Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb(-1) of proton-proton collision data at root s=13 TeV with the ATLAS detector

Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B; Abhayasinghe, DK; Abidi, S.H.; Abouzeid, Ossama Sherif Alexander; Abraham, NL; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B.S.; Adachi, Shin-ichi; Adamaczyk, L.; Adelman, J.; Adersberger, M.; Adiguzel, A.; Adye, T.; Affolder, A. A.; Afik, Y.; Besjes, Geert-Jan; Bajic, Milena; Alonso Diaz, Alejandro; de Almeida Dias, Flavia; Dam, Mogens; Hansen, Peter Henrik; Hansen, Jørn Dines; Hansen, Jørgen Beck; Galster, Gorm Aske Gram Krohn; Monk, James William; Petersen, Troels Christian; hqz214, hqz214; Xella, Stefania; Stark, Simon Holm; Wiglesworth, Graig

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.98.052008

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector

M. Aaboud et al.*
(ATLAS Collaboration)

(Received 8 August 2018; published 26 September 2018)

Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons, are presented using a data sample corresponding to 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the $qqqq$, $uqqq$, $lvqq$, $llqq$, $llql$, $llql$, $qgbb$, $uqbb$, $llbb$, and $llbb$ final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ll and $l\ell$ final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

DOI: 10.1103/PhysRevD.98.052008

I. INTRODUCTION

The search for new heavy particles is an important part of the physics program at the LHC and has been the focus of an intense effort to uncover physics beyond the Standard Model (SM) in a broad range of final states. Many of these searches are motivated by models aiming to resolve the hierarchy problem such as the Randall-Sundrum (RS) model with a warped extra dimension [1], by models with extended Higgs sectors as in the two-Higgs-doublet model [2], or by models with composite Higgs bosons [3] or extended gauge sectors as in Grand Unified Theories [4–6].

Although no significant excess has been observed to date, strong constraints have been placed on the production of such new heavy particles. A combination of searches for the production of heavy resonances decaying into the VV (with $V = W$ or Z) final state in proton-proton (pp) collisions at a center-of-mass energy $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 3.2 fb$^{-1}$ has been published by the ATLAS Collaboration [7]. Similarly, a combination of searches in the VV and VH (with H representing the SM Higgs boson) final states obtained with 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV and 2.7 fb$^{-1}$ at $\sqrt{s} = 13$ TeV has been published by the CMS Collaboration [8]. In this article, the combination is broadened to include the results of not only the VV and VH searches but lepton-antilepton searches as well. It uses the most recent ATLAS results obtained at $\sqrt{s} = 13$ TeV with an integrated luminosity of approximately 36 fb$^{-1}$. A combination with a broader set of final states allows one to explore the complementarity of these searches and set stronger constraints over a wider range of models of physics beyond the SM. Several diagrams illustrating the production and decay of new heavy resonances are shown in Fig. 1.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
the interpretation performed in this article, the
to explore different coupling strengths of those states to
masses are taken to be the same. The model allows one to
decay: (a) Drell-Yan production and decay into
FIG. 1. Feynman diagrams for heavy resonance production and
decay into VV/HH, (c) vector-boson fusion production and decay into
and, (d) gluon-gluon fusion production and decay into VV (with V = W or Z).

r-leptons is very small and neglected in other channels. In
this article, the VV and VH decay channels are collectively
named “bosonic,” whereas the lepton-antilepton decay
channels are collectively named “leptonic.” The analyses
generally search for narrow resonances in the final-state
mass distribution with the signal shape extracted from
Monte Carlo (MC) simulation of specific models. The
background shape and normalization are extracted from a
combination of MC simulation and data, often relying on
dedicated control regions to extract the various background
contributions. The mass distributions and associated sys-
tematic uncertainties from the various channels are com-
bined taking correlations into account, as described below.

II. SIGNAL MODELS

The results presented in this article are interpreted in the
context of three models: the heavy vector triplet (HVT)
model [19,20], the RS model, and an empirical model
featuring a new heavy scalar.

The HVT model provides a broad phenomenological
framework that encompasses a range of different scenarios
involving new heavy gauge bosons and their couplings to
SM fermions and bosons. In this model, a triplet W of
colorless vector bosons is introduced with zero hyper-
charge. This leads to a set of nearly degenerate charged,
W±, and neutral, Z′, states collectively denoted by V′.1 For
the interpretation performed in this article, the W′ and Z′
masses are taken to be the same. The model allows one to
explore different coupling strengths of those states to
quarks, leptons, vector bosons, and Higgs bosons with the following interaction Lagrangian,

\[\mathcal{L}_{int}^{V′} = -g_k \nabla_\mu V_{\mu}^{V′} \frac{\sigma_\mu}{2} q_k - g_V \nabla_\mu \bar{\ell}_k Y^\mu \frac{\sigma_\mu}{2} \ell_k^{-} - g_H \left(\nabla_\mu H^I \frac{\sigma_\mu}{2} iD^\mu H + H.c. \right), \]

where \(q_k \) and \(\ell_k^{-} \) represent the left-handed quark and
lepton doublets for fermion generation \(k = 1, 2, 3 \);
\(H \) represents the Higgs doublet; \(\sigma_\alpha \) (\(\alpha = 1, 2, 3 \)) are
the Pauli matrices; and \(g_k, g_V \), and \(g_H \) correspond to the
coupling strengths between the triplet field \(V \) and the
quark, lepton, and Higgs fields, respectively.2 Interactions
with fermions of different generations are assumed to be
universal, and right-handed fermions do not participate.
The triplet field interacts with the Higgs field and thus with the
longitudinally polarized \(W \) and \(Z \) bosons by virtue of
the equivalence theorem [21–23]. In this framework, the
branching fractions for the decays \(W' \rightarrow WZ, W' \rightarrow WH, \)
\(Z' \rightarrow WW, \) and \(Z' \rightarrow ZH, \) are equal for \(V' \) masses above
1.5 TeV and other neutral diboson final states are either
suppressed or forbidden.

Three explicit HVT scenarios are used as benchmarks for
interpretation of the results. The first two benchmarks are
both Drell-Yan (DY) production mechanisms [Figs. 1(a)
and 1(b)], while the third benchmark proceeds via the
vector-boson fusion (VBF) mechanism [Fig. 1(c)]. Within
the DY processes, two scenarios differently emphasize the
relative strengths of \(g_H \) and \(g_V \). The first DY scenario,
referred to as model A, reproduces the phenomenology of
weakly coupled models based on an extended gauge
symmetry [24]. In this case, the couplings are \(g_H = -0.56 \) and \(g_V = -0.55 \), with the universal fermion coupling
\(g_f = g_q = g_\ell \). The second DY scenario, referred to as
model B, implements a strongly coupled scenario as in
composite Higgs models [3] with \(g_H = -2.9 \) and \(g_f = 0.14 \).3 In model B, the \(V' \) resonances are broader
than in the weakly coupled scenario, model A, but remain
narrow relative to the experimental resolution. The relative
width, \(\Gamma/m \), is below 5% over much of the parameter space
explored in this article. Model B is not considered for
masses below 1500 GeV because model A is used to extract
the acceptance of the combined channels, and the branch-
ing fractions to \(VV \) and \(VH \) differ between models A and B
in that mass range. The acceptance for individual channels
is the same for models A and B. There is also a second
constraint for model B, for masses below 800 GeV, where it

1The charged state is denoted \(W' \) in the remainder of this article.

2The coupling constants \(g_H, g_V, g_\ell, \) and \(g_f \) are used in this
article. They are related to those in Ref. [20] as follows: the
Higgs coupling \(g_H = g_Y c_H \) and the universal fermion coupling
\(g_f = g_Y c_f/g_Y \), where \(Y \) is the SM SU(2)\(_L \) gauge coupling,
while the \(c \) parameters and the coupling \(g_Y \) are defined in
Ref. [20]. Couplings specific to quarks and leptons are given by
\(g_q = g_Y c_f/g_Y \) and \(g_\ell = g_Y c_f/g_Y \).

In terms of the coupling constants in the notation of Ref. [20],
the choices for models A and B correspond to \(g_Y = 1 \) and \(g_Y = 3 \),
respectively.
is not compatible with SM precision measurements due to increased mixing between the SM gauge bosons and the heavy vector resonance.

For the DY process with decay of the V' into lepton-antilepton final states, branching fractions are largest in model A with values of approximately 4% and only about 0.2% in model B, for each generation taken separately. In contrast, the branching fractions for decays into individual diboson channels are about 2% in model A, whereas they are close to 50% in model B.

The third scenario, referred to as model C, is designed to focus solely on the rare process of vector-boson fusion. In this case, the V' resonance couplings are set to $g_H = 1$ and $g_f = 0$. Model C is therefore in a separate phase space domain to models A and B and assumes no DY production. The interpretation can be extended beyond these three benchmark models by considering the two-dimensional parameter space consisting of g_H and g_f (assuming fermion universality) or g_q and g_ℓ for a given value of g_H. The different production mechanisms and decay modes included here provide sensitivity to different regions of this parameter space, with production via the DY process providing sensitivity to g_H and production via VBF providing sensitivity to g_H. Likewise, decays into lepton-antilepton states provide sensitivity to g_f, whereas decays into diboson states provide sensitivity to g_H.

The RS model postulates the existence of a warped extra dimension in which only gravity propagates as in the original “RS1” scenario [1] or in which both gravity and all SM fields propagate as in the “bulk RS” scenario [25]. Propagation in the extra dimension leads to a tower of Kaluza-Klein (KK) excitations of gravitons (denoted G_{KK}) and SM fields. In the bulk RS model considered here, KK gravitons are produced via both quark-antiquark annihilation and gluon-gluon fusion (ggF), with the latter dominating due to suppressed couplings to light fermions. The strength of the coupling depends on k/\tilde{M}_{Pl}, where k corresponds to the curvature of the warped extra dimension and $\tilde{M}_{Pl} = 2.4 \times 10^{18}$ GeV is the effective four-dimensional Planck scale. Both the production cross section and decay width of the KK graviton scale as the square of k/\tilde{M}_{Pl}. For the value $k/\tilde{M}_{Pl} = 1$ used in the interpretation, the G_{KK} resonance width relative to its mass is approximately 6%. The G_{KK} branching fraction is largest for decays into the $t \bar{t}$ final state, with values ranging from 42% for $m(G_{KK}) = 0.5$ TeV to 65% for $m(G_{KK})$ values above 1 TeV. Corresponding values for the WW (ZZ) final state range from 34% to 20% (18% to 10%). Table I presents production cross sections for several heavy resonance masses in the HVT models A, B, and C and the bulk RS model.

The last model considered is an empirical model with a narrow heavy scalar resonance produced via the ggF and VBF mechanisms and decaying directly into VV. The width of this new scalar is assumed to be negligible compared with the detector resolution, and the relative branching fractions for decay into the WW and ZZ final states approximately follow a 2:1 ratio. This benchmark is used to explore sensitivity to extended Higgs sectors.

Table II summarizes the channels considered in the interpretation for each signal model.

III. ATLAS DETECTOR

The ATLAS experiment [26,27] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner detector for tracking

\[^4\]ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$. Angular distance is measured in units of $\Delta R \equiv (\Delta \eta)^2 + (\Delta \phi)^2$.

TABLE I. Cross sections for production of heavy resonances of different masses in HVT models A and B via the Drell-Yan process, in HVT model C via vector-boson fusion, and in the bulk RS model via gluon-gluon fusion and the Drell-Yan process.

m (TeV)	HVT model A		HVT model B		HVT model C		Bulk RS			
	$\sigma(W)$ (fb)	$\sigma(Z)$ (fb)		$\sigma(W)$ (fb)	$\sigma(Z)$ (fb)		$\sigma(W)$ (fb)	$\sigma(Z)$ (fb)		
1.0	2.20×10^4	1.12×10^4		987	510		1.30	0.888		583
2.6	219	100		14.0	6.44		4.78×10^{-3}	3.14×10^{-3}		1.41
4.0	9.49	4.37		0.626	0.288		1.27×10^{-4}	7.92×10^{-5}		3.25×10^{-2}

TABLE II. Signal models, resonances, and decay modes considered in the combination.

<table>
<thead>
<tr>
<th>Model</th>
<th>Decay mode</th>
<th>WW</th>
<th>WZ</th>
<th>ZZ</th>
<th>WH</th>
<th>ZH</th>
<th>$\ell\nu$</th>
<th>$\ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVT</td>
<td>Z'</td>
<td>W'</td>
<td>W'</td>
<td>Z'</td>
<td>W'</td>
<td>Z'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk RS</td>
<td>G_{KK}</td>
<td>G_{KK}</td>
<td>G_{KK}</td>
<td>Scalar</td>
<td>Scalar</td>
<td>Scalar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner detector covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition-radiation tracking detectors. A new innermost pixel layer [27] inserted at a radius of 3.3 cm has been used since 2015. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A hadronic (steel/scintillator-tile) calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). The end cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to $|\eta| = 4.9$. The muon spectrometer surrounds the calorimeters and features three large air-core toroidal superconducting magnet systems with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. The muon spectrometer includes a system of precision tracking chambers up to $|\eta| = 2.7$ and fast detectors for triggering up to $|\eta| = 2.4$. A two-level trigger system [28] is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to reduce the accepted rate to at most 100 kHz. This is followed by a software-based trigger level that reduces the accepted event rate to 1 kHz on average.

IV. DATA AND MONTE CARLO SIMULATION

The data sample was collected by the ATLAS detector during the pp collision running of the LHC at $\sqrt{s} = 13$ TeV in 2015 and 2016. Events were selected for the different channels with various triggers, as described in their respective papers [9–18]. Channels featuring charged or neutral leptons were selected with single or multiple electron and muon triggers with various p_T thresholds and isolation requirements or with missing transverse momentum triggers with varying thresholds. A high-p_T jet trigger was used in the fully hadronic channels. After requiring that the data were collected during stable beam conditions and with a functional detector, the integrated luminosity amounts to 36.1 fb$^{-1}$.

The interpretation in the combined channels relies on MC simulation to model the shape and normalization of the signals described in Sec. II. Signal events for the HVT and bulk RS models were generated with MADGRAPH5_aMC@NLO v2.2.2 [29] at leading order (LO) using the NNPDF23LO parton distribution function (PDF) set [30]. For the production of resonances in the HVT model, both the DY and VBF mechanisms were simulated, whereas for the bulk RS model, G_{KK} resonances were produced via the ggF and DY mechanisms. In the case of the heavy scalar model, signal events were generated at next-to-leading order (NLO) via the ggF and VBF mechanisms with POWHEG-BOX v1 [31,32] and the CT10 PDF set [33]. The ggF/DY and VBF processes were simulated as independent MC samples. For all signal models and production mechanisms, the generated events were interfaced to PYTHIA8.186 [34] for parton showering, hadronization, and the underlying event. This interface relied on the A14 set of tuned parameters [35] for events generated with MADGRAPH5_aMC@NLO at LO and the AZNLO set of tuned parameters [36] for events generated with POWHEG-BOX at NLO. Interference between the signal events and SM processes was not taken into account as the results for the bosonic channels are expected to change negligibly for the models considered since they predict narrow resonances. The particular case of $\ell\nu$ and $\ell\ell$ channels is discussed in Sec. VI. Examples of generator-level signal mass distributions are shown in Fig. 2.

Simulated background event samples are used to derive the main background estimates in the case of analyses in the $\ell\nu$, $\ell\ell$, $\ell\ell\ell$, and $\ell\ell\ell\ell$ channels and to extrapolate backgrounds from control regions in the analysis of the other channels. In other cases, the data are used to extract the normalization and/or shape of the background distributions. Although the production of background MC samples differed somewhat depending on the specific analysis, most MC samples were produced as follows. Diboson (WW, WZ, ZZ) events were generated with SHERPA [37] or POWHEG-BOX; W + jets and Z + jets events were generated with SHERPA for up to two partons at NLO and up to four partons at LO using the OPENLOOPS [38] and COMIX [39] programs, respectively. The production of top-quark pairs and single top quarks was performed at NLO with POWHEG-BOX. For the $\ell\nu$ and $\ell\ell$ channels, the dominant DY background was modeled using POWHEG-BOX with next-to-next-to-leading-order QCD and NLO electroweak corrections. More specific details can be found in the papers for each analysis.

For all MC samples, except those produced with SHERPA, b-hadron and c-hadron decays were performed with EVTGEN1.2.0 [40]. The production of the simulated
event samples included the effect of multiple \(pp \) interactions per bunch crossing, as well as the effect on the detector response due to interactions from bunch crossings before or after the one containing the hard interaction. These effects are collectively referred to as “pileup.” The simulation of pileup collisions was performed with PYTHIA8 and tuned to reproduce the average of 23 pileup interactions observed in the data in addition to the hard-scatter interaction. Most of the MC samples were processed through a detailed simulation of the detector response with GEANT4 [41,42]. A small subset of MC samples was processed with a fast parametrization of the calorimeter response [43], while the response for the other detector components used GEANT4. In all cases, events were reconstructed with the same software as was used for the data.

V. EVENT RECONSTRUCTION

The event selection discussed in Sec. VI relies on the reconstruction of electrons, muons, jets, and missing transverse momentum (with magnitude \(E_T^{\text{miss}} \)). Although the requirements vary for the different channels, the general algorithms are introduced below. The small differences between the efficiencies measured in data and MC simulation are corrected for by applying scale factors to the MC simulation so that it matches the data.

Measurements in the inner detector are used to reconstruct tracks from charged particles. The resulting tracks are then used to reconstruct collision vertices from \(pp \) interactions along the beam axis as well as vertices from the decays of \(b \)- and \(c \)-hadrons that are displaced from that axis. Out of the multiple collision vertices in each bunch crossing, a primary vertex is selected as the vertex with the largest \(\sum p_T^2 \), where the sum is over all tracks with transverse momentum \(p_T > 0.4 \) GeV which are associated with the vertex. Tracks associated with the primary vertex are identified as electrons or muons if they satisfy a set of criteria. Electrons are identified as tracks matching energy clusters in the electromagnetic calorimeter with energy deposition consistent with that of an electromagnetic shower [44]. In addition, electron candidates must satisfy a set of isolation criteria [44]. Different tightness levels of identification and isolation are used depending on the needs of each analysis. Muons are identified by matching inner detector tracks to full tracks or track segments reconstructed in the muon spectrometer. Identification and isolation criteria that are specific to different tightness levels are detailed in Ref. [45].

Jets are reconstructed from clusters of energy deposits in calorimeter cells [46] with the anti-\(k \)-t, clustering algorithm [47] implemented in FASTJET [48]. To remove jets reconstructed from pileup, jet-vertex tagging (JVT) is applied to jets with \(p_T < 60 \) GeV and \(|\eta| < 2.4 \) [49]. Jets built using a radius parameter \(R \) equal to 0.4 are referred to as “small-\(R \)” jets, and those built using \(R \) equal to 1.0 are referred to as “large-\(R \)” jets. A pair of small-\(R \) jets may be used to reconstruct \(V \to qq \) decays at sufficiently small \(V \) momentum where they can be resolved, but a single large-\(R \) jet is used at higher momentum when the two small-\(R \) jets merge due to the high Lorentz boost. Small-\(R \) jets are built from clusters calibrated at the EM scale [50], while large-\(R \) jets are built from clusters calibrated at the local hadronic scale [51]. The latter jets are trimmed to minimize the impact of pileup and to improve their energy and mass resolution by reclustering the constituents of each jet with the \(k_t \) algorithm [52] into smaller \(R = 0.2 \) subjets and removing those subjets with \(p_T^{\text{subjet}}/p_T^{\text{jet}} < 0.05 \), where \(p_T^{\text{subjet}} \) and \(p_T^{\text{jet}} \) are the transverse momenta of the subjet and original jet, respectively. Calibration of the trimmed jet \(p_T \) and mass is described in Ref. [53].

Jets containing \(b \)-hadron decay products are tagged with a multivariate algorithm that exploits the presence of large-impact-parameter tracks and displaced vertices from \(b \)-hadron decays [54,55]. Large-\(R \) jets are tagged as consistent with hadronic decays of \(W \) or \(Z \) bosons based on the mass (the mass window varies with jet \(p_T \) and substructure of the jet [53,56]). The latter exploits the two-body kinematics of high-\(p_T \) \(V \to qq \) decays as measured by the variable \(D_2 \), which is defined as a ratio of two-point to three-point energy correlation functions that are based on the energies of, and pairwise angular distances between, the jet’s constituents [56,57]. Likewise, large-\(R \) jets may also be tagged as originating from \(H \to bb \) decays by requiring the jet mass to be consistent with that of the Higgs boson (75–145 GeV) and the presence of two or more \(R = 0.2 \) jets built from tracks associated with the large-\(R \) jet, at least one of which must satisfy \(b \)-tagging requirements.

The magnitude of the event’s missing transverse momentum is computed from the vectorial sum of the transverse momenta of calibrated electrons, muons, and small-\(R \) jets in the event [58]. The \(E_T^{\text{miss}} \) value is corrected for the soft term, which consists of tracks associated with the primary vertex but not associated with electrons, muons, taus leptons, or small-\(R \) jets.

VI. EVENT SELECTION

The event selection and background estimation for the different analyses are briefly presented here. A full description is available in Refs. [9–18]. A list of the channels that are input to the combination is provided in Table III along with their experimental signatures. Care was taken in defining the event selection to achieve orthogonality between the different channels, as described later in this section. The channels are broadly separated into three categories, depending on the targeted decay state of the intermediate resonance: a vector-boson pair (VV), a \(W \) or \(Z \) boson with an associated Higgs boson (VH), and a pair of leptons (not involving intermediate bosons). Within the VH category, there are three subcategories: fully hadronic,
TABLE III. Summary of analysis channels, diboson states they are sensitive to, and their experimental signatures. The selection reflects requirements specific to each channel. Additional jets (not included in the “Jets” column) are required to define VBF categories. The notation j represents small-R jets, and J represents large-R jets. Leptons are either electrons or muons. The notation 1e, 1π means that the signature is either e or π, whereas 1e + 1π means e and π. A veto is imposed on \(E_T^{\text{miss}} \) in some channels to guarantee orthogonality between final-state channels. The symbol \(\cdots \) signifies that no requirement is imposed on a given signature.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Diboson state</th>
<th>Leptons</th>
<th>(E_T^{\text{miss}})</th>
<th>Jets</th>
<th>(b)-tags</th>
<th>VBF categories</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(qqqq)</td>
<td>WW/WZ/ZZ</td>
<td>0</td>
<td>Veto</td>
<td>2J</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>[9]</td>
</tr>
<tr>
<td>(\nu\nu)</td>
<td>WZ/ZZ</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\nu qq)</td>
<td>WW/WZ</td>
<td>1e, 1π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\ell qq)</td>
<td>WZ/ZZ</td>
<td>2e, 2π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\nu \ell)</td>
<td>ZZ</td>
<td>2e, 2π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\ell \ell)</td>
<td>WZ</td>
<td>3e, 2e + 1μ, 1μ + 1e, 3μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\ell \ell)</td>
<td>ZZ</td>
<td>4e, 2e + 2μ, 4μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q\bar{q} bb)</td>
<td>WH/ZH</td>
<td>0</td>
<td>Veto</td>
<td>2J</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W\bar{W} bb)</td>
<td>WH</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\nu bb)</td>
<td>ZH</td>
<td>1e, 1μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell\ell bb)</td>
<td>ZH</td>
<td>2e, 2π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell \ell)</td>
<td></td>
<td>1e, 1π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ell \ell \ell)</td>
<td></td>
<td>2e, 2π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

semileptonic, and fully leptonic. In the semileptonic and fully leptonic subcategories, the searches are further split into optimized selections for ggF/DY and VBF production (only the ggF/DY signature is indicated in Table III). The VBF-enriched selections are made orthogonal to the ggF/DY selections by requiring the presence of additional small-R jets, of which the two with the highest \(p_T \) must have large \(\eta \) separation and high invariant mass. For the majority of the searches, the discriminating variable is the invariant mass of the VV/VH/\(\ell\ell \) candidates, except those which involve two neutrinos (or the \(W \rightarrow \ell+\nu \) final state) where the transverse mass of the final-state particles is used.

Many of the searches involving charged leptons are affected by events with lepton candidates that originate from jets misidentified as leptons or with nonprompt leptons that originate from hadron decays. This background source is referred to as the “fake-lepton” background and is estimated using data-driven techniques. Events with fake leptons may arise from a variety of different processes including multijet, W/Z + jets, and \(t\bar{t} \) production. Other background sources are estimated using MC simulation, with constraints sometimes extracted from control regions in the data.

The fully hadronic VV final state benefits from the largest branching fraction among the possible final states but suffers from a large background contamination from the production of multijet events. However, this contamination can be mitigated in the regime of TeV-scale resonances with jet substructure techniques as described in Sec. V. The background prediction is obtained with a fit to the invariant mass distribution of the two highest-\(p_T \) large-R jets in the event. This channel explores the mass range between 1.1 and 5.0 TeV and is particularly sensitive at high resonance mass.

The semileptonic VV analyses require either two small-R jets or one large-R jet, for the resolved and merged regimes, respectively, in addition to zero, one, or two leptons, with significant \(E_T^{\text{miss}} \) required in all channels except \(\ell\ell qq \). Control regions are used to derive the background estimate, and separate signal regions are defined so as to be sensitive to the different production mechanisms, i.e. ggF/DY or VBF production. The background in the \(\nu\nu qq \) channel has large contributions from W/Z + jets and \(t\bar{t} \) events. The background in the \(\ell\nu qq \) channel is dominated by W + jets and \(t\bar{t} \) events, while the background in the \(\ell\ell qq \) channel is dominated by Z + jets events. These channels are used in the mass range from 0.3 to 5.0 TeV and are particularly sensitive in the mid- to high-mass range.

For the fully leptonic VV final states, different selection categories are defined for each channel to optimize the sensitivity to DY, ggF, and VBF production. In the \(\ell\ell qq \) channel, two VBF categories are defined with \(N_{\text{jet}} = 1 \) and \(N_{\text{jet}} \geq 2 \), with additional criteria on the jet \(\eta \) and separation between the leptons and jets to minimize contamination from the ggF signal. A third category for ggF production is further defined as those events that fail to enter the two VBF categories, while satisfying the other base criteria, ensuring orthogonality. The major backgrounds in the \(\ell\ell qq \) channel come from WW and \(t\bar{t} \) production. This channel is used in the mass range 0.5–5.0 TeV (0.5–1.0 TeV) for ggF.
(VBF) production with particular sensitivity at lower mass. For the $\ell\nu\ell\nu$ channel, two categories are defined to discriminate between DY and VBF production mechanisms. The dominant background in the $\ell\ell\ell$ channel is the contribution from WZ production, and this channel has particular sensitivity in the mass range 0.3–3.0 TeV (0.3–2.0 TeV) for DY (VBF) production. The $\ell\ell\ell\nu$ channel considers all combinations of electron and muon pairs, with ZZ production as the main background contribution. This channel provides good sensitivity for resonance masses below 1 TeV and covers the range of 0.2–2.0 TeV. Finally, the $\ell\ell\nu\nu$ channel requires exactly two same-flavor and oppositely charged electrons or muons, with the dilepton invariant mass required to be within the Z-mass region. This channel has four signal categories: two for ggF and two for VBF production, divided according to the flavor of the leptons they contain. This channel covers the resonance mass range of 0.3–2.0 TeV, with a particular sensitivity at low mass, between 0.5 and 1.0 TeV.

The fully hadronic VH analysis focuses on resonance masses above 1 TeV, with highly boosted V bosons and Higgs bosons that are likely to be highly collimated and merged into a single large-R jet. The analysis uses dedicated boosted-boson tagging and only considers the merged regime, requiring at least two large-R jets with high p_T, with a veto on any event that contains a lepton candidate. The main background in this search comes from multijet processes.

The semileptonic VH analyses focus on the resonance mass region above 0.5 TeV. Regimes in which the V or H boson decay constituents are separated enough to be considered resolved and those in which they are merged are both considered in separate categories, with priority given to the resolved analysis and the remaining events recycled into the merged analysis. The semileptonic searches are split into three channels depending on the number of charged leptons: $qqqq$, $qgbb$, and $\ell\ell bb$.

The $\ell\nu$ and $\ell\ell$ final states have a high sensitivity due to their very clean signature, with good lepton energy resolution and relatively low background. The dominant background in these channels comes from the irreducible charged-current (CC) and neutral-current (NC) DY processes for the $\ell\nu$ and $\ell\ell$ channels, respectively. These searches are sensitive across a wide range of resonance masses from 0.2 to 5.5 TeV.

For a number of the signatures, there is interference between the signal and the SM background. For some channels such as the hadronic and semileptonic diboson decay channels, the impact of interference is expected to be negligible because the SM diboson background is small. Moreover, multijet event production is depleted in $qqqq$ states, and thus the interference with the fully hadronic decay channel is reduced. For the fully leptonic diboson decay channels, this background is not negligible, but the role of interference, which increases with the heavy resonance width, is small for widths less than 15% of the resonance pole mass. Since only narrow resonances are considered, the impact of interference is neglected. Finally, for the leptonic channels ($\ell\nu, \ell\ell$), the interference can play an important role as the dominant background is the irreducible DY process which interferes with the HVT signal, and thus to minimize the effects of interference, the $\ell\nu$ transverse mass is required to satisfy $|m_T - m_{pole}| < \sqrt{64\text{ GeV} \times m_{pole}}$ in the $\ell\nu$ channel, where m_{pole} corresponds to the W' pole mass. Likewise, the $\ell\ell$ mass is required to satisfy $|m_{\ell\ell} - m_{pole}| < \sqrt{25\text{ GeV} \times m_{pole}}$ in the $\ell\ell$ channel with m_{pole} the Z' pole mass. The mass window requirement results in the difference between the theoretical cross section with and without interference being less than 15% throughout the coupling plane.

Possible overlaps among the different searches in the combination are considered to ensure orthogonality. The first step is to determine the orthogonality of the selection criteria used in the various analyses, which is summarized in Table III. One of the criteria that cleanly provides orthogonality is the requirement on the lepton multiplicity in the selected events, ranging from zero to four leptons. Further orthogonality is achieved with additional selection criteria for the jets and E_T^{miss} in the events. In particular, a veto is applied to events with a large E_T^{miss} value in the $qqqq$, $qgbb$, and $\ell\ell bb$ channels. For the combination of VV and VH channels (and also with the leptonic channels), events are further removed from the VH analysis if they are in overlapping parts of the signal region and have a Higgs boson candidate mass close to the W/Z mass. This has the effect of improving the VH sensitivity in the combination above 1 TeV by 10%–15% because the original VH semileptonic analyses were optimized for resonances with a mass below 1 TeV. Only a negligible number of events that overlap between channels remains.

VII. SYSTEMATIC UNCERTAINTIES

The various sources of experimental and theoretical systematic uncertainty are assessed as a function of the discriminating variable in each of the search channels in the combination. These uncertainties are derived for both the signal and background estimates where relevant and are treated as correlated or uncorrelated between the signal and background in the various channels, as appropriate. The systematic uncertainties estimated to have a non-negligible impact on the expected cross section limit are used as nuisance parameters in the statistical interpretation, as described in Sec. VIII. This section describes the systematic uncertainties for all channels in the combination and applies to the various signal scenarios in Table II. A full description of the evaluation of systematic uncertainties is provided in the original publications for each of the analyses. What follows is a qualitative discussion.
The experimental systematic uncertainties related to charged leptons, such as the efficiencies due to triggering, reconstruction, identification, and isolation, as well as the lepton energy scale and resolution, are evaluated using \(Z \to \ell\ell \) decays and then extrapolated to higher energies. These uncertainties are correlated between leptons of the same flavor across all channels in the combination and between the signal and the background estimates. The systematic uncertainties for each of the channels featuring charged leptons are summarized in Table IV including the assumed correlation between channels.

The experimental systematic uncertainties due to the missing transverse momentum are summarized in Table V. These relate to the \(E_T^{\text{miss}} \) trigger as well as the \(E_T^{\text{miss}} \) scale and resolution, which are estimated in control regions using the data.

The small-\(R \) jet uncertainties are relevant for most of the channels in the combination, including those with leptonic final states that contain at least one neutrino, due to the impact of those uncertainties on the \(E_T^{\text{miss}} \) measurement. The uncertainties in the jet energy scale and resolution are derived by comparing the response between the data and the simulation in various kinematic regions and event topologies. Additional contributions to this uncertainty come from the dependence on the pileup activity and on the flavor composition of the jets as well as the punch-through of the energy from the calorimeter into the muon spectrometer. An uncertainty in the efficiency for jets to satisfy the JVT requirements is assessed. The small-\(R \) jet uncertainties are summarized in Table VI. For large-\(R \) jets, the uncertainties in the energy, mass, and \(D_2 \) scales are estimated by comparing the ratio of calorimeter-based to

Table IV. Lepton systematic uncertainties. The abbreviations S and B stand for signal and background, respectively, and “Negl.” denotes uncertainties that are negligible. Each uncertainty is considered as correlated between the channels listed.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\ell\nu qq)</th>
<th>(\ell\nu lq)</th>
<th>(\ell\nu \ell\nu)</th>
<th>(\ell\nu l\ell)</th>
<th>(\ell\ell l\ell)</th>
<th>(\ell lbb)</th>
<th>(\ell hbb)</th>
<th>(\ell l)</th>
</tr>
</thead>
</table>

Table V. \(E_T^{\text{miss}} \) systematic uncertainties. The abbreviations S and B stand for signal and background, respectively, while the symbol \(\cdots \) denotes uncertainties that are not applicable. Each uncertainty is considered as correlated between the channels listed.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\nu qq)</th>
<th>(\nu lq)</th>
<th>(\nu l\nu)</th>
<th>(\nu l\ell)</th>
<th>(\nu l\ell\ell)</th>
<th>(\nu lbb)</th>
<th>(\nu hbb)</th>
<th>(\nu l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_T^{\text{miss}}) trigger</td>
<td>S + B</td>
<td>S + B</td>
<td>S + B</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>S + B</td>
<td>S + B</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(E_T^{\text{miss}}) soft-term scale</td>
<td>S + B</td>
</tr>
<tr>
<td>(E_T^{\text{miss}}) soft-term resolution</td>
<td>S + B</td>
</tr>
</tbody>
</table>

Table VI. Small-\(R \) jet systematic uncertainties. The abbreviations S and B stand for signal and background, respectively, and “Negl.” denotes uncertainties that are negligible. Each uncertainty is considered as correlated between the channels listed.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\nu qq)</th>
<th>(\nu lq)</th>
<th>(\nu l\nu)</th>
<th>(\nu l\ell)</th>
<th>(\nu l\ell\ell)</th>
<th>(\nu lqhbb)</th>
<th>(\nu hhb)</th>
<th>(\nu llbb)</th>
<th>(\nu ll)</th>
</tr>
</thead>
</table>
track-based jet p_T measurements in dijet events between the data and the simulation. The uncertainties in the jet mass resolution and jet energy resolution as well as D_2 are assessed by applying additional smearing of the jet observables according to the uncertainty in their resolution measurements. A summary of the large-R jet systematic uncertainties is provided in Table VII.

The flavor-tagging uncertainty is evaluated by varying the data-to-MC corrections in various kinematic regions, based on the measured tagging efficiency and mistag rates. These variations are applied separately to b-hadron jets, c-hadron jets, and light (quark or gluon) jets, leading to three uncorrelated systematic uncertainties. An additional uncertainty is included due to the extrapolation for the jets with p_T beyond the kinematic reach of the data calibration. The flavor-tagging uncertainties are summarized in Table VIII.

The theoretical uncertainties are split among the various backgrounds, which play greater or lesser roles in each of the search channels, depending on the composition of backgrounds in a given channel. The dominant background in the $\ell\nu$ and $\ell\ell$ channels is from the CC and NC DY processes, respectively. In these channels theoretical uncertainties arise from PDFs and electroweak corrections. The PDF uncertainties are divided into PDF eigenvector variations, the choice of the nominal PDF set (CT14NNLO [59]) from a number of different PDF sets, as well as the choice of PDF renormalization and factorization scales, and α_S. In the case of the $\ell\ell$ channel, an additional uncertainty due to photon-induced corrections to the NC DY process is also assessed. Similar sources of theoretical uncertainty are assessed and included where relevant for other backgrounds such as top-quark, diboson, $V +$ jets, as well as for the multijet background, when an MC-based estimation is used. Specifically, when “cross section” uncertainties are mentioned for these backgrounds, they refer to cross section calculations, while “modeling” refers to event generator and parton shower comparisons, and “extrapolation” refers to the background being extrapolated from a control region to a higher-mass region. One exception is the multijet-modeling systematic uncertainty for channels that include leptons, such as $\ell\nu$ and $\ell\ell$. In these cases, the systematic uncertainty includes variations of the data-driven methodology used to derive the fake-lepton background estimate and its subsequent extrapolation to higher masses. All uncertainties are summarized in Table IX. Theoretical uncertainties that affect the acceptance of the signal are also assessed, such as initial- and final-state radiation, PDF variation, and PDF choice. These generally have a negligible impact on the result but are included where relevant in the statistical interpretation.

All channels include an uncertainty in the integrated luminosity of 3.2% derived following a methodology similar to that detailed in Ref. [60]. This uncertainty is taken to be correlated across the channels and between the signal and background. The uncertainty due to pileup is also considered when it does not have a negligible impact on the analysis, to cover the difference between the ratios of predicted and measured inelastic cross section values. For most of the VV and VH analyses, MC-modeling systematic uncertainties play the dominant role in the theoretical uncertainty, while for the leptonic channels, the PDF variation and PDF choice are by far the most dominant. For the experimental systematic uncertainties, analyses selecting jets are most sensitive to systematic uncertainties in the modeling of large-R jets, while the leptonic channels are affected mostly by the uncertainty in the muon reconstruction efficiency and electron isolation efficiency.

TABLE VIII. Flavor-tagging systematic uncertainties. The abbreviations S and B stand for signal and background, respectively. Each uncertainty is considered as correlated between the channels listed.

<table>
<thead>
<tr>
<th>Source</th>
<th>νqq</th>
<th>ℓqq</th>
<th>$\ell\ell qq$</th>
<th>$\ell\nu$</th>
<th>$\ell\ell$</th>
<th>$ggbb$</th>
<th>Wbb</th>
<th>ℓbb</th>
</tr>
</thead>
<tbody>
<tr>
<td>b tagging</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>B</td>
<td>B</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>$S + B$</td>
</tr>
<tr>
<td>c tagging</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>B</td>
<td>B</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>$S + B$</td>
</tr>
<tr>
<td>Tagging extrapolation</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>B</td>
<td>B</td>
<td>$S + B$</td>
<td>$S + B$</td>
<td>$S + B$</td>
</tr>
</tbody>
</table>
TABLE IX. Theoretical systematic uncertainties. The abbreviation B stands for background, while the symbol \(\cdot \cdot \cdot \) denotes uncertainties that are not applicable, “Negl.” denotes uncertainties that are negligible, and “Corr” marks whether the uncertainty is correlated between the channels listed. The abbreviation F means that this parameter was left to float in the background control region for that channel. The systematic uncertainties in the background modeling for the fully hadronic analysis \(qqqq \) are embedded in the fit function used to model the background.

<table>
<thead>
<tr>
<th>Source</th>
<th>Corr</th>
<th>(\nu \nu)</th>
<th>(\ell \nu \nu)</th>
<th>(\ell \ell)</th>
<th>(\ell \ell \nu)</th>
<th>(\ell \ell)</th>
<th>(\ell \ell \ell)</th>
<th>(\ell \nu \ell)</th>
<th>(\ell \nu)</th>
<th>(\ell \nu)</th>
<th>(\ell \ell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY PDF variation</td>
<td>Yes</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>DY PDF choice</td>
<td>Yes</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>DY PDF scale</td>
<td>Yes</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>DY (\alpha_e)</td>
<td>Yes</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>DY EW corrections</td>
<td>Yes</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>DY photon induced</td>
<td>Yes</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>Top cross section</td>
<td>No</td>
<td>B</td>
<td>F</td>
<td>F</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Top extrapolation</td>
<td>No</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>Diboson cross section</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>Diboson extrapolation</td>
<td>No</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>Multijet cross section</td>
<td>No</td>
<td>F</td>
<td>B</td>
<td>F</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>Multijet modeling</td>
<td>No</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>(Z +) jets cross section</td>
<td>No</td>
<td>F</td>
<td>B</td>
<td>F</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>(Z +) jets modeling</td>
<td>No</td>
<td>B</td>
<td>B</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>(W +) jets cross section</td>
<td>No</td>
<td>B</td>
<td>F</td>
<td>B</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
<tr>
<td>(W +) jets modeling</td>
<td>No</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>(\cdot \cdot \cdot)</td>
</tr>
</tbody>
</table>

VIII. STATISTICAL TREATMENT

The combination of the individual channels proceeds with a simultaneous analysis of the signal discriminants across all of the channels. For each signal model being tested, only the channels sensitive to that hypothesis are included in the combination. The statistical treatment of the data is based on the RooFit [61], RooStats [62], and HistFactory [63] data modeling and handling toolkits. Results are calculated in two different signal parametrization paradigms, corresponding to one-dimensional upper limits on the cross section times branching fraction \((\sigma \times \mathcal{B})\) and two-dimensional limits on coupling strengths. The statistical treatment of each case is described here.

A. One-dimensional upper limits

In the case of one-dimensional upper limits on \(\sigma \times \mathcal{B}\), the overall signal strength, \(\mu\), defined as a scale factor multiplying the cross section times branching fraction predicted by the signal hypothesis, is the parameter of interest. The analysis follows the frequentist approach with a test statistic based on the profile-likelihood ratio [64]. This test statistic \((T)\) is defined as twice the negative logarithm of the ratio of the conditional (fixed-\(\mu\)) maximum likelihood to the unconditional maximum likelihood, each obtained from a fit to the data

\[
T = -2 \ln \frac{L(\mu, \hat{\theta}(\mu))}{L(\hat{\mu}, \hat{\theta}(\hat{\mu}))},
\]

where \(\theta(\mu)\) represent the nuisance parameters. The latter are represented in the equation as their unconditional and conditional maximum-likelihood values, \(\hat{\theta}(\hat{\mu})\) and \(\hat{\theta}(\mu)\). The fitted signal strength, \(\hat{\mu}\), is bounded from below at zero.

The likelihood, \(L\), is given by

\[
L = \prod \prod \text{Pois}(n_{ci}^{\text{obs}}, n_{ci}^{\text{sig}}(\mu, \theta) + n_{ci}^{\text{bkg}}(\overline{\theta})) \prod f_k(\theta_k),
\]

where the index \(c\) represents the analysis channel, \(i\) represents the bin in the signal discriminant distribution, \(n_{ci}^{\text{obs}}\) is the observed number of events, \(n_{ci}^{\text{sig}}\) is the number of expected signal events, \(n_{ci}^{\text{bkg}}\) is the expected number of background events, \(\overline{\theta}\) is the vector of nuisance parameters, and \(\text{Pois}(x|y)\) is the Poisson probability to observe \(x\) events when \(y\) are predicted.

The effect of a systematic uncertainty \(k\) on the binned likelihood is modeled with an associated nuisance parameter, \(\theta_k\), constrained with a corresponding probability density function \(f_k(\theta_k)\). In this manner, correlated effects across the different channels are modeled by the use of a common nuisance parameter and its corresponding probability density function. The \(f_k(\theta_k)\) terms are Poisson distributed for bin-by-bin MC statistical uncertainties and Gaussian distributed for all other terms.

Given the large number of search channels included in the likelihood, the sampling distribution of the profile-likelihood test statistic is assumed to follow the chi-squared \((\chi^2)\) distribution, and thus asymptotic formulas for the evolution of the likelihood as a function of signal strength \(\mu\) are used [64]. In certain instances, such as high-mass tails of resonant mass distributions, the asymptotic approximation is expected to be less reliable. In these cases,
MC trials are used to assess its accuracy. This approximation is found to lead to $\sigma \times B$ limits that are stronger than those obtained with MC trials. The effect is largest in the case of the lepton-antilepton combination for which it increases linearly with resonance mass from approximately 20% at 2 TeV to 55% at 5 TeV. In the context of HVT model A, the impact of using the asymptotic approximation in the limit setting is at most 250 GeV on the mass limits, as obtained for the lepton-antilepton combination.

When evaluating limits in the HVT model with degenerate-mass W' and Z' production, each of the contributing signal processes is normalized to the $\sigma \times B$ value predicted by HVT model A, thereby defining the relative ratios of $\sigma(pp \rightarrow W')/\sigma(pp \rightarrow Z')$, $B(W' \rightarrow l\ell\nu)/B(W \rightarrow ZZ/WH)$, and $B(Z' \rightarrow l\ell\nu)/B(Z' \rightarrow WW/ZH)$. The HVT model A benchmark makes a model-dependent assumption about these relative ratios, so the resulting upper limits cannot be directly interpreted as general limits on $\sigma \times B$. Thus, the upper limits are presented as the ratio to the HVT model A prediction for $\sigma \times B$, as each of the previously defined ratios is fixed to this benchmark prediction.

Upper limits on μ for the signal models being tested at the simulated resonance masses are evaluated at the 95% C.L. following the CL$_{s}$ prescription [65]. Lower limits on the mass of new resonances in these models are obtained by finding the maximum resonance mass where the 95% C.L. upper limit of new resonances in these models are obtained by finding the

B. Two-dimensional limits

When calculating one-dimensional upper limits on $\sigma \times B$, each of the signal rate predictions from W' and Z' production is fixed to the ratio predicted by the benchmark models. To evaluate two-dimensional constraints on coupling strengths, the signal yields are parametrized with a set of coupling parameters (\vec{g}) which allow the relative proportions of each signal to vary independently. Thus, in the two-dimensional limit calculation, Eq. (2) is modified to allow the set of coupling parameters to be considered independently:

$$T' = -2 \ln \frac{L(\vec{g}, \theta(\vec{g}))}{L(\hat{g}, \theta(\hat{g}))}.$$

The coupling parametrization assumes that all signal production proceeds via quark-antiquark annihilation (proportional to g_0^q) and the signal decays are proportional to the square of the bosonic coupling (g_H) and lepton coupling (g_ℓ) in the $V' \rightarrow VV/VH$ and $V' \rightarrow l\ell\nu/\ell\ell$ final states, respectively.

Two coupling spaces are considered. The first coupling scenario makes the assumption of common fermionic couplings ($g_f = g_\ell = g_q$) and probes the $\{g_H, g_f\}$ plane. The second coupling scenario allows independent fermionic couplings and probes the $\{g_q, g_\ell\}$ plane with either $g_H = 0$ or $g_H = -0.56$, where the latter takes the value predicted in the HVT model A benchmark. The 95% C.L. limit contours in each coupling space are determined using T' by normalizing signal rates to the $\sigma \times B$ predictions of the HVT model for the specified values of \vec{g} at a given point in the space and calculating the value of CL$_{s}$ for that point. Upper limits on coupling parameters are thus defined by contours of constant CL$_{s}$ in each coupling space considered.

IX. RESULTS

The methodology described in the previous section is used to statistically combine various channels for the different signal models listed in Table II. The largest local

![Graphs showing observed and expected 95% C.L. upper limits on the V' cross section times branching fraction to WW or WZ for the HVT benchmark model, relative to the cross section times branching fraction for HVT model A or C, as applicable. Results are shown for (a) DY and (b) VBF production mechanisms. The model predictions are also shown.](image-url)
excess is observed in the VBF scalar ($WW + ZZ$) search for a mass of 1.6 TeV, with a significance of 2.9σ. Limits are set on the signal parameters of interest.

For the VV combination, the HVT, bulk RS, and scalar models are all considered. Figure 3 shows the $\sigma \times B$ limit relative to the predicted $\sigma \times B$ for the combination of $W' \rightarrow WZ$ and $Z' \rightarrow WW$ decays in the context of the HVT model for either DY or VBF production mechanisms. Cross section limits obtained exclusively for the VBF production mechanism are useful for constraining models with small coupling between fermions and V' resonances. Figures 4 and 5 show the $\sigma \times B$ limits for the combination of $G_{\text{KK}} \rightarrow WW$ or ZZ and scalar $\rightarrow WW$ or ZZ, respectively.

For the combination of VH search channels, only the HVT benchmark models are considered. Figure 6 shows the $\sigma \times B$ limits relative to the HVT model A cross section, for decays into WH and ZH combined.

The VV and VH channels are then combined, setting limits on $\sigma \times B$ relative to the HVT model A prediction, as shown in Fig. 7(a). For the leptonic channels ($W' \rightarrow \ell \nu$ and $Z' \rightarrow \ell \ell$), only HVT model A is considered as shown in Fig. 7(b).

The channels are then further combined to set limits on HVT model A using not only VV and VH decay modes but also $\ell \nu/\ell \ell$ decay modes. Figure 8 presents the resulting limits on $\sigma \times B$ relative to the HVT model A prediction for W', Z', and V' production. Separate VV/VH and $\ell \nu/\ell \ell$ expected limits are shown in Fig. 8(d). As the VV and VH analyses only usually consider V' masses up to 5 TeV, the acceptance is extrapolated to 5.5 TeV for the full combination.

Each of the channels presented here contributes uniquely to the search for heavy resonances, and the results obtained by their combination extend the reach beyond that of the individual searches. By using the HVT, bulk RS, and scalar benchmark models for comparison, the relative exclusion power of each search and their combinations can be compared. The intersection of the benchmark model
predictions and the $\sigma \times B$ upper limits yields lower limits on the resonance mass in each case. The observed and expected lower limits on the resonance mass are summarized in Table X.

The search channels included here provide access to several coupling strengths of heavy resonances to SM particles as described by Eq. (1) in the context of the HVT model. Specifically, the data constrain the coupling strength

![Graphs showing observed and expected 95% C.L. upper limits on V' cross section times branching fraction for different decay modes.](image)

FIG. 7. Observed and expected 95% C.L. upper limits on the V' cross section times branching fraction to (a) VV/VH and (b) $\ell\nu/\ell\ell$ for the HVT benchmark model, relative to the cross section for HVT model A. The model predictions are also shown.

![Graphs showing observed and expected 95% C.L. upper limits on V' cross section times branching fraction for different decay modes.](image)

FIG. 8. Observed and expected 95% C.L. upper limits on the V' cross section times branching fraction to VV, VH, and the lepton-antilepton, relative to the prediction for HVT model A. Results are shown for (a) W', (b) Z', and (c) V' production; (d) shows expected limits for bosonic and leptonic decay modes. The model predictions are also shown.
TABLE X. Observed and expected 95% C.L. lower limits on resonance mass for benchmark models in each of the combined searches, “Obs” and “Exp” stand for observed and expected, respectively.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Lower limits on resonance mass (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HVT model A</td>
</tr>
<tr>
<td>WW</td>
<td>Obs</td>
</tr>
<tr>
<td>WZ</td>
<td>2.9</td>
</tr>
<tr>
<td>ZZ</td>
<td>3.6</td>
</tr>
<tr>
<td>VV</td>
<td>4.3</td>
</tr>
<tr>
<td>WH</td>
<td>4.6</td>
</tr>
<tr>
<td>ZH</td>
<td>4.5</td>
</tr>
<tr>
<td>VV/VH</td>
<td>5.0</td>
</tr>
<tr>
<td>VV/VH/ℓν/ℓℓ</td>
<td>5.5</td>
</tr>
</tbody>
</table>

The constraints from the VV, VH, and combined VV and VH channels are presented in Fig. 9, showing the $\{g_H, g_f\}$ plane for each as well as the $\{g_H, g_ℓ\}$ plane for VV/VH. These constraints are strongest at large couplings for both g_f and g_H, but become weak as these couplings approach to both the quarks and bosons in the VV and VH channels, whereas constraints are placed on both the quark and lepton couplings in the leptonic channels. These constraints are shown in Figs. 9–11, where the first and second include a shaded area denoting a region where the limits are not valid because resonances would have a width greater than 5% of their mass. This is a region where the resonance width would exceed the discriminating variable’s resolution in the search, and the assumed narrow-width approximation breaks down. Figures 10 and 11 include constraints on heavy resonances with masses of 3, 4, and 5 TeV from precision electroweak (EW) measurements [66], which already exclude this aforementioned region for the relevant contours shown. The EW constraints are only overlaid on the final plots for each part of the combination.

The constraints from the VV, VH, and combined VV and VH channels are presented in Fig. 9, showing the $\{g_H, g_f\}$ plane for each as well as the $\{g_H, g_ℓ\}$ plane for VV/VH. These constraints are strongest at large couplings for both g_f and g_H, but become weak as these couplings approach...
This is because the resonance couplings to VV and VH tend to zero as the g_H coupling approaches zero, and production of the resonance also tends to zero as the g_f coupling approaches zero. The constraints in the g_f plane shown in Fig. 9(d) weaken at larger $|g_f|$ values due to an increase in the leptonic branching fraction and a corresponding decrease in the bosonic branching fraction.

FIG. 10. Observed 95% C.L. exclusion contours in the HVT parameter space (a) $\{g_H, g_f\}$, (b) $\{g_q, g_{\ell}\}$ with g_H set to the value from HVT model A, and (c) $\{g_q, g_{\ell}\}$ with g_H set to 0, for resonances of mass 3, 4, and 5 TeV for the $l\nu/\ell\ell$ channels. The areas outside the curves are excluded, as are the filled regions which show the constraints from precision EW measurements. The gray area indicates parameter regions for which $\Gamma/m > 5\%$. Also shown are the parameters for models A and B, where applicable.

FIG. 11. Observed 95% C.L. exclusion contours in the HVT parameter space (a) $\{g_H, g_f\}$ and (b) $\{g_q, g_{\ell}\}$ for resonances of mass 3, 4, and 5 TeV for the combination of the VV, VH, and $l\nu/\ell\ell$ channels. The areas outside the curves are excluded, as are the filled regions which show the constraints from precision EW measurements. Also shown are the parameters for models A and B, where applicable.
Figure 10 presents the constraints from the $\ell\nu/\ell\ell$ channels in the $\{g_{H}, g_{f}\}$ plane, $\{g_{q}, g_{\ell}\}$ plane for g_{H} set to the value from HVT model A, and $\{g_{q}, g_{\ell}\}$ plane for g_{H} set to 0. In this last case, the bosonic channels do not contribute because $g_{H} = 0$, meaning only the leptonic channels contribute. As the leptonic channels involve direct production of a V^\prime resonance and subsequent decay, without intermediate bosons, the constraints remain strong even as g_{H} tends to zero, and in fact are strongest there due to the restriction of alternative decay modes. The constraints from these channels still weaken as the g_{f} coupling tends to zero though, as it does when g_{ℓ} and/or g_{q} tends to zero. These features demonstrate the complementarity between the VV/VH and $\ell\nu/\ell\ell$ decay modes.

The complementarity is further evidenced by the full $VV/VH/\ell\nu/\ell\ell$ combination in both the $\{g_{H}, g_{f}\}$ plane, as shown in Fig. 11(a), and the $\{g_{q}, g_{\ell}\}$ plane, as shown in Fig. 11(b). The resulting constraints are very stringent, improving on the limits from current precision EW measurements in almost all areas of the respective planes, except at low $|g_{q}|$ values when considering nonuniversal quark and lepton couplings in the $\{g_{q}, g_{\ell}\}$ plane. This is due to the asymmetry of the precision EW measurement limits, which is related to interference effects. The constraints for HVT model A are generally stronger than for model B, due to the small fermion couplings in the latter scenario.

X. CONCLUSIONS

A combination of results from searches for heavy resonance production in various bosonic and leptonic final states is presented. The data were collected with the ATLAS detector at the LHC in pp collisions at $\sqrt{s} = 13$ TeV and correspond to an integrated luminosity of 36.1 fb$^{-1}$. While previous combination efforts included only the decays of heavy resonances into VV and VH, the combination presented here also includes decays into lepton-anti-lepton final states. Compared to the individual analyses, the combined results strengthen the constraints on physics beyond the Standard Model and allow the constraints to be expressed in terms of the couplings to quarks, leptons, or bosons. The relative sensitivities of the different approaches are compared, including bosonic and leptonic final states or different production mechanisms such as quark-antiquark annihilation/gluon-gluon fusion vs vector-boson fusion.

The combined results are interpreted in the context of models with a heavy vector-boson triplet, a Kaluza-Klein excitation of the graviton, or a heavy scalar singlet. The 95% C.L. lower limit on the mass of V^\prime resonances in the weakly coupled HVT model A is 5.5 TeV, and the corresponding limit in the strongly coupled HVT model B is 4.5 TeV. Similarly, the lower limit on the G_{KK} mass in the bulk RS model with $k/\bar{M}_{Pl} = 1$ is 2.3 TeV. Limits on the cross section times branching fraction for an empirical heavy scalar model range between 380 and 1.3 fb for scalar mass values between 0.3 and 3.0 TeV in the case of production via gluon-gluon fusion. The corresponding values for scalar production via vector-boson fusion range between 140 and 3.2 fb for scalar masses between 0.5 and 3.0 TeV. Finally, the combined results are used to place stringent constraints on couplings of heavy vector bosons to quarks, leptons, and bosons. Except at low values of quark couplings where resonance production via quark-antiquark annihilation is suppressed at the LHC, these constraints are found to be more stringent than those extracted from precision electroweak measurements.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC as well as the support staff from our institutions, without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINEA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF, and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; and DOE and NSF, U.S. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales, and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; BSF, GIF, and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged.
gratefully, in particular from CERN; the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and BNL (U.S.); the Tier-2 facilities worldwide; and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [67].

[15] ATLAS Collaboration, Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the $q\bar{q}h\bar{h}$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B 774, 494 (2017).

[66] F. del Aguila, J. de Blas, and M. Perez-Victoria, Electroweak limits on general new vector bosons, J. High Energy Phys. 09 (2010) 033. We thank Jorge de Blas for providing the latest constraints from electroweak precision measurements.

COMBINATION OF SEARCHES FOR HEAVY RESONANCES ...

PHYS. REV. D 98, 052008 (2018)

(ATLAS Collaboration)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany, New York, USA
3Department of Physics, University of Alberta, Edmonton, Alberta, Canada
4aDepartment of Physics, Ankara University, Ankara, Turkey
4bIstanbul Aydin University, Istanbul, Turkey
5Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
6LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
7High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
8Department of Physics, University of Arizona, Tucson, Arizona, USA
9Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
10Physics Department, National and Kapodistrian University of Athens, Athens, Greece
11Department of Physics, University of Texas at Austin, Austin, Texas, USA
12Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
13Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
14Department of Physics, Bogazici University, Istanbul, Turkey
15Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
16Azerbaijan Academy of Sciences, Baku, Azerbaijan
17Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
18Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
19Physics Department, Tsinghua University, Beijing, China
20Department of Physics, Nanjing University, Nanjing, China
21University of Chinese Academy of Science (UCAS), Beijing, China
22Institute of Physics, University of Belgrade, Belgrade, Serbia
22aInstitute of Physics, University of Birmingham, Birmingham, United Kingdom
23aDipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23bINFN Sezione di Bologna, Italy
24Physikalisches Institut, Universität Bonn, Bonn, Germany
25Department of Physics, Boston University, Boston, Massachusetts, USA
26Department of Physics, Brandeis University, Waltham, Massachusetts, USA
27aTransilvania University of Brasov, Brasov, Romania
27bHoria Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
27cDepartment of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
27dNational Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
27eUniversity Politehnica Bucharest, Bucharest, Romania
27fWest University in Timisoara, Timisoara, Romania
28aFaculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
28bDepartment of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29Physics Department, Brookhaven National Laboratory, Upton, New York, USA
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
32aDepartment of Physics, University of Cape Town, Cape Town, South Africa
32b Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
32c School of Physics, University of the Witwatersrand, Johannesburg, South Africa
33 Department of Physics, Carleton University, Ottawa, Ontario, Canada
34a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca, Morocco
34b Centre National de l’Energie des Sciences Techniques Nucléaires (CNESTEN), Rabat, Morocco
34c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
34d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
34e Faculté des sciences, Université Mohammed V, Rabat, Morocco
35 CERN, Geneva, Switzerland
36 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
37 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
38 Nevis Laboratory, Columbia University, Irvington, New York, USA
39 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
40 Dipartimento di Fisica, Università della Calabria, Rende, Italy
40b INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
41 Physics Department, Southern Methodist University, Dallas, Texas, USA
42 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
43a Department of Physics, Stockholm University, Sweden
43b Oskar Klein Centre, Stockholm, Sweden
44 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
45 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
47 Department of Physics, Duke University, Durham, North Carolina, USA
48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
49 INFN e Laboratori Nazionali di Frascati, Frascati, Italy
50 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
51 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
53a Dipartimento di Fisica, Università di Genova, Genova, Italy
53b INFN Sezione di Genova, Italy
54 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
55 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
56 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
58 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
58b Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
58c School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China
58d Tsung-Dao Lee Institute, Shanghai, China
59a Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
59b Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
61a Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
61b Department of Physics, University of Hong Kong, Hong Kong, China
61c Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61d Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
61e Department of Physics, Indiana University, Bloomington, Indiana, USA
61f INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
61g ICTP, Trieste, Italy
62 Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
63 INFN Sezione di Lecce, Italy
64 Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
65 INFN Sezione di Milano, Italy
66 Dipartimento di Fisica, Università di Milano, Milano, Italy
67 INFN Sezione di Napoli, Italy