødder og mykorrhiza, ikke være årsag til øget procentuelt glødetab, som også sås at være
konstant, samtidig med at askens masse var reduceret. Den anvendte oplukningsmetode har ikke kunnet opløse prøverne 100%, idet kun 90,7% procent af prøverne (spredning 5.0%) er "recovered", mens det gælder 96,4% af kontrolprøven. Organisk stof går ofte ikke i opløsning ved oplukning med syre.

Flisaske kan bruges til gødningsformål, og kan i skov doseres som et gennemsnit over 10 år jf. Bioaskebekendtgørelsen (Miljøstyrelsen, 2000). På skovarealer må der maksimalt tilføres 7,5 tons tørstof pr. ha pr. omdrift (100 år). I tabel 7 er koncentrationer og tab i den granulerede flyveaske skaleret op til to valgte doser på 3 ton ha⁻¹ og 7 ton ha⁻¹. Kalium blev frigivet langsomt fra asken, idet 64 % var tilbage efter 7 år og 9 måneder. Ved en asketilførsel på 3 ton per ha svarer dette til en frigivelse på 42-44 kg kalium ha⁻¹ i perioden. Den frigivne mængde fra asken overstiger ikke bevoksningens behov, som er beregnet til 66 kg på baggrund af biomassetal fra Ingerslev & Hallbäcken (1999). Det konkluderes ud fra dette forsøg, at en askemængde på 3 ton ha⁻¹ ha vil indgå i skovens næringsstofkredsløb. Doseringen af fosfor må ikke overstige 30 kg pr. ha pr. år. Ved en askedosis på 3 tons tilføres der 9 kg fosfor, hvoraf 81% er tilbage efter 7 år, og denne dosering overholder bekendtgørelsen.
Tabel 7 Næringspuljer i granuleret flyveaske (kg ha⁻¹) ved to doser.

<table>
<thead>
<tr>
<th>Element</th>
<th>Udbragt 1991 (kg ha⁻¹)</th>
<th>Tilbage 1999 (kg ha⁻¹)</th>
<th>Opløst 1991-1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalcium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>CHR 362</td>
<td>226</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>UL 363</td>
<td>242</td>
<td>121</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>CHR 906</td>
<td>565</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>UL 909</td>
<td>605</td>
<td>304</td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>CHR 42</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>UL 42</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>CHR 104</td>
<td>68</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>UL 105</td>
<td>69</td>
<td>36</td>
</tr>
<tr>
<td>Kalium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>CHR 119</td>
<td>76</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>UL 120</td>
<td>78</td>
<td>42</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>CHR 298</td>
<td>190</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>UL 299</td>
<td>195</td>
<td>105</td>
</tr>
<tr>
<td>Fosfor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ved 3 t aske pr ha</td>
<td>CHR 9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>UL 9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Ved 7 t aske pr ha</td>
<td>CHR 22</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UL 22</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Askenes reaktivitet afhænger af, om den er forbehandlet, af partikelstørrelsen, af restkulindholdet og typen af forbehandling. Resultaterne for den granulerede aske i den her anvendte partikelstørrelse gælder ikke ubehandlet aske, som vil være mere reaktivt (Ring et al., 1999). Forsøg med forbehandling og oplosningsdynamik in situ eller i laboratorieforsøg er påkrævet med henblik på at afprøve egne forbehandlingsmetoder.

6. Konklusion

Nedbrydningsmiljøet på de to lokaliteter under fire forskellige træarter påvirkede ikke oplosningen af flisaken forskelligt, selvom intensiteten af mykorhizasvampe var større på Ulborg end på Christianssæde. Asken mistede 19% masse, men ca. 35% af næringsstofferne kalcium, magnesium og kalium efter syv år i jorden. Oplosningen af fosfor svarede til massetabet på 19%.
7. Referencer

Holmsgaard, E., Bang, C., 1977. Et træartsforsøg med nåletræer, bøg og eg; de første 10 år. (A species trial with conifers, beech and oak; the first ten years). Det Forstlige Forsøgsvæsen, Danmark 35, 159-196.

17. Bilag II Askeanalyseresultater

Figur 1. Koncentrationen af fosfor (P), calcium (Ca), magnesium (Mg), jern (Fe), mangan (Mn) og natrium (Na) som funktion af kaliumkoncentrationen (K). B=bundaske, F=flyveaske og M=blandaske (Mix). For fosfor, kalcium og magnesium er nøgletallene for den lineære korrelation angivet.
Figur 2. Koncentrationen af kulstof (C), kvælstof (N), aluminium (Al), silicium (Si), zink (Zn) og bly (Pb). X-aksen angiver hhv. bund- (B), flyve- (F) og blandaske (M= mix). C=kondensatslam fra ét flisfyret værk (ellers ikke medtaget i rapporten).
Figur 3. Koncentrationen af kobber (Cu), kadmium (Cd), kobolt (Co), krom (Cr), kviksølv (Hg) og nikkel (Ni). X-aksen angiver hhv. bund- (B), flyve- (F) og blandaske (M=mix).
C=kondensatslam fra ét flisfyret værk (ellers ikke medtaget i rapporten).
Figur 4. Koncentrationen af arsen (As) og svovl (S). X-aksen angiver hhv. bund- (B), flyve- (F) og blandaske (M=mix).
Figur 5. Koncentrationen af EPA-PAH (summen af 16 PAH’er jf. standard fra United States Environmental Protection Agency), PAH, cancerogene (summen af de 7 EPA-PAH’er der er cancerogene), WHO-TEQ (toxicitets-ækvivalenter jf. standard fra World Health Organisation), I-TEQ (Internationale toxicitets-ækvivalenter). (Se teksten i rapporten for en mere uddybende forklaring af disse parametre.)
18. Andre publikationer med relation til emnet

Tidligere titler - Arbejdsrapporter *Skov & Landskab*

Nr. 1 · 2004 Etablering af løvtræ på marginale landbrugsjorder
Nr. 2 · 2004 Sekventiel udbringning af gødning til nordmannsgran juletræer
Nr. 3 · 2004 Metroens effekt på ansattes transportadfærd
Nr. 4 · 2004 Æstetisk satsning og naturvidenskabelig naturforståelse
Nr. 5 · 2004 endnu ikke trykt
Nr. 6 · 2004 endnu ikke trykt
Nr. 7 · 2004 Recirkulation af aske i skov