Factors influencing risk assessments of brominated flame-retardants

Nostbakken, Ole Jakob; Duinker, Arne; Rasinger, Josef D.; Nilsen, Bente M.; Sanden, Monica; Frantzen, Sylvia; Hove, Helge T.; Lundebye, Anne-Katrine; Berntssen, Marc H. G.; Hannisdal, Rita; Madsen, Lise; Maage, Amund

Published in:
Environment International

DOI:
10.1016/j.envint.2018.04.044

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Factors influencing risk assessments of brominated flame-retardants; evidence based on seafood from the North East Atlantic Ocean

Ole Jakob Nøstbakkena,⁎, Arne Duinkerab, Josef D. Rasingera, Bente M. Nilsena, Monica Sandena, Sylvia Frantzena, Helge T. Hovea, Anne-Katrine Lundebyea, Marc H.G. Berntssena, Rita Hannisdala, Lise Madsena,b, Amund Maagea,1

⁎ Corresponding author at: P.O. Box 2029 Nordnes, 5817 Bergen, Norway.
E-mail address: olejakob.nostbakken@hi.no (O.J. Nøstbakken).
1 Present address: University of Bergen, Norway.

1. Introduction

Brominated flame-retardants (BFRs) constitute a diverse group of compounds used in several commercial commodities to prevent or restrain fire. For instance, the legacy BFRs such as polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) are considered hazardous to human health. Due to their persistence, they are still present in the environment and in biota and seafood is major contributor of BFRs to human exposure. Here, we used data from > 9700 samples of wild and farmed fish, fish feed and fish feed ingredients collected from the North Atlantic between 2006 and 2016 aiming to investigate factors influencing the risk assessments of BFRs.

Due to most representative number of analyses, PBDEs were the main focus of investigation. Mean EPRDE in fillet samples ranged from below quantification in Atlantic cod fillet to 2.0 μg kg−1 in Atlantic halibut. The main congener contributing to the EPRDE in all species was BDE 47. Factors affecting the level of BFR in seafood were multifaceted, and the levels were within species mainly determined by fish age, geographical origin and time of sampling. BDE 47, 99, 153 and HBCD were selected for margin of exposure (MOE) evaluation. When other sources of BFR than seafood were excluded, our risk assessment showed low risk at the current dietary intake of seafood. However, the dietary intake of BDE 99 may be of concern for toddlers when all sources are considered. The choice of fish species, dietary studies, choice of statistics, as well as exposure from other sources than seafood, were all factors that influenced the final MOE of BFRs. We propose the use of regression on order statistics as a tool for risk assessment, to illustrate means and spreads in large surveillance datasets to avoid the issue of measurements below the limit of quantification. A harmonized, updated evaluation of the risk associated with exposure to BFRs from diet, air and dust is warranted, where the fish species most commonly consumed also is taken into consideration.

A R T I C L E I N F O

Handling Editor: Heather Stapleton

Keywords:
Brominated flame retardants
Seabfood
Risk assessment
Polybrominated diphenyl ethers
Hexabromocyclododecane

A B S T R A C T

Brominated flame-retardants (BFRs) such as polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) are considered hazardous to human health. Due to their persistence, they are still present in the environment and in biota and seafood is major contributor of BFRs to human exposure. Here, we used data from > 9700 samples of wild and farmed fish, fish feed and fish feed ingredients collected from the North Atlantic between 2006 and 2016 aiming to investigate factors influencing the risk assessments of BFRs.

Due to most representative number of analyses, PBDEs were the main focus of investigation. Mean EPRDE in fillet samples ranged from below quantification in Atlantic cod fillet to 2.0 μg kg−1 in Atlantic halibut. The main congener contributing to the EPRDE in all species was BDE 47. Factors affecting the level of BFR in seafood were multifaceted, and the levels were within species mainly determined by fish age, geographical origin and time of sampling. BDE 47, 99, 153 and HBCD were selected for margin of exposure (MOE) evaluation. When other sources of BFR than seafood were excluded, our risk assessment showed low risk at the current dietary intake of seafood. However, the dietary intake of BDE 99 may be of concern for toddlers when all sources are considered. The choice of fish species, dietary studies, choice of statistics, as well as exposure from other sources than seafood, were all factors that influenced the final MOE of BFRs. We propose the use of regression on order statistics as a tool for risk assessment, to illustrate means and spreads in large surveillance datasets to avoid the issue of measurements below the limit of quantification. A harmonized, updated evaluation of the risk associated with exposure to BFRs from diet, air and dust is warranted, where the fish species most commonly consumed also is taken into consideration.

1. Introduction

Brominated flame-retardants (BFRs) constitute a diverse group of compounds used in several commercial commodities to prevent or restrain fire. For instance, the legacy BFRs such as polybrominated diphenyl ethers (PBDE), hexabromocyclododecanes (HBCD) and tetra-bromobisphenol A (TBBPA) have been used in electrical components, furniture and insulation-foam. The European Union (EU) has taken precautions regarding these specific BFRs and has issued bans or restrictions on their production and use (EC, 2003; EC, 2008; EFSA, 2011a; EFSA, 2011b; Koch et al., 2015), although the impact of non-food sources should also be considered (Koch et al., 2015; Martellini et al., 2016). The contribution of Norwegian seafood for human BFR exposure is of interest not only for the Norwegian population who traditionally have a high seafood intake, but also for the population of countries which import seafood from Norwegian waters. Norway is the world’s second largest exporter of fish and fishery products including both farmed and wild fish (FAO, 2016). Whereas food exposure assessments generally use “fish” or “seafood” as general food
intake categories, commercial Norwegian seafood consist of several different species with a large variation in fat content, age, position in the marine food chain, harvest location and season of capture, which all affect BFR levels and congener composition and thus cause different exposure. In this paper, we highlight factors that may cause variation in risk assessments of BFRs in seafood. We assessed the impact of exposure from other sources than seafood, and how choice of statistics related to reporting limit of quantification (LOQ) in surveillance data, affects risk assessment (Fig. 1). Based on an extensive dataset, we highlight species-specific risk of seafood consumption in terms of the legacy BFRs. The levels of PBDEs, HBCD and TBBPA in the main commercial fish species harvested in and near Norwegian waters are also described. Further, we evaluate factors affecting the level of the different BFRs in seafood species, such as age, fat content, geographical origin, time of sampling and feed.

2. Materials and methods

2.1. Sample material

The data presented in the current study comprise results from analyses of 9764 marine samples including both wild and farmed fish, fish feed and fish feed ingredients collected between 2006 and 2016. A total of 9211 samples were analyzed for ∑PBDE, here defined as sum of BDE 28, 47, 99, 100, 153, 154 and 183, 1453 for HBCD and 352 for TBBPA (Table 1). Additionally 383 samples of fish feed or fish feed ingredients were analyzed; 383 were analyzed for ∑PBDE, 275 for HBCD, and 69 for TBBPA. Sampling was done primarily on commercial fish species used as food, with the exceptions of certain forage fish (capelin and polar cod). Sampling locations for wild fish represent Norwegian fishing grounds including areas beyond the Norwegian territorial boundaries (Fig. 1). Fish were mainly sampled in seasons when commercial fishing occurs for the different species. Farmed Atlantic salmon (Salmo salar), were collected from all regions along the Norwegian coast with aquaculture activity. Twelve of the wild Atlantic salmon caught at sea were found to originate from fish farms, using methodology described elsewhere (Fiske et al., 2005; Lund et al., 1991), and are treated as a separate group hereafter called escapees. Fish feed and fish feed ingredients were sampled from Norwegian feed producers or at fish farms, representative of fish-feed production in Norway.

All samples were analyzed at the Institute of Marine Research (IMR) or Eurofins Gfa GmbH (Hamburg, Germany). The farmed fish, feed ingredients and fish feed were sampled by the Norwegian Food Safety Authority, while the wild fish were sampled by the IMR. The current study includes data on the legacy brominated flame-retardants PBDEs (28, 47, 66, 99, 100, 119, 138, 153, 154 and 183), HBCD and TBBPA.

2.2. Sample preparation

Fish length, weight and sex were recorded for each fish sampled individually. Age was determined by reading of otoliths by the IMR. All fillet samples, except for farmed Atlantic salmon and wild Atlantic halibut (Hippoglossus hippoglossus), were collected by excising the whole fillet of the fish from one or both sides, with subsequent removal of the skin prior to homogenization. Fillets from farmed Atlantic salmon were sampled as described by Nostbakken et al. (2015) and fillets from Atlantic halibut were divided according to fat content (lean B-cut and fatty I-cut) as described by Nortvedt and Tuene (1998). Whole fish livers from farmed and wild Atlantic cod (Gadus morhua) and Atlantic saithe (Pollachius virens) were extracted and homogenized. Capelin (Mallotus villosus), polar cod (Boreogadus saida) are both forage species and also used in fish feed, they are normally used whole, and the whole
Table 1

<table>
<thead>
<tr>
<th>Species/Latin</th>
<th>Matrix sampled</th>
<th>Farmed or wild</th>
<th>Samples</th>
<th>Years of sampling</th>
<th>PBDE N</th>
<th>HBCD N</th>
<th>TBBPA N</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadus morhua (Atlantic cod)</td>
<td>Muscle/liver</td>
<td>Farmed and wild</td>
<td>2101</td>
<td>2006–2011, 2013</td>
<td>2099</td>
<td>58</td>
<td>23</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Hippoglossus hippoglossus (Atlantic halibut)</td>
<td>Fat muscle/lean muscle</td>
<td>Wild</td>
<td>688</td>
<td>2013–2016</td>
<td>688</td>
<td>1</td>
<td>0</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Micromesistius poutassou (Blue whiting)</td>
<td>Muscle</td>
<td>Wild</td>
<td>25</td>
<td>2013</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Molva molva (Common ling)</td>
<td>Muscle</td>
<td>Wild</td>
<td>52</td>
<td>2008</td>
<td>52</td>
<td>51</td>
<td>5</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>European eel (Anguilla anguilla)</td>
<td>Muscle</td>
<td>Wild</td>
<td>167</td>
<td>2006–2011, 2014</td>
<td>167</td>
<td>167</td>
<td>0</td>
<td>(Nilsen et al., 2010)</td>
</tr>
<tr>
<td>European hake (Merluccius merluccius)</td>
<td>Muscle</td>
<td>Wild</td>
<td>18</td>
<td>2008</td>
<td>18</td>
<td>18</td>
<td>0</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Pleuronectes platessa (European plaice)</td>
<td>Muscle</td>
<td>Wild</td>
<td>25</td>
<td>2008</td>
<td>25</td>
<td>25</td>
<td>0</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Reinhardtius hippoglossoides</td>
<td>Muscle</td>
<td>Wild</td>
<td>1030</td>
<td>2006–2008</td>
<td>1030</td>
<td>59</td>
<td>0</td>
<td>(Nilsen et al., 2010)</td>
</tr>
<tr>
<td>Clupea harengus (Herring)</td>
<td>Muscle</td>
<td>Wild</td>
<td>1887</td>
<td>2006–2011, 2014</td>
<td>1887</td>
<td>840</td>
<td>0</td>
<td>(Frantzen et al., 2011)</td>
</tr>
<tr>
<td>Northern shrimp (Pandalus borealis)</td>
<td>Whole</td>
<td>Wild</td>
<td>31</td>
<td>2008–2010</td>
<td>31</td>
<td>6</td>
<td>8</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Boreogadus saida (Polar cod)</td>
<td>Whole</td>
<td>Wild</td>
<td>22</td>
<td>2013–2014</td>
<td>22</td>
<td>22</td>
<td>3</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Rainbow trout (farmed)</td>
<td>Muscle/liver</td>
<td>Farmed and wild</td>
<td>12</td>
<td>2008</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td>(Julshamn et al., 2013)</td>
</tr>
<tr>
<td>Sebastes norvegicus (Pollachius virens)</td>
<td>Muscle/Lean muscle</td>
<td>Wild</td>
<td>18</td>
<td>2014</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>(Frantzen et al., 2013)</td>
</tr>
<tr>
<td>Brosme brosme (Saithe)</td>
<td>Muscle</td>
<td>Wild</td>
<td>68</td>
<td>2008</td>
<td>68</td>
<td>0</td>
<td>15</td>
<td>(Nilsen et al., 2013)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>9381</td>
<td>2006–2015</td>
<td>9211</td>
<td>1454</td>
<td>352</td>
<td>(Julshamn et al., 2013)</td>
</tr>
</tbody>
</table>

From 2006, PBDE 28, 47, 99, 100, 153, 154, 183 were determined by an accredited in-house method, as described by Bethune et al. (2005). Since 2010, PBDEs were also analyzed together with PCBs and dioxins/furans, in a multicomponent method, described by Julshamn et al. (2013). This method is an adaption of the EPA standard methods 1613 and 1668 (US-EPA, 1994; US-EPA, 2010a). The PBDEs were analyzed in a relevant solvent fraction from the EPA clean-up procedure (Pirard et al., 2003). Throughout the entire period, the quantification of PBDE congeners in both methods were carried out by GC/MS operating in the negative ion chemical ionization mode, monitoring a bromine ion mass fragment. Both methods were accredited according to the ISO 17025 standard.

2.3. Analyses

Fat content of seafood matrices was determined gravimetrically using ethyl acetate extraction (Norwegian standard NS9402).

2.3.1. PBDE

From 2006, ΣPBDE (sum of α-PBDE, β-PBDE and γ-PBDE) were determined by an in-house method together with PBDEs as described above. The quantification of ΣPBDE was performed by GC/MS operating in a negative ion chemical ionization mode, by monitoring a bromine ion mass fragment. The method was accredited according to the ISO 17025 standard. From 2013 to 2016, HBCD was analyzed by Eurofins Gfa GmbH (Hamburg, Germany). For the latter method, internal standard, 13C12-labeled HBCD, was added to a homogenized freeze dried sample. The sample was extracted by a Soxhlet apparatus, using a mixture of acetone and hexane, for at least 16 h. The extract was reduced under a stream of nitrogen, before hexane was added. Sulfuric acid was used for purification. The sample was further cleaned up by an alumina column. The extract was subsequently dried under a stream of nitrogen, and dissolved in a mix of methanol and acetonitrile. The HBCD isomers were separated by an in-house method, as described by Sissener et al. (2013). This method is an adaption of the EPA standard methods 1613 and 1668 (US-EPA, 1994; US-EPA, 2010a). The PBDEs were analyzed in a relevant solvent fraction from the EPA clean-up procedure (Pirard et al., 2003). Throughout the entire period, the quantification of PBDE congeners in both methods were carried out by GC/MS operating in the negative ion chemical ionization mode, monitoring a bromine ion mass fragment. Both methods were accredited according to the ISO 17025 standard. The accuracy of both methods was maintained by regularly participation in laboratory proficiency tests (PTs) (Quaimesse and Norwegian Institute of Public Health). To ensure comparability between the two methods, a joint in-house QC reference sample (Atlantic salmon) was included in each analytical series. The in-house reference sample was prepared in large batches, lasting for 2–4 years of continuous use. When a new in-house QC reference sample was prepared, the old and the new QC samples were analyzed together over a time period to ensure continuity. Also sample material from previously successfully participated PTs was analyzed in both methods to ensure accuracy.

2.3.2. HBCD

From 2006 ΣHBCD (sum of α-HBCD, β-HBCD and γ-HBCD) were determined by an in-house method together with PBDEs as described above. The quantification of ΣHBCD was performed by GC/MS operating in a negative ion chemical ionization mode, by monitoring a bromine ion mass fragment. The method was accredited according to the ISO 17025 standard. From 2013 to 2016, HBCD was analyzed by Eurofins Gfa GmbH (Hamburg, Germany). For the latter method, internal standard, 13C12-labeled HBCD, was added to a homogenized freeze dried sample. The sample was extracted by a Soxhlet apparatus, using a mixture of acetone and hexane, for at least 16 h. The extract was reduced under a stream of nitrogen, before hexane was added. Sulfuric acid was used for purification. The sample was further cleaned up by an alumina column. The extract was subsequently dried under a stream of nitrogen, and dissolved in a mix of methanol and acetonitrile. The HBCD isomers were separated by a Nucleodur C18 Isis column and quantified by LC-MS/MS using Electrospray Ionization (ESI). The method was accredited according to the ISO 17025 standard.

2.3.3. TBBPA

From 2007 to 2012, TBBPA was determined by an in-house validated method. Stable isotope labeled internal standard, 13C12-TBBPA, was added to the sample and the analyte was extracted using a mix of acetone, cyclohexane and sodium chloride. The extract was concentrated by pressurized evaporation (Turbovap II™, Zymark, USA). The sample was dissolved in hexane, and sulfuric acid was used for purification. The hexane extract was dried under a stream of nitrogen and redissolved in a mix of water and methanol containing ammonium acetate. The sample was analyzed by LC-MS/MS equipped with an
electrospray ionization (ESI) source operated in a negative mode. An
acquity UPLC BEH C18 column (150 mm × 2.1 mm i.d., 1.7 μm particle
size) was used for separation using a 0.5 ml/min flow. The mobile
phases used in the assay were 2 mM ammonium acetate in water and
2 mM ammonium acetate in methanol. Chromatography was performed
according to a stepwise gradient: 0–5 min, 70% ammonium acetate in
methanol; 6–7 min, 100% ammonium acetate in methanol; 7.1–10 min,
70% ammonium acetate in methanol. All gradient steps were linear,
and the flow rate was 0.5 ml/min. This method was discontinued in
2012 due to a relative high LOQ of 1.0 ng/g. However, these early data
were used to verify relative low levels below the LOQ. From 2013 to
2016, TBBPA was analyzed by Eurofins GfA GmbH (Hamburg,
Germany). Internal standard, 13C12-labeled TBBPA was added to a
homogenized freeze-dried sample, before phosphoric acid was added
for acidification. Extraction was performed by a Soxhlet apparatus
using a mix of acetone and hexane for at least 16 h. The extract was
reduced under a stream of nitrogen. The sample was redissolved in
hexane, and sulfuric acid was used for purification. Subsequently the
sample was dried under a stream of nitrogen and redissolved in O-bis
(trimethylsilyl)trimethylsilylpropanesulfonylfluoracetamide (BSTFA) for
derivatization. After 25 min in a drying oven at 50 ºC, the solution was dried under a stream of
nitrogen and redissolved in hexane. The extract was purified using
column chromatography. The extract was reduced under a stream of
nitrogen. TBBPA was analyzed by GC–MS using and Electron Ionization (EI). A XLB column was used for separation. The method was accredited
according to the ISO 17025 standard.

2.4. Spatial evaluation of BFRs in wild fish

Geographical coordinates of sampling location were registered for
8551 of the 8768 wild fish samples. All fish samples were sorted based
on catch site, according to sea, latitude and proximity to the coast. Fish
cought within the Norwegian baseline border were categorized as “near
shore”. Fish caught between the baseline border and six nautical miles
outside the baseline border (6 NM border) were categorized as “inter-
mediate”, and fish caught outside the 6 NM border were categorized as
“open sea”. The definitions of the baseline border and the 6 NM border
were obtained from the Norwegian Mapping Authority (www.
kartverket.no/en). Fish caught near the shore of Svalbard or other islands
in open sea were categorized as open sea. Only samples collected
in open sea (N = 6436) were used in the spatial and temporal analyses,
To avoid statistical noise from local pollution near shore. Wild salmon,
in open sea (N = 6436) were used in the spatial and temporal analyses,
which were all caught near the coast, were excluded from spatial as-

2.6. Evaluation of food safety

In order to evaluate the seafood examined in this study in terms of
food safety, we initially evaluated the BFRs in individual fish species
without considering other sources of BFR intake. This was done for all
consumer ages using different published Norwegian and European
dietary surveys. Additionally, we did a worst-case evaluation for the
most sensitive group in the population (toddlers), including other
Sources of BFR exposure including air, dust and food other than fish.

For the risk assessment we used a margin of exposure (MOE, see Eq.
(1)) approach as suggested by the European Food Safety Authority
(EFSA) (EFSA, 2011a; EFSA, 2011b). The MOE is defined as the ratio
of the no-observed-adverse-effect level (NOAEL) or benchmark dose lower
confidence limit (BMDL) for the critical effect to the theoretical, pre-
dicted, or estimated exposure dose or concentration. EFSA has estab-
lished BMDL10 (Lower confidence limit at 10% incidence) for BDE 47,
99, 153, HBCD and TBBPA of 309, 12, 83 and 16,000 μg kg⁻¹ b.w.,
respectively (EFSA, 2011a; EFSA, 2011b; EFSA, 2011c). These equate
to body burden at BMDL10 of 232, 9, 62, 790 μg kg⁻¹ b.w. for BDE 47, 99,
153 and HBCD, respectively. Body burdens at BMDLs were converted to
chronic human dietary intake (Ish) by EFSA, and we used the derived
Dsh from EFSA which was further divided by the level of BFR in the
seafood in question in our study. The resulting value was compared to
the MOE threshold as determined by EFSA (EFSA, 2011a; EFSA,
2011b). Typically, a MOE of 100 is used as threshold level, but for BFRs
EFSA derived a threshold of 2.5 which has been rationalized in their
Risk assessments (EFSA, 2011a; EFSA, 2011b). > 98% of the results for
TBBPA were below the LOQ, and it was therefore not feasible to cal-
culate a MOE for this compound. Hence, we assessed the BFRs BDE 47,
99, 153 and HBCD.

\[
\frac{[\text{BFR}]_{\text{ng/g}} \times \text{Seafood consumed g/bw/day}}{\text{MOE}} = D_{\text{sh}}
\]

where \(D_{\text{sh}} \) is the estimated chronic human consumption corresponding to
the body burden at BMDL10, BFR, is the level of BFR in the fish
Species evaluated, and Seafood consumed is based on consumption data
from different food surveys.

For food consumption data, we compared Norwegian consumption
to European consumption. This was done for Norwegian consumers
since they are exposed to the seafood in question, and since Norway has
more than twice the fish supply per capita compared to other nations in
Europe (FAO, 2015). We used several published dietary surveys of
Norwegian fish consumption (Hansen et al., 2015; Kristiansen and
Andersen, 2009; Meltzer et al., 2002; Totland et al., 2012; Øverby et al.,
2009), whereas the European fish consumption data was from the EFSA
comprehensive database (EFSA, 2015). Consumption data for fish liver
were obtained from Meltzer et al. (2002). Food consumption data are
summarized in brief in Appendix 1. The evaluation distinguished be-
tween consumption data for fish fillet and liver due to large differences
between these foods, both in terms of consumption and BFR content.
Otherwise, each species of fish were assumed to be representative of
the total seafood intake, so the mean BFR content of the fillet of each
species were multiplied with the intake data for seafood from the
dietary surveys. Although this is an oversimplification, it serves to il-

The mean seafood intake was used to calculate the mean MOE.
Specifically for Norwegian consumption data, the average was calcu-
lated from several surveys or groups (such as gender, and age group).
In order to evaluate high-risk groups of the populations we included the
MOE for the 95th percentile intake data. In this case, the highest con-

\[D_{\text{sh}} = \frac{[\text{BFR}]_{\text{ng/g}} \times \text{Seafood consumed g/bw/day}}{\text{MOE}} \]
basis for our MOE calculation of the 95th percentile.

To calculate the BFR contribution from other sources, BFR intake from food groups other than fish, was based on the total upper-bound dietary intake reported by EFSA (EFSA, 2011a; EFSA, 2011b). The worst case exposure from air and dust was obtained from data for those European countries described by Fromme et al. (2016). We subsequently replaced the contribution of BFR from fish reported by EFSA with our own BFR data, and used a minimum and maximum dietary intake from fish as reported by EFSA (EFSA, 2011a; EFSA, 2011b; EFSA, 2011a; EFSA, 2011b).

Neither total upper-bound dietary intake nor the relative contribution of HBCD from fish consumption in Europe was calculated by EFSA for toddlers, hence, values from “other children” were used (EFSA, 2011b). Although this can potentially overestimate the exposure, a high MOE would indicate even lower risk for the actual toddler intake. Based on these calculations, the contributions from other sources than fish were estimated as ng per kg b.w. per day. These estimates were included in the MOE calculation together with the contribution from the fish analyzed in our study, as shown in formula (2).
where $D_{B,h}$ is the estimated chronic human consumption corresponding to the body burden at BMDL10. BFR is the level of BFR in the fish species evaluated, BFR$_{seafood+air}$ is the intake of BFRs from other sources than seafood based on Fromme et al. (2016) and EFSA (2011a, 2011b), and Seafood consumed is based on consumption data from different food surveys.

Here we show the MOEs calculated for Atlantic cod, North Sea (NS) herring (Clupea harengus) and farmed Atlantic salmon. Cod and herring are representative of wild lean and fatty fish, respectively, and they are among the 25 main marine species in fisheries worldwide, whereas farmed Atlantic salmon is the most important species farmed in marine and coastal aquaculture (FAO, 2016). The level of BFRs in farmed Atlantic salmon used in this food safety assessment is based on the average over the last four years of measurements and is assumed to be representative of the salmon currently available to consumers (Fig. 3a). We used data from Greenland halibut (Reinhardtius hippoglossoides) to calculate a worst-case scenario since this was the fish species with the highest level of BDEs in the fillet in our study. All other species, and matrices analyzed are shown in Appendix 3.

For comparative reasons, we calculated the maximum intake of each fish matrix compared to the oral reference dose (RfD) set by the US-EPA, and the dose where JECFA expect that adverse effects are unlikely in rodents (JECFA, 2005; US-EPA, 2008a, 2008b, 2008c). For the dose suggested by JECFA we also implemented a commonly used safety factor of 100 (Renwick, 1991), since this value is solely applicable for rodents (JECFA, 2006).

2.7. Statistics

Data presented in this study were left-censored, and therefore not normally distributed. Consequently, left censored data were analyzed as described by Bolks et al. (2014). In brief, the statistical programming language R (version 3.2.3) (R Core Team, 2016) running in RStudio (version 0.99.903; RStudio Team, 2015) ran the script SummaryStatsR.r to compute summary statistics (mean, median and percentiles) based on robust regression on order statistics (ROS). Confidence interval estimates on the computed means were calculated using the script BootstrapROS.r, which empirically determined 95% confidence limits of the data means through bootstrapping.

Correlation and regression analyses were performed using raw upper bound (UB) data, where levels below LOQ are substituted for the LOQ. Most trend analyses were done on BDE 47 since 99.5% of all measurements were above the LOQ. Further, regression analyses of upper bound (UB) BDEs against BDE 47 showed an r² of 0.99 and p < 0.0001, while the regression of BDEs in fillet calculated using ROS generated means for each congener against BDE 47 showed an r² of 0.99 and p < 0.0001, demonstrating that BDE 47 was a representative marker for BDEs in our data. Correlation and regression analyses were performed using Statistica 13.1 (StatSoft Inc., Tulsa, USA), and Graphpad Prism 5.04 (Graphpad software Inc., San Diego, CA, USA).

3. Results

3.1. Levels of brominated flame retardants in Norwegian seafood

The mean levels of BFRs in selected species of Norwegian seafood are presented in Fig. 2. Overall, 9381 samples of fish were analyzed for BDEs in this study and levels of ∑PBDE in individual fillet samples ranged from the∑LB LOQs in Atlantic cod fillet to 39.5 μg.kg$^{-1}$ in Atlantic halibut I-cut. The concentrations in liver ranged from UB 0.2 μg.kg$^{-1}$ to 143 μg.kg$^{-1}$, both extremes measured in samples from Atlantic cod. The levels of HBCD in fillets ranged from concentrations below the LOQ (< 0.002–5 μg.kg$^{-1}$) in several species to 11.4 μg.kg$^{-1}$ in Norwegian Spring Spawning herring, while in liver concentrations ranged from below the LOQ (< 1 μg.kg$^{-1}$) in farmed Atlantic cod to 28.0 μg.kg$^{-1}$ in Atlantic saithe.

Fig. 3. Mean concentrations (μg kg$^{-1}$) of the different brominated flame retardants analyzed in all species and for each matrix. For samples where all measurements were below LOQ, results are not shown.
> 50% of the measured BDE 28, 47, 99, 100, 153 and 154 levels were above the LOQ, while only 16% of the measured BDE 183 concentrations were above the LOQ. HBCD values were below the LOQ in approximately 65% of the samples analyzed and TBBPA values were below the LOQ in 98% of the samples. The few samples that had quantifiable levels of TBBPA were within the ranges of the variable LOQ. The quantifiable levels were between 0.03 and 0.06 μg kg\(^{-1}\) and were found in farmed Atlantic salmon. Since most TBBPA levels were below the LOQ, these data are not presented graphically, but are given in [dataset] Appendix data.

The main contributor to the level of sum ΣPBDE in all species was BDE 47, representing about 65% of ΣPBDE. BDE 100 represented 12%, BDE 154 contributed 6%, BDE 99 contributed 5% while BDE 28, 153 and 183 represented < 3.5% each.

The relationship between BDE 47 and UB ΣPBDE showed a significant linear regression with an \(r^2 \) of 0.9908, enabling the use of BDE 47 as marker for ΣPBDE. However, linear regression between BDE 47 against levels from each single PBDE-congener showed greater variability. Particularly, pelagic species showed higher levels of BDE 99 relative to BDE 47 than the benthic species did (Fig. 3c).

3.2. Environmental and biological factors affecting the level of brominated flame retardants in seafood

Factors affecting the accumulation of BFRs in different fish species were assessed to provide for a more accurate risk assessment of seafood. Arctic fish at lower trophic level, i.e. polar cod, capelin and northern shrimp sampled north of the Arctic Circle regularly between 2005 and 2016, were used as indicators for the temporal change of PBDEs in the Arctic marine environment. The levels of BDE 47 in the pelagic Arctic species capelin and polar cod have decreased significantly over the last decade (2006–2016), while the levels in the hyper-benthic northern shrimp did not change during this time period. The decline in the BDE 47 levels in both capelin and polar cod was monotonic, but not linear, with a Spearman’s rank correlation coefficient (Spearman’s rho) of \(-0.70\) and \(-0.58\) respectively (Table 2); while the regression coefficients (\(r^2 \)) were 0.42 and 0.28, respectively (results not shown).

The effect of sampling location on BFR levels was evaluated by analyzing PBDE congeners in livers of cod and saithe. The levels of all PBDEs in liver from fish caught north of the Arctic Circle (66°55′N) were lower than in fish caught south of the Arctic Circle when analyzed using one way ANOVA on ROS generated means (results not shown). Further, significantly higher levels of BFRs in both cod and saithe liver were found in the North Sea and the Skagerrak compared to the Norwegian Sea and the Barents Sea (results not shown). Correlation of latitude against BDE 47 concentration was performed for all samples where coordinates were available, and near-shore samples were included to increase sample size. Latitude of sampling showed a significant negative correlation in eight out of fifteen species, with Spearman rho values from \(-0.37\) to \(-0.67\), showing that BDE 47 levels decreased with increasing latitude. European eel (Anguilla Anguilla) was the only species with the opposite pattern with significant correlation (rho of 0.54) (Table 2). Hence, geographical origin can affect the level of BFRs.

Farmed Atlantic salmon were analyzed to evaluate the impact of feed on PBDE accumulation. A decline in levels over years can be observed for both feed and salmon (Fig. 3a). The congener composition of PBDEs in feed and fish fillet was similar. The overall levels of ΣPBDE in both fish feed and farmed salmon have decreased during the last 10 years, and the levels of BDE 47 in farmed Atlantic salmon sampled in 2015 were comparable to the levels in its wild counterpart. A relatively high analytical LOQ at 0.5–5.0 μg kg\(^{-1}\) for ΣHBCD in

Table 2

Main factors affecting the accumulation of BDE 47 in selected wild marine matrices.

<table>
<thead>
<tr>
<th>Species</th>
<th>Latitude</th>
<th>Fat content</th>
<th>Age</th>
<th>Year of sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spearman’s rho</td>
<td>p value</td>
<td>Spearman’s rho</td>
<td>p value</td>
</tr>
<tr>
<td>NSS herring</td>
<td>−0.47</td>
<td><0.05</td>
<td>0.3</td>
<td><0.05</td>
</tr>
<tr>
<td>Atlantic Mackerel</td>
<td>0.03</td>
<td>n.s.</td>
<td>0.08</td>
<td><0.05</td>
</tr>
<tr>
<td>NS herring</td>
<td>−0.05</td>
<td>n.s.</td>
<td>0.25</td>
<td><0.05</td>
</tr>
<tr>
<td>Greenland halibut</td>
<td>−0.42</td>
<td><0.05</td>
<td>0.1</td>
<td><0.05</td>
</tr>
<tr>
<td>Atlantic cod liver</td>
<td>−0.57</td>
<td><0.05</td>
<td>−0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Atlantic saithe liver</td>
<td>−0.64</td>
<td><0.05</td>
<td>−0.33</td>
<td><0.05</td>
</tr>
<tr>
<td>Polar cod</td>
<td>−0.28</td>
<td>n.s.</td>
<td>0.30</td>
<td>n.s.</td>
</tr>
<tr>
<td>Capelin</td>
<td>−0.77</td>
<td><0.05</td>
<td>−0.30</td>
<td>n.s.</td>
</tr>
<tr>
<td>Northern shrimp</td>
<td>−0.37</td>
<td><0.05</td>
<td>0.23</td>
<td>n.s.</td>
</tr>
<tr>
<td>Tusk</td>
<td>−0.41</td>
<td><0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common ling</td>
<td>−0.19</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European hake</td>
<td>−0.50</td>
<td><0.05</td>
<td>0.46</td>
<td>n.s.</td>
</tr>
<tr>
<td>Atlantic halibut B cut</td>
<td>−0.37</td>
<td><0.05</td>
<td>0.69</td>
<td><0.05</td>
</tr>
<tr>
<td>Atlantic halibut L cut</td>
<td>−0.41</td>
<td><0.05</td>
<td>0.66</td>
<td><0.05</td>
</tr>
<tr>
<td>European eel</td>
<td>0.54</td>
<td><0.05</td>
<td>0.13</td>
<td>n.s.</td>
</tr>
<tr>
<td>Wild Atlantic salmon</td>
<td>−0.06</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue Whiting</td>
<td>0.17</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All samples combined</td>
<td>0.68</td>
<td><0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All correlation analyses were performed on BDE 47 as this was deemed representative of ΣPBDE. All correlations in our study were shown to be monotonic but not linear, hence, Spearman rho were used to indicate the goodness of fit. Significant correlations with Spearman rho higher than 0.4 or lower than −0.4 are shown in red (n.s. = not significant). Negative correlation rho’s indicates a negative relationship between factors. For years of sampling, arctic samples only are shown in brackets.

Factors affecting the accumulation of BFRs in different fish species were assessed to provide for a more accurate risk assessment of seafood. Arctic fish at lower trophic level, i.e. polar cod, capelin and northern shrimp sampled north of the Arctic Circle regularly between 2005 and 2016, were used as indicators for the temporal change of PBDEs in the Arctic marine environment. The levels of BDE 47 in the pelagic Arctic species capelin and polar cod have decreased significantly over the last decade (2006–2016), while the levels in the hyper-benthic northern shrimp did not change during this time period. The decline in the BDE 47 levels in both capelin and polar cod was monotonic, but not linear, with a Spearman’s rank correlation coefficient (Spearman’s rho) of \(-0.70\) and \(-0.58\) respectively (Table 2); while the regression coefficients (\(r^2 \)) were 0.42 and 0.28, respectively (results not shown).

The effect of sampling location on BFR levels was evaluated by analyzing PBDE congeners in livers of cod and saithe. The levels of all PBDEs in liver from fish caught north of the Arctic Circle (66°55′N) were lower than in fish caught south of the Arctic Circle when analyzed using one way ANOVA on ROS generated means (results not shown). Further, significantly higher levels of BFRs in both cod and saithe liver were found in the North Sea and the Skagerrak compared to the Norwegian Sea and the Barents Sea (results not shown). Correlation of latitude against BDE 47 concentration was performed for all samples where coordinates were available, and near-shore samples were included to increase sample size. Latitude of sampling showed a significant negative correlation in eight out of fifteen species, with Spearman rho values from \(-0.37\) to \(-0.67\), showing that BDE 47 levels decreased with increasing latitude. European eel (Anguilla Anguilla) was the only species with the opposite pattern with significant correlation (rho of 0.54) (Table 2). Hence, geographical origin can affect the level of BFRs.

Farmed Atlantic salmon were analyzed to evaluate the impact of feed on PBDE accumulation. A decline in levels over years can be observed for both feed and salmon (Fig. 3a). The congener composition of PBDEs in feed and fish fillet was similar. The overall levels of ΣPBDE in both fish feed and farmed salmon have decreased during the last 10 years, and the levels of BDE 47 in farmed Atlantic salmon sampled in 2015 were comparable to the levels in its wild counterpart. A relatively high analytical LOQ at 0.5–5.0 μg kg\(^{-1}\) for ΣHBCD in
Table 3
Margin of exposure (MOE) calculated for particularly sensitive groups using selected fish species, including BFR from other sources.

<table>
<thead>
<tr>
<th>Population</th>
<th>Survey</th>
<th>Reference</th>
<th>Fish part of diet</th>
<th>Atlantic cod (wild)</th>
<th>North Sea herring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BDE 47</td>
<td>BDE 99(^a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean p95</td>
<td>Mean p95</td>
</tr>
<tr>
<td>Norway</td>
<td>Toddlers</td>
<td>Kristiansen and Andersen, 2009</td>
<td>Minimum</td>
<td>33.2 33.0</td>
<td>25.2 18.7</td>
</tr>
<tr>
<td></td>
<td>Toddlers</td>
<td>Kristiansen and Andersen, 2009</td>
<td>Maximum</td>
<td>77.3 76.5</td>
<td>44.5 27.6</td>
</tr>
<tr>
<td>Europe</td>
<td>Toddlers/other children</td>
<td>EFSA, 2015</td>
<td>Minimum</td>
<td>33.1 32.9</td>
<td>24.3 16.0</td>
</tr>
<tr>
<td></td>
<td>Toddlers/other children</td>
<td>EFSA, 2015</td>
<td>Maximum</td>
<td>77.3 76.0</td>
<td>41.8 22.0</td>
</tr>
<tr>
<td>Norway</td>
<td>Toddlers</td>
<td>Kristiansen and Andersen, 2009</td>
<td>Minimum</td>
<td>33.2 33.0</td>
<td>25.2 18.7</td>
</tr>
<tr>
<td></td>
<td>Toddlers</td>
<td>Kristiansen and Andersen, 2009</td>
<td>Maximum</td>
<td>77.3 76.5</td>
<td>44.5 27.6</td>
</tr>
<tr>
<td>Europe</td>
<td>Toddlers/other children</td>
<td>EFSA, 2015</td>
<td>Minimum</td>
<td>33.1 32.9</td>
<td>24.3 16.0</td>
</tr>
<tr>
<td></td>
<td>Toddlers/other children</td>
<td>EFSA, 2015</td>
<td>Maximum</td>
<td>77.3 76.0</td>
<td>41.8 22.0</td>
</tr>
<tr>
<td>Population</td>
<td>North Sea herring</td>
<td>Greenland halibut</td>
<td></td>
<td>BDE 47</td>
<td>BDE 99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mean p95</td>
<td>Mean p95</td>
</tr>
<tr>
<td>Norway</td>
<td>Toddlers</td>
<td>Kristiansen and Andersen, 2009</td>
<td>Minimum</td>
<td>33.2 33.0</td>
<td>25.2 18.7</td>
</tr>
<tr>
<td></td>
<td>Toddlers</td>
<td>Kristiansen and Andersen, 2009</td>
<td>Maximum</td>
<td>77.3 76.5</td>
<td>44.5 27.6</td>
</tr>
<tr>
<td>Europe</td>
<td>Toddlers/other children</td>
<td>EFSA, 2015</td>
<td>Minimum</td>
<td>33.1 32.9</td>
<td>24.3 16.0</td>
</tr>
<tr>
<td></td>
<td>Toddlers/other children</td>
<td>EFSA, 2015</td>
<td>Maximum</td>
<td>77.3 76.0</td>
<td>41.8 22.0</td>
</tr>
</tbody>
</table>

All MOEs were compared to the threshold MOE at 2.5 as established by EFSA. MOEs below 2.5 are highlighted using underline.

\(^a\) No levels detected above LOQ in fillet from Atlantic cod, maximum LOQ were used as a worst case scenario.
feed and salmon in the early years of measurement compared to the LOQ of 0.002–0.01 μg kg⁻¹ in the latest two years, caused many early measurements to be below the LOQ. The relationship between the levels of HBCD in feed and salmon could therefore not be evaluated. No measurements of TBBPA, were above the LOQ in feed, and only six out of 277 measurements of farmed Atlantic salmon samples were above the LOQ. Therefore, no evaluation of TBBPA from feed to salmon in the early years of measurement compared to the others. The relationship between fat content and BDE 47 and fat content (Table 2). For all samples mixed, including liver, a positive correlation with Spearman rho of 0.68 was observed (Table 2). The relationship between fat content and BDE 47 appears to be monotonic, but not linear, since linear regression showed low goodness of fit ($r^2 = 0.18$) for all samples combined. We observed a large variation in correlation coefficients between different individual tissues, from a significant negative correlation with Spearman rho of 0.33 for saithe liver, to a significant positive correlation with Spearman rho of 0.69 for Atlantic halibut fillet. When seafood samples were divided into three different fish categories the concentration of the BFRs relevant for risk assessment, i.e. BDE 47, 99, 153 and HBCD were significantly higher in the groups with the higher fat content (Fig. 3b).

The relationship between fish age and BDE 47 concentration appears to be monotonic increasing, but not linear, since linear regression showed lower goodness of fit compared to Spearman rho for all samples. Correlation analyses showed a significant relationship with Spearman rho above 0.4 between BDE 47 and fish age for: NSS herring, NS herring, Atlantic saithe liver and both B-cut and I-cut from Atlantic halibut (Table 2).

Sex, spawning, seasonal variation, migration and coast vicinity may contribute to the variation in the data. However, our comprehensive analyses demonstrate that the most important factors determining accumulation of BFRs between seafood species were fat contents and geographical origin. Variations within species were mainly determined by fish age, geographical origin and time of sampling.

Table 4
Different scenarios of MOE calculations.

<table>
<thead>
<tr>
<th>Risk excluding other sources than fish</th>
<th>MOE scenario</th>
<th>Parameters</th>
<th>MOE mean (p95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE 47 Atlantic Cod (best case)</td>
<td>BDE 47</td>
<td>95322 (9272)</td>
<td></td>
</tr>
<tr>
<td>BDE 47 Atlantic halibut I cut (worst case)</td>
<td>BDE 47</td>
<td>45 (17)</td>
<td></td>
</tr>
<tr>
<td>BDE 99 Atlantic mackerel (worst case)</td>
<td>BDE 99</td>
<td>5771 (588)</td>
<td></td>
</tr>
<tr>
<td>BDE 99 Atlantic saithe (best case)</td>
<td>BDE 99</td>
<td>10 (4)</td>
<td></td>
</tr>
<tr>
<td>BDE 153 Atlantic saithe (best case)</td>
<td>BDE 153</td>
<td>143398 (14625)</td>
<td></td>
</tr>
<tr>
<td>BDE 153 Greenland halibut (worst case)</td>
<td>BDE 153</td>
<td>92 (35)</td>
<td></td>
</tr>
</tbody>
</table>

Substitution statistics vs regression on order statistics (ROS)

<table>
<thead>
<tr>
<th>MOE scenario</th>
<th>Parameters</th>
<th>MOE mean (p95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBCD</td>
<td>Upperbound</td>
<td>1160 (946)</td>
</tr>
<tr>
<td>HBCD</td>
<td>Lowerbound</td>
<td>2535 (963)</td>
</tr>
<tr>
<td>HBCD</td>
<td>ROS</td>
<td>1777 (675)</td>
</tr>
</tbody>
</table>

Total Risk, including all sources

<table>
<thead>
<tr>
<th>MOE scenario</th>
<th>Parameters</th>
<th>MOE mean (p95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE 99 All sources included</td>
<td>BDE 99</td>
<td>1.2 (1.0)</td>
</tr>
<tr>
<td>BDE 99 Excluding fish</td>
<td>BDE 99</td>
<td>1.4 (1.4)</td>
</tr>
<tr>
<td>BDE 99 Excluding air and dust</td>
<td>BDE 99</td>
<td>1.3 (1.3)</td>
</tr>
<tr>
<td>BDE 99 Excluding other foods</td>
<td>BDE 99</td>
<td>8.7 (3.7)</td>
</tr>
</tbody>
</table>

Upperbound versus Lowerbound estimation of dietary intake of other foods than fish

<table>
<thead>
<tr>
<th>MOE scenario</th>
<th>Parameters</th>
<th>MOE mean (p95)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE 99 Upperbound</td>
<td>BDE 99</td>
<td>1.2 (1.0)</td>
</tr>
<tr>
<td>BDE 99 Lowerbound</td>
<td>BDE 99</td>
<td>4.2 (2.6)</td>
</tr>
</tbody>
</table>

MOEs are (unless otherwise specified) calculated based on: BDE 99, dietary data from EFSA comprehensive database, for the dietary group of toddlers, using minimum fish part of diet. MOEs below the 2.5 limit set by EFSA are marked in red letters.

a) HBCD was chosen as example since the LOQ for this have been relative high. Atlantic halibut (I-cut) were chosen as species since this exhibit large variance around LOQ.

b) The fish used in the example is NS herring.
c) Data derived from EFSA report (EFSA, 2011a).

3.3. Risk assessments of BFRs

BDE 47, 99, 153 and HBCD were selected for MOE evaluation of fillet samples from Atlantic cod, NS herring, Greenland halibut and farmed Atlantic salmon (Table 2). Risk assessments of other fish species and other tissues are presented in Appendix 3. Liver is the matrix with the highest level of BFRs in our study. However, as consumption of cod and saithe liver is near to negligible, the calculated MOEs were high for this food (Appendix 3). The MOEs for BDE 99 for all fish species assessed were below the MOE threshold of 2.5 set by the EFSA. The other BFRs were not below the threshold, albeit BDE 153 showed MOEs around 5. The MOE for BDE 99 for toddlers were well above 100, and hence suggested low risk even though other exposure than fish were derived from the group “other children” which could lead to an over-estimation. The worst case vs the best case fish in terms of risk are shown in Table 4 for each BFR evaluated.

The difference between the European dietary intake surveys and the Norwegian dietary surveys did not reveal large differences in the MOE for toddlers exposed to BDE 99. For the other compounds the Norwegian surveys showed either similar or slightly higher MOEs (Table 5).

When the fish constituted a minor part of the diet in toddlers, the MOEs were higher than when fish constituted a larger part of total diet (Table 3). MOE calculations excluding fish also revealed MOE below 2.5 (Table 4). The highest impact on the MOE were observed when other foods than fish were excluded from the MOE scenario (Fig MOE scenario), while removal of air, dust and seafood showed lower impact on final MOE. Calculation of MOE based on lowerbound (LB) data for food sources compared to upperbound (UB) data showed that UB were below the threshold set by EFSA, while the LB were above. The impact of using ROS in food data were also exemplified for HBCD (Table 4), where LB, UB and ROS statistics were compared. The LB showed the highest MOE (2535), the UB showed the lowest MOE (1160), and the ROS resulted in a MOE in between (1777). The lowest MOE observed when all factors were included was 1.0 for BDE 99 at the 95th percentile calculated for North Sea herring and Atlantic mackerel (Scomber scombrus) consumption using the European dietary surveys (Fig. 4).
MOEs were also calculated for all species excluding other sources than the seafood reported in this study, for all dietary age groups (Appendix 3). None of the seafood analyzed revealed MOEs lower than the threshold of 2.5 set by the EFSA (EFSA, 2011a; EFSA, 2011b). The lowest MOEs were found for BDE 99 from fatty fish species, such as NS herring, mackerel and farmed Atlantic salmon. The sensitivity to BDE 99 exposures was: toddlers > infants > adults > adolescents for the Norwegian survey, while for the European food survey it was: toddlers > adolescents > adults > infants.

BDE 47, 99 and 153 have also been evaluated by the JECFA and the US-EPA, in addition to the EFSA. The fish species included in the present study were therefore, for comparative reasons, also evaluated according to the RfD set by the US-EPA, as well as doses suggested by JECFA at which adverse effects were unlikely in rodents plus a safety margin of 100. The RfD is an estimate of the daily exposure to a potential hazard that is likely to be without risk of deleterious effects during a lifetime (US-EPA, 2011). These results are shown in Appendix 2. The results showed that none of the fish species or tissues in our study can be considered high-risk in terms of PBDE levels.

4. Discussion

In this study, we have analyzed the levels of several PBDEs, HBCD and TBBPA in > 9000 samples of seafood and fish feed, and assessed factors affecting BFRs levels in these. The health risk of BFRs for this representative selection of North East Atlantic seafood have been evaluated following the latest risk assessments from the EFSA. Further, several key factors influencing the outcome of risk assessments have been scrutinized, including variation in PBDE levels among, and within, species. Also, the impact of statistics and impact of dietary surveys on risk assessment have been assessed.

4.1. Environmental and biological factors affecting levels of brominated flame retardants

The PBDE levels in seafood presented in this study were comparable to previous studies (Pardo et al., 2014; Voorspoels et al., 2007; de Wit et al., 2010). The small differences found may be due to different sampling location, tissue measured, detection limits and/or other environmental and biological factors which affect the BFR levels. The fat content of the individual species and the individual tissues strongly affected the levels of BFRs as demonstrated by using fat categories. Still, the weak positive correlation between fat content and BDE 47 concentration, and the large variation among individual species, suggests a role of additional factors. The octanol-water partition coefficients (logKow) for the PBDEs analyzed in this study are generally high (from around 6.5 to 8.3 depending on congener), indicating that the bioaccumulation potential for these compounds is high (US-EPA, 2010b). Hence, the total levels of PBDE may not decrease even if the fish were to be emaciated. In agreement with this, and with an earlier study (Vuorinen et al., 2012), we demonstrated a correlation between age and the level of BDE 47 in several, but not all species.

Due to the ban on the use of many BFRs, Arctic species may serve as indicators of temporal change in the BFR levels in the environment. Temporal evaluation of areas distant from emission sources illustrates effects of long-range transport, and may better reflect the total load of BFRs in the global environment. In agreement with a previous study (Jønssen et al., 2007), we observed that the levels of BFRs in most species tended to decrease with increasing latitude in the North East Atlantic. In our study, polar cod, capelin and Northern shrimp were sampled north of the Arctic Circle regularly over the last decade. During this period, the levels of BDE 47 decreased in the pelagic species polar cod and capelin, but not in the hyper-benthic species Northern shrimp. The difference may be related to their feeding habits since Northern shrimp feed on benthic organisms, detritus and on zooplankton, while the two fish species are plankton feeders. PBDE deposited in the sediment may be remobilized as described by Jøfsson et al. (2010), and then taken up by shrimp feeding on the benthos. The decreased levels of BDE 47 in the two pelagic species are in line with the recent temporal assessments of BFRs in the environment (Law et al., 2014). This may reflect a decrease in the total load of long range transported BFRs, and possibly decreased global release. However, due to the extended use of deca BDE, the congener BDE 209 may continue to be a threat to seafood safety (Law et al., 2014). Further, the occurrence of novel and emerging BFRs already observed in biota (Sahlström et al., 2015), may pose a challenge for future risk analyses of BFRs as a group.

When comparing species in the open seas, a decrease in BDE 47...
<table>
<thead>
<tr>
<th>Population</th>
<th>Survey</th>
<th>Reference</th>
<th>Atlantic cod (wild)</th>
<th>North Sea herring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BDE 47</td>
<td>BDE 99</td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td>Mean</td>
<td>p95</td>
</tr>
<tr>
<td>Infants</td>
<td>Spedkost</td>
<td>Øverby et al., 2009</td>
<td>16,282</td>
<td>5163</td>
</tr>
<tr>
<td>Toddler</td>
<td>Småbarnskost</td>
<td>Kristiansen and Andersen, 2009</td>
<td>10,186</td>
<td>4257</td>
</tr>
<tr>
<td>Adolescents</td>
<td>Ungkost</td>
<td>Hansen et al., 2015</td>
<td>24,973</td>
<td>7097</td>
</tr>
<tr>
<td>Adults</td>
<td>Norkost/Fisk og vil</td>
<td>Meltzer et al., 2002</td>
<td>22,362</td>
<td>5908</td>
</tr>
<tr>
<td>Europe</td>
<td>Infants</td>
<td>EFSA, 2015</td>
<td>95,322</td>
<td>9722</td>
</tr>
<tr>
<td>Toddlers</td>
<td>EFSA, 2015</td>
<td>8185</td>
<td>3108</td>
<td>84</td>
</tr>
<tr>
<td>Adolescents</td>
<td>EFSA, 2015</td>
<td>21,415</td>
<td>6643</td>
<td>219</td>
</tr>
<tr>
<td>Adults</td>
<td>EFSA, 2015</td>
<td>29,919</td>
<td>9174</td>
<td>307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population</th>
<th>North Sea herring</th>
<th>Greenland halibut</th>
<th>Farmed Atlantic salmon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HBCD</td>
<td>BDE 47</td>
<td>BDE 99</td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td>Mean</td>
<td>p95</td>
</tr>
<tr>
<td>Infants</td>
<td>8347</td>
<td>102</td>
<td>32</td>
</tr>
<tr>
<td>Toddler</td>
<td>6883</td>
<td>64</td>
<td>27</td>
</tr>
<tr>
<td>Adolescents</td>
<td>11,475</td>
<td>157</td>
<td>45</td>
</tr>
<tr>
<td>Adults</td>
<td>9553</td>
<td>141</td>
<td>37</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td>Mean</td>
<td>p95</td>
</tr>
<tr>
<td>Infants</td>
<td>15,719</td>
<td>599</td>
<td>61</td>
</tr>
<tr>
<td>Toddler</td>
<td>5025</td>
<td>51</td>
<td>20</td>
</tr>
<tr>
<td>Adolescents</td>
<td>10,741</td>
<td>135</td>
<td>42</td>
</tr>
<tr>
<td>Adults</td>
<td>14,832</td>
<td>188</td>
<td>58</td>
</tr>
</tbody>
</table>

* No levels detected above LOQ in fillet from Atlantic cod, maximum LOQ were used as a worst case scenario.
levels with increasing latitude was observed. Lower levels of BDE 47 were detected in samples from the Barents Sea and the Norwegian Sea than in samples from Skagerrak and the North Sea. In general, lower levels of BDE 47 were observed in biota farthest from the main emission sources of the more populated central Europe. The spread of PBDEs may be driven by the main oceanic currents passing Norway, such as the North Atlantic Current and the Norwegian Coastal Current, which is basically northbound all along the coast of Norway (BarentsWatch, 2017). Some spread of BFR to the Arctic has also been shown to occur by atmospheric long-range transport (de Wit et al., 2006). One species showing the reversed pattern of increasing BDE 47 with increasing latitude was the European eel. However, this species were exclusively sampled within the coastal border in southern Norway, and showed relative high levels of ΣPBDE which could suggest an impact of local pollution. This further visualizes the need to use open sea pelagic species as markers of global BFR distribution in order to minimize the noise from local pollution.

Analyses of farmed Atlantic salmon and fish feed showed that the composition and amount of both PBDEs and HBCD in the fish feed corresponded with the levels in the fish fillet. Levels of PBDE in farmed salmon vary extensively among studies in the literature (EFSA, 2011a; Hites et al., 2004; Montory et al., 2012; Pardo et al., 2014; Schecter et al., 2010; Trabalón et al., 2017; van Leeuwen and de Boer, 2008), ranging from 0.06 μg kg \(^{-1}\) w.w. in salmon sampled at a local supermarket (Pardo et al., 2014) to a mean level of 1.21 μg kg \(^{-1}\) w.w. BDE 47 reported by EFSA (EFSA, 2011a). Different sampling techniques, and year of sampling, can contribute to differences in reported BFR levels in farmed Atlantic salmon. In this study, Norwegian Quality Cut (NQC) was sampled according to Norwegian standard NS 9401 (1994). The fat distribution in a salmon fillet is not homogenous, but the NQC gives a good estimate of the fat content in Atlantic salmon fillets (Zhu et al., 2014), inferring that the level of lipid-soluble contaminants such as BFRs are representative of total muscle from this cut.

Here we show that the mean levels of BDE 47 in farmed Atlantic salmon declined over the last decade. The samples from years preceding 2012 had higher level of ΣPBDE than wild salmon which is in agreement with Hites et al. (2004), but due to the change in feed composition, the levels of PBDEs in farmed and wild salmon were comparable in 2012. The feeds used in salmon production in 2012–2013 typically contained only 10% fish-oil and 18% fish meal, the major contributors of PBDE to fish feed (Ytreøstøyl et al., 2015).

4.2. Risk assessment of brominated flame retardants in North East Atlantic seafood

In this study we used the MOE approach, described by the EFSA (EFSA, 2011a; EFSA, 2011b; EFSA, 2011c), to evaluate seafood safety. Human exposure to BFRs originates both from food and non-food sources, such as indoor dust, but their relative contribution is debated (Ni et al., 2012; Sahlström et al., 2015; US-EPA, 2010a, 2010b, 2010c). Calculation of the MOE for BDE 99 using the exposure levels reported by the EFSA and Fromme et al. (2016), without including seafood, resulted in a MOE of 1.4 for mean intake, instead of 1.2 when NS herring represented total fish intake. A study in the US determined that intake of red meat and poultry contribute substantially to the PBDE body burdens in the US (Fraser et al., 2009). Although, levels in the US are substantially higher than in Europe (Fromme et al., 2016; Hites, 2004), food from other sources than fish contributed considerably to the overall exposure. Removing air and dust from our calculations still resulted in a MOE of 1.3, further suggesting total food intake is a large contributor to BDE 99 exposure. Therefore, we performed calculations both excluding and including other sources of BFR than seafood.

When other sources of BFR than seafood was excluded, we did not find any risk to the average consumer or the highest 95 percentile consumers, compared to the threshold set by the EFSA. However, the seafood described in this study derives from Northern Europe, which may contain lower BFR levels since this study shows that concentrations decrease with increasing latitude. It is therefore possible that seafood harvested further south may contain higher levels of BFR. The lower MOEs calculated for BDE 99 exposure compared to the MOEs for BDE 47 exposure, demonstrated that the low concentration of the more toxic BDE 99 is of far greater importance than the higher concentration of the less toxic BDE 47 in risk assessments. In this context, it is noteworthy that the US-EPA has set the RfD of both BDE 47 and BDE 99 at 100 ng kg \(^{-1}\) b.w.

Developmental neurotoxicity is a major concern related to potential adverse health effects of BFRs (Costa and Giordano, 2007). Neurodevelopment in infants (Herbstman et al., 2010), and adolescents has also been shown to be subtly affected by PBDEs (Kicinski et al., 2012). Children are particularly vulnerable, and risk assessment of BFR exposure from seafood alone indicates that toddlers are the most sensitive group. This is due to a higher total food intake, including fish, relative to the low bodyweight in this group (Kristiansen and Andersen, 2009; Totland et al., 2012). PBDEs, already at current exposure, have been associated with subtle cognitive and behavioral changes in 4–7 year old children (Chevrier et al., 2016).

4.3. Limitations on current risk assessments and statistical considerations

Only four congeners, BDE 47, BDE 99, BDE 153 and HBCD were included in the risk assessments in this study. Levels of TBBPA were mainly below the LOQ providing limited data for calculating a MOE. Still, comparing the levels detected in a small number of samples and LOQ with the levels assessed by EFSA in their previous risk assessment, suggests that TBBPA poses a low risk (EFSA, 2011c). However, as our dataset on TBBPA mainly describes levels in farmed salmon, we cannot conclude on seafood in general. In our study the congener BDE 209 has not been analyzed, and there is consequently no risk assessment of BDE 209. This render the risk assessment incomplete compared to those congeners assessed by EFSA (EFSA, 2011a). However, it can be assumed that the factors affecting the congener levels presented in the study would also apply to BDE 209, nevertheless BDE 209 should be included in future risk assessments. Interaction effects between PBDEs and other halogenated compounds have previously been observed (Fitzgerald et al., 2012), suggesting that in the presence of other contaminants PBDE could be considered more toxic. However, it is difficult to separate possible effects of other halogenated compounds from the effects of PBDE in epidemiological studies. Although it is of great interest to investigate mixture toxicity among PBDE congeners and in mixtures with other contaminants, EFSA concluded that epidemiological studies on PBDEs were inconsistent (EFSA, 2011a). It is beyond the scope of this study to evaluate possible interaction effects, and derived BMDLs are therefore derived from studies based on individual congeners of PBDE (EFSA, 2011a).

The use of “fish” or “seafood” as food categories in risk assessments overlooks the large variation that exists between and within species, as we have demonstrated in this study. For future risk assessments, more data is needed on the levels of BFRs, and the consumption of individual species for better estimation of risk. Such data could also be used to develop a “representative fish” for more accurate risk assessments as exemplified by Tachovsky et al. (2010).

Left censored data are normally dealt with using the substitution method described by the WHO European Programme for Monitoring and Assessment of Dietary Exposure to Potentially Hazardous Substances (GEMS/Food-EURO, 1995). Although this is a simplistic method providing a range that contains the true level, it may cause difficulties interpreting the risk related to certain compounds. As an example, EFSA concluded that toddler high-risk consumers might be at risk due to the estimated UB intake level for BDE 99 of 2.99 ng kg \(^{-1}\) in toddlers, whereas the lower bound (LB) level was 0.58 ng/g suggesting no risk (EFSA, 2011a). In our risk assessment including other sources than fish, all species had a MOE of < 2.5 for BDE 99. This exemplifies
the need for a more accurate determination of the level of compounds actually present in different food. Indeed, the EFSA has stated that if the difference between LB and UB is not negligible, more refined methods should be implemented (EFSA, 2010). Hence, we propose that regression on order statistics (ROS) is a suitable statistical tool for use in risk assessment of food to better illustrate means and spreads in large surveillance data. In previous left censored simulation studies, ROS have been shown to provide better results than other methods (substitution, parametric maximum likelihood estimation (MLE), and non-parametric Kaplan-Meier (KM)) at almost all samples sizes and at almost all censoring rates (Tekindal et al., 2017).

It has previously been argued that the MOE threshold set by EFSA at 2.5, is too low due to large gaps in knowledge regarding kinetics and adverse effects of PBDEs (Lyche et al., 2015). Adding to this the uncertainties related to risk assessments addressed in this study, a re-assessment of the current exposure and toxicity of PBDEs including other BFR should be instigated. A number of aspects, particularly regarding exposure sources, congester composition of food, use of statistics and dietary surveys, complicate risk assessments of BFRs.

5. Conclusion

Risk assessment based on an extensive dataset of seafood, the most relevant dietary surveys, and the use of ROS statistics (for estimating mean levels for seafood), indicates that there is low risk related to exposure to BDE 47, BDE 99, BDE 153 and HBCD from consumption of seafood from the North East Atlantic. However, in our study, a risk of BDE 99 for toddlers was observed when all exposure sources were included at upper bound levels. A future re-evaluation of BFRs is warranted to take into account the great variation in MOEs which can be caused by: choice of seafood, other sources than seafood and the statistical interpretation of surveillance data. Taking such steps could improve the accuracy of future risk assessment.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2018.04.044.

Acknowledgements and grant information

This study is based on surveillance data funded by the Norwegian Food Safety Authority (Mattilsynet), the Norwegian Seafood Research Fund (FFH, 232104, 232094, and 900112), Norwegian Herring Sales Organization (Norges Sildeselslag), and the Norwegian Ministry of Fisheries and Coastal Affairs. The post-sampling work is funded in house. The housing sources had no involvement in the preparation of this manuscript.

Declarations of interest

None.

Contributions from each author

OJN has collected data from previously performed surveillance, performed statistical analyses, and been in charge of writing the manuscript.

BMN has contributed with data for fillet samples from Greenland halibut and Atlantic halibut and for liver samples from saithe.

RH has contributed with data on farmed fish.

JDR contributed to the statistical analysis of the data.

AM has led overall work on collecting and monitoring wild fish for contaminants including brominated flame retardant.

AD has contributed with data on NSS herring.

SFR has contributed with data on NSS herring, Northeast Atlantic mackerel, capelin, polar cod and Northern shrimp.

MS has contributed with data on fish feed and feed ingredients.

BMN, AD, AKL, RH, MS, SFR, JDR and LM participated in the preparation of the manuscript. All authors have participated in discussion and interpretation of the data.

References

EFSA. 2006. Advice of the Scientific Panel on Contaminants in the Food Chain on a re-assessment from the Commission related to relevant chemical compounds in the group of brominated flame retardants for monitoring in feed and food. EFSA J. 3, 1–44.

EFSA. 2011a. Scientific opinion on polybrominated diphenyl ethers (PBDEs) in food. EFSA J. 9, 2156.

FAO. 2016. The State of World Fisheries and Aquaculture. Food and Agriculture organization of the united nations, Rome.

Frantzen, Mage, Iversen, Julshamn, 2011. Seasonal variation in the levels of organohalogen compounds in herring (Clupea harengus) from the Norwegian Sea. Chemosphere 85, 179–187.

Fraser, Webster, McClean, 2009. Diet contributes significantly to the body burden of PBDEs in the general U.S. population. Environ. Health Perspect. 117, 1520–1525.

