Anisotropic flow of identified particles in Pb-Pb collisions at root $s(\text{NN})=5.02$ TeV

Acharya, S.; Acosta, F; Adamova, D.; Adolfsson, J; Aggarwal, MM.; Rinella, G.A.; Agnello, A.; Agrawal, N.; Ahammed, Z.; Ahn, S.U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, SN; Albuquerque, DSD; Aleksandrov, D.; Alessandro, B; Molina, Rafael A.; Ali, Yusuf; Bearden, Ian; Christensen, Christian Holm; Bourjau, Christian Alexander; bsm989, bsm989; Bilandzic, Ante; Lais, Ozelin De Lima Pimentel; Gaardhøje, Jens Jørgen; Chojnacki, Marek; Gajdosova, Katarina; Thoresen, Freja; Nielsen, Børge Svane; Zhou, You; Vislavicius, Vytautas

Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP09(2018)006

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Anisotropic flow of identified particles in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The ALICE collaboration

E-mail: ALICE-publications@cern.ch

ABSTRACT: The elliptic (v_2), triangular (v_3), and quadrangular (v_4) flow coefficients of π^{\pm}, K^{\pm}, $p + \bar{p}$, $\Lambda + \bar{\Lambda}$, K^0_S, and the ϕ-meson are measured in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. Results obtained with the scalar product method are reported for the rapidity range $|y| < 0.5$ as a function of transverse momentum, p_T, at different collision centrality intervals between 0–70%, including ultra-central (0–1%) collisions for π^{\pm}, K^{\pm}, and $p + \bar{p}$. For $p_T < 3$ GeV/c, the flow coefficients exhibit a particle mass dependence. At intermediate transverse momenta ($3 < p_T < 8–10$ GeV/c), particles show an approximate grouping according to their type (i.e., mesons and baryons). The ϕ-meson v_2, which tests both particle mass dependence and type scaling, follows $p + \bar{p}$ v_2 at low p_T and π^{\pm} v_2 at intermediate p_T. The evolution of the shape of $v_n(p_T)$ as a function of centrality and harmonic number n is studied for the various particle species. Flow coefficients of π^{\pm}, K^{\pm}, and $p + \bar{p}$ for $p_T < 3$ GeV/c are compared to iEBE-VISHNU and MUSIC hydrodynamical calculations coupled to a hadronic cascade model (UrQMD). The iEBE-VISHNU calculations describe the results fairly well for $p_T < 2.5$ GeV/c, while MUSIC calculations reproduce the measurements for $p_T < 1$ GeV/c. A comparison to v_n coefficients measured in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV is also provided.

KEYWORDS: Heavy Ion Experiments

ArXiv ePrint: 1805.04390

Contents

1 Introduction 1

2 Experimental setup and data analysis 3
2.1 Event and track selection 4
2.2 Identification of π±, K± and p+\bar{p} 4
2.3 Reconstruction of K_S^0 and $\Lambda + \bar{\Lambda}$ 5
2.4 Reconstruction of ϕ-mesons 6
2.5 Flow analysis techniques 7

3 Systematic uncertainties 8

4 Results and discussion 13
4.1 Centrality and p_T dependence of flow coefficients 13
4.2 Scaling properties 18
4.3 Comparison with model calculations 20
4.4 Shape evolution of $v_n(p_T)$ as function of centrality 21
4.5 Comparison with v_n of identified particles at $\sqrt{s_{NN}} = 2.76$ TeV 27

5 Summary 28

The ALICE collaboration 39

1 Introduction

Ultra-relativistic heavy-ion collisions are used to study the properties of the quark-gluon plasma (QGP), a state of deconfined quarks and gluons expected at high temperatures or baryon densities [1]. Measurements of anisotropies in particle azimuthal distributions relative to the collision symmetry planes at the Relativistic Heavy Ion Collider (RHIC) [2–5] and the Large Hadron Collider (LHC) [6–8] have shown that the produced hot and dense matter behaves as a strongly-interacting QGP. Comparisons to predictions from hydrodynamic models indicate that the QGP has a shear viscosity to entropy density ratio (η/s) close to the theoretical lower limit from the anti-de Sitter/conformal field theory (AdS/CFT) correspondence of $1/4\pi$ for $h = k_B = 1$ [9].

Azimuthal anisotropies in particle production relative to the collision symmetry planes, often referred to as anisotropic flow, arise from the asymmetry in the initial geometry of the collision combined with the initial inhomogeneities of the system’s energy density [10]. Anisotropic flow depends on the equation of state and transport coefficients of the system,
such as η/s and bulk viscosity to entropy density ratio (ζ/s). Its magnitude is quantified via the coefficients v_n in a Fourier decomposition of the particle azimuthal distribution \cite{11}

$$E \frac{d^3N}{dp^3} = \frac{1}{2\pi p_T dp_T dy} \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)] \right),$$

(1.1)

where E is the energy, p the momentum, p_T the transverse momentum, φ the azimuthal angle, η the pseudorapidity of the particle, and Ψ_n the n-th harmonic symmetry plane angle. The second order flow coefficient v_2, called elliptic flow, is the largest contribution to the asymmetry of non-central collisions because of the almond-like geometry of the overlap region between the colliding nuclei in the plane perpendicular to the beam direction. The third-order flow coefficient v_3, named triangular flow, is generated by fluctuations in the initial distribution of nucleons and gluons in the overlap region \cite{12-15}. The fourth-order flow coefficient v_4, called quadrangular flow, is generated both by initial geometry, fluctuations, and is in addition sensitive to the non-linear hydrodynamic response of the medium \cite{16, 17}. It has been shown that higher-order flow coefficients are more sensitive to η/s than v_2 \cite{18, 19}.

In addition to probing η/s and ζ/s, anisotropic flow constrains the initial spatial density (e.g. energy and entropy density), freeze-out conditions of the system, and particle production mechanisms in different p_T regions. Stronger constraints are achieved by studying anisotropic flow of identified particles. To guide interpretation of the results in the context of these processes, three kinematic ‘regions of interest’ are defined in the p_T-differential v_n measurements, $v_n(p_T)$. For $p_T \lesssim 3$ GeV/c, anisotropic flow is a remnant of the collective dynamics during the hydrodynamic expansion of the system. The interplay between the isotropic expansion (radial flow) and anisotropic flow leads to a characteristic mass ordering of $v_n(p_T)$ \cite{20-28}, meaning that heavier particles have smaller $v_n(p_T)$. At intermediate p_T ($3 \lesssim p_T \lesssim 8$ GeV/c), the values of v_n for different particles tend to separate mesons and baryons \cite{27-33}. The flow of baryons is larger than that of mesons in this p_T range, supporting the hypothesis of hadronization through quark coalescence \cite{34}, where it is assumed that the invariant spectrum of produced particles is proportional to the product of the spectra of their constituents \cite{35, 36}. However, the scaling only holds approximately at RHIC \cite{32} and at the level of $\pm 20\%$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV \cite{27, 28}. This behaviour is also qualitatively consistent with a scenario in which particle production includes interactions of jet fragments with bulk matter \cite{37, 38}. For $p_T \gtrsim 8$ GeV/c, anisotropic flow is generated when hard partons that propagate through the system lose energy via (multiple) scattering and gluon radiation \cite{39, 40}, resulting in v_n that remain non-zero up to very high p_T \cite{41-44}.

Anisotropic flow of identified particles is an important observable when studying the characteristics of the QGP. However, since particles can scatter and be regenerated in between the chemical and kinetic freeze-out of a collision (the hadronic phase), information about the QGP phase imprinted in $v_n(p_T)$ can be altered by late-stage interactions and resonance decays, which can affect both v_n and $\langle p_T \rangle$ \cite{45}, leading to a deviation in mass ordering in $v_n(p_T)$ at low p_T \cite{46}. The ϕ-meson has been suggested as a particularly sensitive probe of the early collision phase as its production rate via regeneration in the hadronic
phase is negligible [47] and it is theorized to have a low hadronic cross section [48–50], making it insensitive to the dissipative effects of the hadronic phase of the collision (although it should be noted that there is no consensus on the exact value of the cross section between the ϕ-meson and nucleons in heavy-ion collisions [51–54]). Recent experimental studies [27, 55, 56] suggest that the ϕ-meson may be more sensitive to the hadronic phase than anticipated.

In this article, we present measurements of \(p_T \)-differential elliptic, triangular, and quadrangular flow coefficients of \(\pi^\pm, K^\pm, p+\overline{p}, \Lambda+\overline{\Lambda}, K^0_S \), and the ϕ-meson in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \), extending greatly, and improving in precision upon, the previous measurements of identified particle \(v_n \) in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) as carried out by ALICE [27, 28, 33]. The results are reported for a wide range of particle transverse momenta within the rapidity range \(|y| < 0.5 \) at different collision centralities between 0–70% range. To isolate the fraction of anisotropic flow that is generated by initial-state fluctuations rather than geometry, the flow coefficients are also studied in ultra-central collisions (0–1% collision centrality). Centrality estimates the degree of overlap between the two colliding nuclei and is expressed as percentiles of the inelastic hadronic cross section, with low percentage values corresponding to head-on collisions. The measurements are performed using the scalar product method [57–59] with a (pseudo-)rapidity gap of \(|\Delta \eta| > 2.0 \) between the identified particles under study and the charged reference particles. The flow coefficients are measured separately for particles and anti-particles and are found to be compatible within the statistical uncertainties for most \(p_T \) and centrality intervals. Any residual differences are included in the systematic uncertainties, and \(v_n \) denotes the average between results for particles and anti-particles.

This paper is organized as follows. Analysis details, particle identification, reconstruction methods, and flow measurement techniques are outlined in section 2. The evaluation of systematic uncertainties is discussed in section 3. The flow coefficients of \(\pi^\pm, K^\pm, p+\overline{p} \) \((v_2, v_3, \text{ and } v_4)\), \(\Lambda+\overline{\Lambda}, K^0_S \) \((v_2 \text{ and } v_3)\), and the ϕ-meson \((v_2)\) are reported and compared to model calculations in section 4. Finally, the results are summarized in section 5.

2 Experimental setup and data analysis

ALICE [60–62] is a dedicated heavy-ion experiment at the LHC optimized to study the properties of strongly interacting matter produced in heavy-ion collisions. A full overview of the detector layout and its performance can be found in [62, 63]. The main subsystems used in this analysis are the Inner Tracking System (ITS) [64], Time Projection Chamber (TPC) [65], Time Of Flight detector (TOF) [66], and V0 [67]. The ITS, TPC, and TOF detectors cover full azimuth within pseudorapidity range \(|\eta| < 0.9 \) and lie within a homogeneous magnetic field of up to 0.5 T. The ITS consists of six layers of silicon detectors used for tracking and vertex reconstruction. The TPC is the main tracking detector and is also used to identify particles via specific ionization energy loss, \(dE/dx \). The TOF in conjunction with the timing information from the T0 detector [68] provide particle identification based on flight time. The T0 is made up of two arrays of Cherenkov counters T0C and T0A, located at \(-3.3 < \eta < -3.0 \) and \(4.5 < \eta < 4.9 \), respectively. Two scintillator arrays
(V0), which cover the pseudorapidity ranges $-3.7 < \eta < -1.7$ (V0C) and $2.8 < \eta < 5.1$ (V0A), are used for triggering, event selection, and the determination of centrality [69] and Q_n-vectors (see section 2.5). Both V0 detectors are segmented in four rings in the radial direction with each ring divided into eight sectors in the azimuthal direction. In addition, two tungsten-quartz neutron Zero Degree Calorimeters (ZDCs), installed 112.5 meters from the interaction point on each side, are used for event selection.

2.1 Event and track selection

The data sample recorded by ALICE during the 2015 LHC Pb-Pb run at $\sqrt{s_{NN}} = 5.02$ TeV is used for this analysis. The minimum-bias trigger requires signals in both V0A and V0C detectors. An offline event selection is applied to remove beam-induced background (i.e. beam-gas events) and pileup events. The former is rejected utilizing the V0 and ZDC timing information. The remaining contribution of such interactions is found to be smaller than 0.02% [63]. Pileup events, which constitute about 0.25% of the recorded sample, are removed by comparing multiplicity estimates from the V0 detector to those of tracking detectors at mid-rapidity, exploiting the difference in readout times between the systems. The fraction of pileup events left after applying the dedicated pileup removal criteria is found to be negligible. The primary vertex position is determined from tracks reconstructed in the ITS and TPC as described in ref. [63]. Only events with a primary vertex position within 10 cm from the nominal interaction point along the beam direction are used in the analysis. Approximately 67×10^6 Pb-Pb events in the 0–70% centrality interval pass these selection criteria. Centrality is estimated from the energy deposition measured in the V0 detector [69].

Charged-particle tracks, used to measure the ν_n, K^\pm, $p+\bar{p}$ and the ϕ-meson, are reconstructed using the ITS and TPC within $|\eta| < 0.8$ and $0.5 < p_T < 16.0 \text{ GeV/c}$ with a track-momentum resolution better than 4% for the considered range [63]. Additional quality criteria are used to reduce the contamination from secondary charged particles (i.e., particles originating from weak decays, γ-conversions, and secondary hadronic interactions in the detector material) and fake tracks (random associations of space points). Only tracks with at least 70 space points, out of a maximum of 159, with a χ^2 per degree-of-freedom for the track fit lower than 2, are accepted. Moreover, each track is required to cross at least 70 TPC pad rows and to be reconstructed from at least 80% of the number of expected TPC space points, in addition to having at least one hit in the two innermost layers of the ITS. Furthermore, tracks with a distance of closest approach (DCA) to the reconstructed event vertex smaller than 2 cm in the longitudinal direction (z) and $(0.0105 + 0.0350 (p_T \text{ GeV}/c)^{-1.1}) \text{ cm}$ in the transverse plane (xy) are selected. Relevant selection criteria for tracks used for the reconstruction of K^0_S and $\Lambda+\bar{\Lambda}$ are given in section 2.3.

2.2 Identification of π^\pm, K^\pm and $p+\bar{p}$

Particle identification is performed using the specific ionization energy loss, dE/dx, measured in the TPC and the time of flight obtained from the TOF. A truncated-mean procedure is used to estimate the dE/dx (where the 40% highest-charge clusters are discarded), which yields a dE/dx resolution around 6.5% in the 0–5% centrality class [63]. At least 70
clusters are used for the \(dE/dx \) estimation. The TOF measures the time that a particle needs to travel from the primary vertex to the detector itself with a time resolution of \(\approx 80 \) ps [63]. The start time for the TOF measurement is provided by the T0 detector or from a combinatorial algorithm which uses the particle arrival times at the TOF detector itself [63, 66].

Expressing the difference between the expected \(dE/dx \) and the time of flight for \(\pi^\pm, K^\pm \) and \(p+\bar{p} \), and the measured signals in both TPC and TOF, in units of the standard deviations from the most probable value for both detectors (\(n\sigma_{TPC}, n\sigma_{TOF} \)), and applying a selection on the number of accepted \(n\sigma \), allows for particle identification on a track-by-track basis. The TPC \(dE/dx \) of different particle species are separated by at least \(4\sigma \) for \(p_T < 0.7 \) GeV/c, while in the relativistic rise region of the \(dE/dx \) (\(p_T > 2 \) GeV/c) particle identification is still possible but only on a statistical basis [63]. The TOF detector provides \(3\sigma \) separation between \(\pi^\pm \) and \(K^\pm \) for \(p_T < 2.5 \) GeV/c, and between \(\pi^\pm \) and \(p+\bar{p} \) for \(p_T < 4 \) GeV/c [63].

The information from the TPC and TOF is combined using a quadratic sum

\[
\text{n}\sigma_{PID} = \sqrt{n\sigma^2_{TPC} + n\sigma^2_{TOF}} \quad \text{for} \quad 0.5 < p_T \leq 4 \text{ GeV/c}.
\]

Particles are selected by requiring \(n\sigma_{PID} < 3 \) for each species. The smallest \(n\sigma_{PID} \) is used to assign the identity when the selection criterion is fulfilled by more than one species. When measuring \(p+\bar{p} \) \(v_n(p_T) \), only \(\bar{p} \) are considered for \(p_T < 2 \) GeV/c to exclude secondary protons from detector material. At high transverse momenta (\(p_T > 4 \) GeV/c), \(K^\pm \) cannot reliably be identified. Identification of \(\pi^\pm \) and \(p+\bar{p} \) for \(p_T > 4 \) GeV/c is done utilizing the TPC \(dE/dx \) signal only. Pions (protons) are selected from the upper (lower) part of the expected pion (proton) \(dE/dx \) distribution. For example, proton selection typically varies in the range from 0 to \(-3\sigma_{TPC}\) or from \(-1.5\sigma_{TPC}\) to \(-4.5\sigma_{TPC}\) depending on the momentum.

Secondary contamination from weak decays, studied using the procedure outlined in [70], decreases from about 30% to 5% for \(p+\bar{p} \) in the \(p_T \) range 0.7–4.0 GeV/c and from about 5% to 0.5% for \(\pi^\pm \) in the \(p_T \) range 0.5–4.0 GeV/c, while it is negligible for \(K^\pm \). The \(v_n \) coefficients are not corrected for these contaminations; their effect on \(v_n \) is at maximum \(\approx 8\% \), for \(p+\bar{p} \) \(v_2 \) at \(p_T < 1 \) GeV/c for central collisions, and negligible for \(\pi^\pm, \pi^\pm \) \(v_1 \). The contamination from other particle species is below 3% and 20% at \(p_T > 4.0 \) GeV/c for \(\pi^\pm \) and \(p+\bar{p} \), respectively, and contamination from fake tracks is negligible. The \(v_n \) results are reported for \(0.5 < p_T < 16.0(12.0, 6.0) \) GeV/c for \(\pi^\pm, \pi^\pm \) \(v_2 \) \((v_3, v_4) \), 0.7 < \(p_T < 16.0(12.0, 6.0) \) GeV/c for \(p+\bar{p} \) \(v_2 \) \((v_3, v_4) \), and 0.5 < \(p_T < 4.0 \) GeV/c for \(K^\pm, v_n \), all within \(|y| < 0.5 \).

2.3 Reconstruction of \(K^0_S \) and \(\Lambda + \bar{\Lambda} \)

The \(K^0_S \) and \(\Lambda + \bar{\Lambda} \) are reconstructed in the \(K^0_S \rightarrow \pi^+ + \pi^- \) and \(\Lambda \rightarrow p + \pi^- \) (\(\bar{\Lambda} \rightarrow p + \pi^+ \)) channels with branching ratios of 69.2% [71] and 63.9% [71] respectively. Reconstruction of \(K^0_S \) and \(\Lambda + \bar{\Lambda} \) is based on identifying secondary vertices from which two oppositely-charged particles originate, called \(V^0 \)s. Topological selection criteria pertaining to the shape of the \(V^0 \) decay can be imposed, as well as requirements on the species identity of the decay products (called \textit{daughter particles}).
The V^0 candidates are selected to have an invariant mass between 0.4 and 0.6 GeV/c^2 and 1.07 and 1.17 GeV/c^2 for K^0_S and $\Lambda+\bar{\Lambda}$, respectively. The invariant mass of the V^0 is calculated based on the assumption that the daughter particles are either a $\pi^+\pi^-$ pair, or a $p\pi^-$ ($\bar{p}\pi^+$) pair. The daughter particles have been identified over the entire p_T range using the TPC following the $n\sigma_{TPC}$ approach detailed in section 2.2 ($|n\sigma_{TPC}| < 3$). The daughter tracks were reconstructed within $|\eta| < 0.8$, while the criteria on the number of TPC space points, the χ^2 per TPC space point per degree-of-freedom, the number of crossed TPC pad rows, and the percentage of the expected TPC space points used to reconstruct a track are identical to those applied for primary particles. In addition, the minimum DCA of daughter tracks to the primary vertex is 0.1 cm. Furthermore, the maximum DCA of daughter tracks to the secondary vertex is 0.5 cm to ensure that they are products of the same decay.

To reject secondary vertices arising from decays into more than two particles, the cosine of the pointing angle θ_p is required to be larger than 0.998. This angle is defined as the angle between the momentum-vector of the V^0 assessed at its decay position and the line connecting the V^0 decay vertex to the primary vertex and has to be close to 0 as a result of momentum conservation. In addition, the V^0 candidates are only accepted when they are produced at a distance between 5 and 100 cm from the nominal primary vertex in the radial direction. The lower value is chosen to avoid any bias from the efficiency loss when secondary tracks are being wrongly matched to clusters in the first layer of the ITS. To assess the systematic uncertainty related to contaminations from $+\pi$ and electron-positron pairs coming from $-\gamma$-conversions to the K^0_S sample, a selection in the Armenteros-Podolanski variables [72] is applied for the K^0_S candidates, rejecting ones with $q \leq |\alpha|/5$. Here q is the momentum projection of the positively charged daughter track in the plane perpendicular to the V^0 momentum and $\alpha = (p_L^+ - p_L^-)/(p_L^+ + p_L^-)$, with p_L^\pm the projection of the positive or negative daughter tracks’ momentum onto the momentum of the V^0.

To obtain the p_T-differential yield of K^0_S and $\Lambda+\bar{\Lambda}$ (which, together with background yields, are used for the v_n extraction cf. eq. (2.3)), invariant mass distributions at various p_T intervals are parametrized as a sum of a Gaussian distribution and a second-order polynomial function. The latter is introduced to account for residual contaminations (background yield) that are present in the K^0_S and $\Lambda+\bar{\Lambda}$ signals after the topological and daughter track selections. The K^0_S and $\Lambda+\bar{\Lambda}$ yields are extracted by integration of the Gaussian distribution. Obtained yields have not been corrected for feed-down from higher mass baryons (Ξ^\pm, Ω^\pm) as earlier studies have shown that these have a negligible effect on the measured v_n [27]. The $v_n(p_T)$ results are reported within $|y| < 0.5$ and $0.5 < p_T < 10$ GeV/c for K^0_S and $0.8 < p_T < 10$ GeV/c for $\Lambda+\bar{\Lambda}$.

2.4 Reconstruction of ϕ-mesons

The ϕ-meson is reconstructed in the $\phi \rightarrow K^+K^-$ channel with a branching ratio of 48.9% [71]. Its reconstruction proceeds by first identifying all primary K^\pm tracks in an event, following the procedure for primary charged K^\pm outlined in section 2.2. The K^\pm identification criterion $n\sigma_{PID} < 3$ is chosen as it improves the significance of the ϕ-meson yield, while retaining a sufficient reconstruction efficiency. The vector sums of all post-
sible K^\pm pairs are called ϕ-meson candidates, the yield of which is obtained as function of invariant mass $M_{K^+K^-}$ in various p_T intervals. The p_T-differential ϕ-meson yield is obtained by first subtracting a background yield from the candidate yield. This background yield is estimated using an event-mixing technique [73], in which K^\pm from different collisions are paired into background tracks, and is normalized to the candidate yield for $1.04 < M_{K^+K^-} < 1.09 \text{ GeV}/c^2$. Collisions with similar characteristics (vertex position, centrality) are used for this mixing. To obtain the p_T-differential yield of ϕ-mesons, the invariant mass distributions of the candidate yield is, after the aforementioned subtraction, parametrized as a sum of a Breit-Wigner distribution and a second-order polynomial function, the latter introduced to account for residual contaminations. The ϕ-meson yields are extracted by integration of the Breit-Wigner distribution and, together with background yields, used for the v_n extraction (see eq. (2.3)). The $v_2(p_T)$ results are reported for $0.9 < p_T < 6.5 \text{ GeV}/c$ within $|y| < 0.5$.

2.5 Flow analysis techniques

The flow coefficients v_n are measured using the scalar product method [57–59], written as

$$v_n\{\text{SP}\} = \left(\langle u_{n,k} Q_n^*\rangle\right) \sqrt{\frac{\langle Q_n^A Q_n^B \rangle}{\langle Q_n^A Q_n^B \rangle}},$$

(2.1)

where $u_{n,k} = \exp(in\varphi_k)$ is the unit flow vector of the particle of interest k with azimuthal angle φ_k, Q_n is the event flow vector, and n is the harmonic number. Brackets $\langle \cdots \rangle$ denote an average over all events, the double brackets $\langle \langle \cdots \rangle \rangle$ an average over all particles in all events, and * the complex conjugate.

The vector Q_n is calculated from the azimuthal distribution of the energy deposition measured in the V0A. Its x and y components are given by

$$Q_{n,x} = \sum_j w_j \cos(n\varphi_j), \quad Q_{n,y} = \sum_j w_j \sin(n\varphi_j),$$

(2.2)

where the sum runs over the 32 channels j of the V0A detector, φ_j is the azimuthal angle of channel j defined by the geometric center, and w_j is the amplitude measured in channel j. The vectors Q_n^A and Q_n^B are determined from the azimuthal distribution of the energy deposition measured in the V0C and the azimuthal distribution of the tracks reconstructed in the ITS and TPC, respectively. The amplitude measured in each channel of the V0C (32 channels as for the V0A) is used as weight in the case of Q_n^A, while unity weights are applied for Q_n^B. Tracks used for Q_n^B are selected following the procedure for primary charged tracks outlined in section 2.1 for $0.2 < p_T < 5.0 \text{ GeV}/c$. In order to account for a non-uniform detector response, the components of the Q_n and Q_n^A vectors are recalibrated using a recentering procedure (i.e. subtraction of the Q_n-vector averaged over many events from the Q_n-vector of each event) [74]. The large gap in pseudorapidity between $u_{n,k}$ and Q_n ($|\Delta\eta| > 2.0$) greatly suppresses short-range correlations unrelated to the azimuthal asymmetry in the initial geometry, commonly referred to as ‘non-flow’. These correlations largely come from the inter-jet correlations and resonance decays.
The \(v_n \) of the \(K^0_S, \Lambda + \bar{\Lambda}, \) and \(\phi \)-meson cannot directly be measured using eq. (2.1) as \(K^0_S, \Lambda + \bar{\Lambda} \) and the \(\phi \)-meson cannot be identified on a particle-by-particle basis. Therefore, the \(v_n^{\text{tot}} \) of \(V^0 \)s and \(\phi \)-meson candidates is measured as function of both invariant mass, \(M_{d+d^-} \), and candidate \(p_T \). This \(v_n^{\text{tot}} \) can be written [75] as the weighted sum of \(v_n(p_T) \) of the particle of interest, \(v_n^{\text{sig}} \), and that of background tracks, \(v_n^{\text{bg}}(M_{d+d^-}) \), as

\[
v_n^{\text{tot}}(M_{d+d^-}) = v_n^{\text{sig}} \frac{N_{\text{sig}}}{N_{\text{sig}} + N_{\text{bg}}(M_{d+d^-})} + v_n^{\text{bg}}(M_{d+d^-}) \frac{N_{\text{bg}}}{N_{\text{sig}} + N_{\text{bg}}(M_{d+d^-})}.
\]

Figure 1. (Colour online) Illustration of reconstruction and \(v_2 \) measurement for the \(\phi \)-meson. The reconstruction of the \(\phi \)-meson and extraction of \(N_{\text{sig}} \) and \(N_{\text{bg}} \) are shown in the upper panel. A fit of eq. (2.3) to data is presented in the lower panel.

The systematic uncertainties on \(v_n \) fall into the following categories: those arising from event selection, those arising from charged particle tracking, uncertainties in particle identification, uncertainties in \(V^0 \) finding, and those coming from the extraction of \(v_n(p_T) \).

For \(p_T \leq 4 \text{ GeV}/c \), a \(p_T \)-dependent systematic uncertainty is assigned to \(v_2, v_3, \) and \(v_4 \) of \(\pi^\pm, K^\pm, p+p, \Lambda+\bar{\Lambda}, K^0_S \) and the \(\phi \)-meson. Per measured point, the difference between the nominal measurement and a variation on the nominal measurement is calculated. If this difference between the nominal data point and the systematic variation is significant (where significance is evaluated based on the recommendations in [76]), it is considered to
be a systematic uncertainty. When various checks are performed to quantify the effect of one systematic uncertainty (e.g. using three different centrality estimators to estimate the uncertainty in centrality determination), the maximum significant deviation that is found between the nominal measurement and the systematic variations is assigned as a systematic uncertainty. For each particle species, a p_T-independent average uncertainty is reported for $p_T > 4 \text{ GeV}/c$ in order to suppress sensitivity to statistical fluctuations. The uncertainty is obtained by fitting a zeroth-order polynomial to the significant p_T-dependent relative uncertainties.

The systematic uncertainties are evaluated (if applicable) for each particle species, $v_n(p_T)$ and centrality intervals. A quadratic sum of the systematic uncertainties from the independent sources is reported as final systematic uncertainty on the measurements. An overview of the magnitude of the relative systematic uncertainties per particle species is given in tables 1, 2, and 3 for v_2, v_3, and v_4, respectively.

Event selection. The nominal event selection criteria and centrality determination are discussed in section 2.1. Event selection criteria are varied by (i) changing the default centrality estimator from energy deposition in the V0 scintillator to either an estimate based on the number of hits in the first or second layer of the ITS; (ii) performing the v_n analysis of π^\pm, K^\pm, and $p+\bar{p}$ in 1% wide centrality intervals to test the effect of multiplicity fluctuations (a test not possible for K^0_S, $\Lambda+\bar{\Lambda}$ v_3); (iii) not rejecting events with tracks caused by pileup or imposing a stricter than default pileup rejection by requiring a tighter correlation between the V0 and central barrel multiplicities; (iv) requiring the reconstructed primary vertex of a collision to lie alternatively within $\pm 12 \text{ cm}$ and $\pm 5 \text{ cm}$ from the nominal interaction point along the beam axis; (v) analyzing events recorded under different magnetic field polarities independently; (v) analyzing events recorded at different collision rates independently.

Charged particle tracking. The nominal charged particle track selection criteria are outlined in section 2.1. Charged particle track selection criteria are varied by (i) requiring the third layer of the ITS to be part of the track reconstruction rather than the first two layers only; (ii) using only tracks that have at least three hits per track in the ITS, complemented by tracks without hits in the first two layers of the ITS (in which case the primary interaction vertex is used as an additional constraint for the momentum determination); (iii) changing the requirement on the minimum number of TPC space points that are used in the reconstruction from 70 to 60, 80, and 90; (iv) an additional systematic uncertainty is evaluated combining the following checks of the track quality: rejecting tracks that are reconstructed close to the sector boundaries of the TPC to which the sensitive pad rows do not extend, varying the minimum number of crossed TPC pad rows from 70 to 120, and requesting at least 90% instead of 80% of the expected TPC space points to reconstruct a track. Variations (i) and (ii) are referred to as *tracking mode* in tables 1, 2, and 3.

Particle identification. The nominal particle identification approach for π^\pm, K^\pm, and $p+\bar{p}$ is outlined in section 2.2. Particle identification criteria are varied by (i) changing the minimum number of clusters in the TPC that are used to estimate the dE/dx from 70 to 60, 80, and 90; (ii) rejecting tracks that satisfy the particle identification criterion for
<table>
<thead>
<tr>
<th>Error source</th>
<th>π^\pm</th>
<th>K^\pm</th>
<th>p+p</th>
<th>K^0_S</th>
<th>$\Lambda+\bar{\Lambda}$</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex position</td>
<td>0–1%</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–4%</td>
<td>1–6%</td>
</tr>
<tr>
<td>1% wide centrality intervals</td>
<td>0–3%</td>
<td>0–4%</td>
<td>0–4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrality estimator</td>
<td>0–3%</td>
<td>0–2%</td>
<td>0–3%</td>
<td>0–4%</td>
<td>0–5%</td>
<td>1–5%</td>
</tr>
<tr>
<td>Magnetic field polarity</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–3%</td>
<td>0–3%</td>
<td>1–3%</td>
</tr>
<tr>
<td>Interaction rate</td>
<td>0–2%</td>
<td>0–1%</td>
<td>1–2%</td>
<td>negl</td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>Pileup rejection</td>
<td>0–1%</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–1%</td>
</tr>
<tr>
<td>Tracking mode</td>
<td>0–4%</td>
<td>0–8%</td>
<td>0–10%</td>
<td></td>
<td></td>
<td>0–5%</td>
</tr>
<tr>
<td>Number of TPC space points</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–4%</td>
<td>0–2%</td>
<td>negl</td>
</tr>
<tr>
<td>Track quality</td>
<td>0–3%</td>
<td>0–2%</td>
<td>0–3%</td>
<td>0–4%</td>
<td>0–3%</td>
<td>negl</td>
</tr>
<tr>
<td>Particle identification purity</td>
<td>0–5%</td>
<td>0–7%</td>
<td>0–5%</td>
<td>0–3%</td>
<td>0–8%</td>
<td>0–6%</td>
</tr>
<tr>
<td>Number of TPC clusters used for dE/dx</td>
<td>0–6%</td>
<td>0–5%</td>
<td>0–5%</td>
<td>0–5%</td>
<td>0%</td>
<td>negl</td>
</tr>
<tr>
<td>Exclusive particle identification</td>
<td>0–2%</td>
<td>0–3%</td>
<td>0–3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decay vertex (radial position)</td>
<td>0–10%</td>
<td>0–11%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armenteros-Podolanski variables</td>
<td>0–2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCA decay products to primary vertex</td>
<td>0–3%</td>
<td>0–5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCA between decay products</td>
<td>0–2%</td>
<td>0–7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pointing angle $\cos \theta_p$</td>
<td>0–4%</td>
<td>0–9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum p_T of daughter tracks</td>
<td>0–4%</td>
<td>0–5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak shape</td>
<td>negl</td>
<td>negl</td>
<td></td>
<td>negl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual background in yield</td>
<td>negl</td>
<td>negl</td>
<td></td>
<td>negl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event mixing</td>
<td>negl</td>
<td>negl</td>
<td></td>
<td>negl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive and negative rapidities</td>
<td>0–3%</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–4%</td>
<td>0–7%</td>
<td>negl</td>
</tr>
<tr>
<td>Opposite charges</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel removal from V0A</td>
<td>0–5%</td>
<td>0–5%</td>
<td>0–8%</td>
<td>0–3%</td>
<td>0–5%</td>
<td>0–4%</td>
</tr>
<tr>
<td>v_n from V0A or V0C</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–2%</td>
<td>negl</td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>v_n^{bg} parametrization</td>
<td>negl</td>
<td>negl</td>
<td></td>
<td>negl</td>
<td></td>
<td>negl</td>
</tr>
<tr>
<td>v_n^{tot} fit ranges</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Summary of systematic uncertainties for the v_2 of π^\pm, K^\pm, p+\overline{p}$, $\Lambda+\bar{\Lambda}$, K^0_S, and the ϕ-meson. The uncertainties depend on p_T and centrality range; minimum and maximum values are listed here. Empty fields indicate that a given check does not apply to the particle of interest. If an uncertainty has been tested but cannot be resolved within statistical precision, the field is marked negl for negligible. Horizontal lines are used to separate the different categories of systematic uncertainties as explained in section 3.

more than one particle species simultaneously for $p_T < 4$ GeV/c; (iii) varying the particle identification criterion from $n\sigma_{PID} < 3$ to $n\sigma_{PID} < 1$, $n\sigma_{PID} < 2$, and $n\sigma_{PID} < 4$; (iv) varying the $n\sigma_{TPC}$ ranges that are used for particle identification for $p_T > 4$ GeV/c.

The V0 finding and ϕ-meson reconstruction. The nominal V0 finding strategy is described in section 2.3. The V0 finding criteria fall into two categories: topological requirements on the V0s themselves, and selection imposed on their daughter tracks. These criteria are varied by (i) requiring a minimum p_T of the V0 daughter tracks of 0.2 GeV/c;
<table>
<thead>
<tr>
<th>Error source</th>
<th>(\pi^\pm)</th>
<th>K(^\pm)</th>
<th>p+(\bar{p})</th>
<th>K(^0)</th>
<th>(\Lambda+\bar{\Lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex position</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–3%</td>
<td>0–9%</td>
</tr>
<tr>
<td>1% wide centrality intervals</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrality estimator</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–4%</td>
<td>0–9%</td>
</tr>
<tr>
<td>Magnetic field polarity</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–3%</td>
<td>0–3%</td>
<td>0–3%</td>
</tr>
<tr>
<td>Interaction rate</td>
<td>1–2%</td>
<td>1–2%</td>
<td>1–3%</td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>Pileup rejection</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–3%</td>
<td>0–1%</td>
<td>0–2%</td>
</tr>
<tr>
<td>Tracking mode</td>
<td>0–3%</td>
<td>1–5%</td>
<td>0–10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of TPC space points</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–5%</td>
<td>0–3%</td>
<td>0–6%</td>
</tr>
<tr>
<td>Track quality</td>
<td>1–3%</td>
<td>1–2%</td>
<td>1–3%</td>
<td>0–3%</td>
<td>0–6%</td>
</tr>
<tr>
<td>Particle identification purity</td>
<td>0–4%</td>
<td>1–3%</td>
<td>0–10%</td>
<td>0–4%</td>
<td>0–4%</td>
</tr>
<tr>
<td>Number of TPC clusters used for (dE/dx)</td>
<td>0–5%</td>
<td>0–5%</td>
<td>0–5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exclusive particle identification</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decay vertex (radial position)</td>
<td></td>
<td></td>
<td></td>
<td>0–9%</td>
<td>0–11%</td>
</tr>
<tr>
<td>Armenteros-Podolanski variables</td>
<td></td>
<td></td>
<td></td>
<td>0–4%</td>
<td></td>
</tr>
<tr>
<td>DCA decay products to primary vertex</td>
<td></td>
<td></td>
<td></td>
<td>0–3%</td>
<td>0–5%</td>
</tr>
<tr>
<td>DCA between decay products</td>
<td></td>
<td></td>
<td></td>
<td>0–5%</td>
<td>0–8%</td>
</tr>
<tr>
<td>Pointing angle (\cos \theta_p)</td>
<td></td>
<td></td>
<td></td>
<td>0–5%</td>
<td>0–1%</td>
</tr>
<tr>
<td>Minimum (p_T) of daughter tracks</td>
<td></td>
<td></td>
<td></td>
<td>0–4%</td>
<td>negl</td>
</tr>
<tr>
<td>Peak shape</td>
<td></td>
<td></td>
<td></td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>Residual background in yield</td>
<td></td>
<td></td>
<td></td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>Positive and negative rapidities</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–3%</td>
<td>0–5%</td>
<td>0–4%</td>
</tr>
<tr>
<td>Opposite charges</td>
<td>0–2%</td>
<td>0–2%</td>
<td>0–2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nu_n) from V0A or V0C</td>
<td>0–2%</td>
<td>0–1%</td>
<td>0–2%</td>
<td>0–4%</td>
<td>0–3%</td>
</tr>
<tr>
<td>Channel removal from V0A</td>
<td>0–8%</td>
<td>1–8%</td>
<td>1–8%</td>
<td>0–4%</td>
<td>0–5%</td>
</tr>
<tr>
<td>(\nu_n^{bg}) parametrization</td>
<td></td>
<td></td>
<td></td>
<td>negl</td>
<td>negl</td>
</tr>
<tr>
<td>(\nu_n^{tot}) fit ranges</td>
<td></td>
<td></td>
<td></td>
<td>0–2%</td>
<td>0–2%</td>
</tr>
</tbody>
</table>

Table 2. Summary of systematic uncertainties for the \(\nu_3\) of \(\pi^\pm\), K\(^\pm\), p+\(\bar{p}\), \(\Lambda+\bar{\Lambda}\), and K\(^0\). The uncertainties depend on \(p_T\) and centrality range; minimum and maximum values are listed here. Empty fields indicate that a given check does not apply to the particle of interest. If an uncertainty has been tested but cannot be resolved within statistical precision, the field is marked negl for negligible. Horizontal lines are used to separate the different categories of systematic uncertainties as explained in section 3.

(ii) changing the requirement on the minimum number of TPC space points that are used in the reconstruction of the V\(^0\) daughter tracks form 70 to 60 and 80; (iii) varying the minimum number of TPC padrows crossed by the V\(^0\) daughter tracks from 70 to 60 and 80; (iv) requesting at least 90% or 70% instead of 80% of the expected TPC space points to reconstruct the V\(^0\) daughter tracks; (v) changing the maximum DCA of the V\(^0\) daughter tracks to the secondary vertex from 0.5 cm to 0.3 cm and 0.7 cm; (vi) changing the minimum DCA of the V\(^0\) daughter tracks to the primary vertex from 0.1 cm to 0.05 cm.
Table 3. Summary of systematic uncertainties for the v_4 of π^\pm, K^\pm, and p+p. The uncertainties depend on p_T and centrality range; minimum and maximum values are listed here. Horizontal lines are used to separate the different categories of systematic uncertainties as explained in section 3.

and 0.3 cm; (vii) varying the number of clusters in the TPC that are used to estimate the dE/dx of the V^0 daughter tracks from 70 to 60 and 90; (viii) varying the particle identification criterion of the V^0 daughter tracks from $|n_{\sigma_{TPC}}| < 3$ to $|n_{\sigma_{TPC}}| < 1$ and $|n_{\sigma_{TPC}}| < 4$; (ix) changing the minimum value of the $\cos \theta_p$ from 0.998 to 0.98; (x) varying the minimum radial distance to the primary vertex at which the V^0 can be produced from 5 cm to 1 cm and 15 cm; (xi) varying the maximum radial distance to the beam pipe at which the V^0 can be produced from 100 cm to 50 cm and 150 cm; (xii) the contamination from Λ^{+}/Λ^{-} decays and γ-conversions to the K^0_S sample is checked by only selecting V^0 daughter tracks with a dE/dx value 2 σ away from the expected electron dE/dx, effectively excluding electrons, and limiting the value of the Armenteros-Podolanski variables α and q.

The yield extraction, as explained in section 2.3 for the K^0_S and Λ^{+}/Λ^{-}, and section 2.4 for the ϕ-meson, is varied by: (i) using a third-order polynomial as parametrization of residual background in the invariant mass spectra; (ii) using for the ϕ-meson a Voigtian distribution (a convolution of a Gaussian distribution and Breit-Wigner distribution, where the width of the Breit-Wigner distribution is set to the natural width of the ϕ-meson, allowing for the Gaussian distribution to describe the smearing of the ϕ-meson width due to the detector resolution) for the parametrization of the ϕ-meson invariant mass yield; using for the K^0_S and Λ^{+}/Λ^{-} a sum of two Gaussian distributions with the same mean for the parametrization of the K^0_S, Λ^{+}/Λ^{-} invariant mass yield; (iii, for the ϕ-meson only) using the yield of like-sign kaon pairs, in which two kaons with equal charge from the same event are used as candidate, for background yield description instead of event mixing.
Figure 2. (Colour online) Centrality dependence of \(v_2(p_T)\) for \(\pi^\pm, K^\pm, p+\bar{p}, \Lambda+\bar{\Lambda}, K_S^0,\) and the \(\phi\)-meson. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

Extraction of the \(v_n(p_T)\). The nominal approach of measuring \(v_n(p_T)\) is outlined in section 2.5, and is varied by: (i) performing flow analysis for \(\pi^\pm, K^\pm,\) and \(p+\bar{p}\) for positive and negative charges independently; (ii) performing flow analysis for positive and negative rapidities independently; (iii) performing flow analysis for \(\pi^\pm, K^\pm,\) and \(p+\bar{p}\) in 1% centrality intervals and merging the result rather than measuring in wider centrality intervals directly; (iv) suppressing the signal from a specific V0A channel in the evaluation of the \(Q_n\)-vector (see eq. (2.2)), which, on average, measures a lower energy deposition with respect to the ones reported by the other channels from the same ring; (v) performing flow analysis with the \(Q_n\)-vector calculated from the V0A or V0C separately; (vi) testing various \(M_{d+d^-}\) intervals over which \(v_n^{bg}(M_{d+d^-})\) is fitted; (vii) testing the assumption made on \(v_n^{bg}\) by changing the parametrization from a second-order polynomial to a first-order polynomial function.

4 Results and discussion

The flow coefficients \(v_2, v_3,\) and \(v_4\) of identified particles are presented for various centrality classes in section 4.1; scaling properties are discussed in section 4.2. Comparisons to various model calculations, studies on the shape evolution of \(v_n(p_T)\) with centrality, and comparisons to \(v_n\) measured at \(\sqrt{s_{NN}} = 2.76\) TeV are shown in sections 4.3, 4.4, and 4.5, respectively.

4.1 Centrality and \(p_T\) dependence of flow coefficients

Figure 2 shows the \(v_2(p_T)\) of \(\pi^\pm, K^\pm, p+\bar{p}, \Lambda+\bar{\Lambda}, K_S^0,\) and the \(\phi\)-meson for various centrality classes in the range 0–70%. For the \(\pi^\pm, K^\pm\) and \(p+\bar{p}\), measurements performed in ultracentral collisions (0–1%) are also presented. For the \(\phi\)-meson, the results are reported in the 5–60% centrality range, where \(v_2\) can be measured accurately. The magnitude of \(v_2\) increases strongly with decreasing centrality up to the 40–50% centrality interval for all particle species. This evolution is expected, since the eccentricity of the overlap zone of the
colliding nuclei increases for peripheral collisions and \(v_2 \) scales approximately linearly with eccentricity \[77\]. For more peripheral collisions (i.e. 50–60% and 60–70%), the value of \(v_2 \) is smaller than in the previous centrality intervals for all particle species except the \(\phi \)-meson. This suggests that the system has a shorter lifetime in more peripheral collisions, which does not allow for the generation of large \(v_2 \) \[78\]. Furthermore, the reduced contribution of eccentricity fluctuations and hadronic interactions might play an important role in these centrality ranges \[79\]. A non-zero, positive \(v_2 \) is found in the 0–1% centrality interval for \(p_T < 6 \text{ GeV}/c \) for \(\pi^\pm \), \(K^\pm \), and \(p+p \), which mostly reflects the contribution from event-by-event fluctuations in the initial nucleon and gluon density as the system shape is almost spherical at vanishing impact parameter.

The third-order flow coefficient \(v_3 \) is generated by inhomogeneities in the initial nucleon and gluon density and not by the collision geometry \[12–15\], while \(v_4 \) arises from initial collision geometry, fluctuations, and the non-linear hydrodynamic response of the medium \[16, 17\]. Higher-order flow harmonics are more sensitive to transport coefficients than \(v_2 \) \[15\], as the dampening effect of \(\eta/s \) leads to a stronger decrease of these coefficients \[18, 19\]. Figures 3 and 4 present the \(v_3(p_T) \) of \(\pi^\pm \), \(K^\pm \), \(p+p \), \(\Lambda+\bar{\Lambda} \), and \(K_S^0 \) and
$v_4(p_T)$ of π^\pm, K^\pm, and p+\bar{p} for various centrality classes in the 0-50\% range. Statistical precision limits extending the v_4 measurement to more peripheral collisions or carrying it out for $\Lambda+\bar{\Lambda}$, K0, and the ϕ-meson. Non-zero, positive v_2 and v_4 are observed for particle species throughout the entire p_T ranges up to $\approx 8 \text{ GeV}/c$. Unlike v_2, the coefficients v_3 and v_4 increase weakly from ultra-central to peripheral collisions. This observation illustrates that higher-order flow coefficients are mainly generated by event-by-event fluctuations in the initial nucleon and gluon density.

All flow coefficients increase monotonically with increasing p_T up to 3–4 GeV/c where a maximum is reached. The position of this maximum depends on centrality and particle species as it takes place at higher p_T for heavier particles for various centrality classes. This behaviour can be explained by the centrality dependence of radial flow combined with the parton density, which will be detailed in section 4.4.

Figure 5 presents the evolution of $v_n(p_T)$ of different particle species for various centrality classes. In the most central collisions, initial nucleon-density fluctuations are expected to be the main contributor to the generation of v_n. For the 0–1\% centrality interval, v_3 is the dominant flow coefficient for $1.5 < p_T < 6.0 \text{ GeV}/c$, $2.0 < p_T < 4 \text{ GeV}/c$, and $2.5 < p_T < 6 \text{ GeV}/c$ for π^\pm, K^\pm, and p+\bar{p}, respectively. Furthermore, v_4 becomes equal to v_2 at $p_T \approx 2.0 \text{ GeV}/c (2.2, 2.5)$ for π^\pm (K^\pm, p+\bar{p}), after which it increases gradually and reaches a magnitude similar to v_3 at around 3.5 GeV/c. A similar trend is observed in the 0–5\% centrality class for all particle species. However, the crossing between flow coefficients (the p_T value at which they reach a similar magnitude), which also depends on the particle mass, takes place at different p_T values than for the 0–1\% centrality interval. This dependence of the crossing between different flow coefficients can be attributed to the interplay of elliptic, triangular, and quadrangular flow with radial flow. Upwards of 5\% collision centrality, v_2 is larger than v_3 and v_4, confirming the hypothesis that collision geometry dominates the generation of flow coefficients.

Figure 6 shows the $v_2(p_T)$ of π^\pm, K^\pm, p+\bar{p}, $\Lambda+\bar{\Lambda}$, K0, and the ϕ-meson in a given centrality interval arranged into panels of various centrality classes, which allows for further illustration of the interplay between elliptic and radial flow. For $p_T < 2–3 \text{ GeV}/c$, v_2 of the different particle species is mass-ordered, meaning that lighter particles have a larger v_2 than heavier particles at the same p_T. This behaviour is indicative of strong radial flow which imposes an equal, isotropic velocity boost to all particles in addition to the anisotropic expansion of the medium [20–22]. For $3 < p_T < 8–10 \text{ GeV}/c$, particles are grouped according to their number of constituent quarks, which supports the hypothesis of particle production via quark coalescence [34]. Particle type scaling and mass ordering are most directly tested by the ϕ-meson v_2, as its mass is close to the proton mass. Figure 6 demonstrates that the ϕ-meson v_2 follows proton v_2 at low p_T, but pion v_2 at intermediate p_T in all centrality classes. The crossing between meson and baryon v_2, which depends on the particle species, happens at higher p_T values for central than peripheral collisions as a result of the larger radial flow in the former. Lastly, it is seen that the v_2 of baryons is higher than that of mesons up to $p_T \approx 10 \text{ GeV}/c$, indicating that particle type dependence of v_2 persists up to high p_T. For $p_T > 10 \text{ GeV}/c$, where v_2 depends only weakly on transverse momentum, the magnitude of p+\bar{p} v_2 is compatible with that for
Figure 5. (Colour online) The evolution of $v_n(p_T)$ of π^\pm, K^\pm, $p+\bar{p}$, $\Lambda+\bar{\Lambda}$, and K^0_S for various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.
Figure 6. (Colour online) The \(p_T \)-differential \(v_2 \) of \(\pi^\pm \), \(K^\pm \), \(p+\bar{p} \), \(\Lambda+\bar{\Lambda} \), \(K^0 \), and the \(\phi \)-meson for various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

\[\pi^\pm \] within statistical and systematic uncertainties. Furthermore, the nuclear modification factor in this high \(p_T \) region is found to be the same for the two particle species within uncertainties [80].

Figures 7 and 8 present the \(v_3(p_T) \) and \(v_4(p_T) \) for different particle species in a given centrality interval. Both \(v_3 \) and \(v_4 \) show a clear mass ordering at \(p_T < 2-3 \text{ GeV/c} \), confirming the interplay between triangular and quadrangular flow and radial flow. For \(3 < p_T < 8 \text{ GeV/c} \), particles are grouped into mesons and baryons and, analogous to the trend of \(v_2 \) in this \(p_T \) region, the flow of baryons is larger than that of mesons. The crossing between meson and baryon \(v_3 \) and \(v_4 \) also exhibits a centrality and particle mass dependence.

Figures 6 and 7 also show a comparison between \(K^+ \) and \(K^0 \) \(v_2 \) and \(v_3 \) as a function of \(p_T \) for various centrality classes. A difference in \(v_n(p_T) \) is found between the \(K^\pm \) and \(K^0 \) measurements: the magnitude of \(K^0 \) \(v_n \) is systematically smaller than the magnitude of \(K^\pm \) \(v_n \). This difference in \(v_n \) exhibits no \(p_T \) dependence, but changes with centrality for \(v_2 \). For \(0.8 < p_T < 4.0 \text{ GeV/c} \), the difference in \(v_2 \) ranges from \(7\% \pm 3.5\% \text{(syst)} \pm 0.7\% \text{(stat)} \) in the most central collisions to \(1.5\% \pm 1.5\% \text{(syst)} \pm 0.4\% \text{(stat)} \) in peripheral collisions. In the same kinematic range, a deviation in \(v_3 \) of \(6.5\% \pm 5\% \text{(syst)} \pm 1.7\% \text{(stat)} \) is found in the most central collisions and of \(6\% \pm 4.5\% \text{(syst)} \pm 1\% \text{(stat)} \) in peripheral collisions. This difference is similar in magnitude and centrality dependence as the one reported by ALICE in Pb-Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \) in [27].
4.2 Scaling properties

To test the hypothesis of particle production via quark coalescence [34], which would lead to a grouping of v_n of mesons and baryons at intermediate p_T, both v_n and p_T are divided by the number of constituent quarks (n_q) independently for each particle species. The v_2/n_q, v_3/n_q, and v_4/n_q of π^\pm, K^\pm, $p+p$, $\Lambda+\bar{\Lambda}$, K_0^0, and the ϕ-meson, plotted as a function of p_T/n_q, are reported in figures 9, 10, and 11 for various centrality classes.

For $p_T/n_q > 1$ GeV/c, the scaling is only approximate. To quantify the degree to which the measurements deviate from the n_q scaling, the p_T/n_q dependence of v_n/n_q has been divided by a cubic spline fit to the $p+\bar{p}$ v_n/n_q. In the region where quark coalescence is hypothesized to be the dominant process ($1 < p_T/n_q < 3$ GeV/c) [34, 81], a deviation from the exact scaling of $\pm 20\%$ is found for v_2 for central collisions, which decreases to $\pm 15\%$ for the most peripheral collisions. For higher harmonics, a $\pm 20\%$ deviation is found for all centrality classes. This deviation is in agreement with earlier observations [27, 28, 32].
Figure 9. (Colour online) The p_T/n_q dependence of v_2/n_q of π^\pm, K^\pm, $p+p$, $\Lambda+\bar{\Lambda}$, K_0^0, and the ϕ-meson for various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

Figure 10. (Colour online) The p_T/n_q dependence of v_3/n_q of π^\pm, K^\pm, $p+p$, $\Lambda+\bar{\Lambda}$, and K_0^0 for various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.
Figure 11. (Colour online) The p_T/n_q dependence of v_4/n_q of π^\pm, K^\pm, and $p+\bar{p}$ for various centrality classes. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

4.3 Comparison with model calculations

To test the validity of the hydrodynamic description of the QGP evolution, the v_n measurements in the 0–5%, 10–20% and 40–50% centrality intervals are compared to hydrodynamical calculations in figures 12, 13, and 14 for π^\pm, K^\pm, and $p+\bar{p}$, respectively. Predictions from MUSIC [82] and iEBE-VISHNU [83] simulations are depicted by the different coloured curves. The first calculation is based on MUSIC [84], an event-by-event 3+1 dimensional viscous hydrodynamic model, coupled to a hadronic cascade model (UrQMD) [85, 86], which allows the influence of the hadronic phase on the anisotropic flow to be studied for different particle species. The IP-Glasma model [87, 88] is used to simulate the initial conditions of the collision. MUSIC uses a starting time for the hydrodynamic evolution of $\tau_0 = 0.4 \text{ fm}/c$, a switching temperature between the macroscopic hydrodynamic description and the microscopic transport evolution of $T_{sw} = 145 \text{ MeV}$, a value of $\eta/s = 0.095$, and a temperature dependent ζ/s. The second calculation employs the iEBE-VISHNU hybrid model [89], which is an event-by-event version of the VISHNU hybrid model [90], and couples 2+1 dimensional viscous hydrodynamics VISH2+1 [78] to UrQMD. The TRENTo [91] and AMPT [92] models are used to describe the initial conditions. For both configurations, $\tau_0 = 0.6 \text{ fm}/c$ and $T_{sw} = 148 \text{ MeV}$ are set from [93], where these values have been obtained utilizing Bayesian statistics from a simultaneous fit of final charged-particle density, mean transverse momentum, and integrated flow coefficients v_n in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$. The temperature-dependent η/s and ζ/s extracted in [93] are used for TRENTo initial conditions, while $\eta/s = 0.08$ and $\zeta/s = 0$ are taken for AMPT.

Figures 12, 13, and 14 show that the hydrodynamical calculations qualitatively reproduce the v_n measurements. The differences between the data points and models are visualized in figures 12, 13, and 14 as the ratios of the measured v_n to a fit to the theoretical calculations. The iEBE-VISHNU calculations using AMPT initial conditions describe the p_T-differential v_n of π^\pm, K^\pm, and $p+\bar{p}$ more accurately than TRENTo based and MUSIC calculations for $p_T > 1 \text{ GeV}/c$. Using AMPT initial conditions, there is good agreement
Figure 12. (Colour online) The p_T-differential v_2 (top), v_3 (middle), and v_4 (bottom) of π^\pm for the 0–5%, 10–20%, and 40–50% centrality classes compared to hydrodynamical calculations from MUSIC model using IP-Glasma initial conditions (magenta) [82] and the iEBE-VISHNU hybrid model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic uncertainties of the data points are shown as bars and boxes, respectively. The uncertainties of the hydrodynamical calculations are depicted by the thickness of the curves. The ratios of the measured v_n to a fit to the hydrodynamical calculations are also presented for clarity.

between π^\pm and K$^\pm$ v_n and iEBE-VISHNU calculations for $p_T < 2$ GeV/c, while p+\bar{p} v_n is described fairly well up to $p_T = 3$ GeV/c. The TRENTo based predictions follow π^\pm and K$^\pm$ v_n up to slightly lower transverse momenta ($p_T < 1–2$ GeV/c) and to $p_T < 3$ GeV/c for p+\bar{p}, depending on the considered centrality interval. The MUSIC calculations are in agreement with the measured v_n for $p_T < 1$ GeV/c in central collisions, however they overestimate v_2 at lower p_T in more peripheral collisions.

4.4 Shape evolution of $v_n(p_T)$ as function of centrality

The evolution of the shape of $v_n(p_T)$ as function of centrality is quantified by taking the ratio of $v_n(p_T)$ in a given centrality interval to the $v_n(p_T)$ measured in the 20–30% centrality interval

$$v_n(p_T)_{\text{ratio to 20–30%}} = \frac{v_n(p_T)}{v_n(p_T)_{20–30%}} \frac{v_n|_{20–30%}}{v_n|_{20–30%}}, \quad (4.1)$$

where the second fraction on the right-hand side of the equation serves as a normalization factor which is constructed from the p_T-integrated v_n values obtained in the 20–30% centrality interval ($v_n|_{20–30%}$) and the centrality interval of interest (v_n). Centrality-dependent
Figure 13. (Colour online) The p_T-differential v_2 (top), v_3 (middle), and v_4 (bottom) of K^\pm for the 0–5%, 10–20%, and 40–50% centrality classes compared to hydrodynamical calculations from MUSIC model using IP-Glasma initial conditions (magenta) [82] and the iEBE-VISHNU hybrid model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic uncertainties of the data points are shown as bars and boxes, respectively. The uncertainties of the hydrodynamical calculations are depicted by the thickness of the curves. The ratios of the measured v_n to a fit to the hydrodynamical calculations are also presented for clarity.

variations in the shape of $v_n(p_T)$ will present themselves as deviations from unity of the observed $v_n(p_T)/\text{ratio}$ to 20–30%.

The shape evolution of elliptic and triangular flow is shown in figures 15 and 16 for π^\pm, K^\pm, $p+p$, and inclusive charged particles (the latter taken from [44]). For inclusive charged particles, variations in shape of about 10% are observed for $p_T < 3$ GeV/c, which increase to about 30% for $p_T < 6$ GeV/c. The shape evolution of $v_2(p_T)$ shows different trends for π^\pm, K^\pm, and $p+p$. While $\pi^\pm v_2(p_T)/\text{ratio}$ to 20–30% follows inclusive charged particle over the considered p_T range, the elliptic flow of $p+p$ (K^\pm) varies between 20% (10%) to 250% (55%) at low p_T from most central to peripheral collisions. The variations are more pronounced for $v_3(p_T)$, in particular for central collisions. The mass dependence found in the shape evolution of both v_2 and v_3 for $p_T < 4$ GeV/c can be attributed to variations of the magnitude of radial flow and quark density, both being larger for central than peripheral collisions. Radial flow has a stronger effect on the v_n of heavier particles than that of lighter particles at low p_T, while the quark density influences the peak value of $v_n(p_T)$ in the coalescence model picture [35, 36, 94]. For $p_T > 4$ GeV/c, the shape evolution shows little (if any) particle type dependence.
Figure 14. (Colour online) The p_T-differential v_2 (top), v_3 (middle), and v_4 (bottom) of $p+p$ for the 0–5%, 10–20%, and 40–50% centrality classes compared to hydrodynamical calculations from MUSIC model using IP-Glasma initial conditions (magenta) [82] and the iEBE-VISHNU hybrid model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic uncertainties of the data points are shown as bars and boxes, respectively. The uncertainties of the hydrodynamical calculations are depicted by the thickness of the curves. The ratios of the measured v_n to a fit to the hydrodynamical calculations are also presented for clarity.

The shape evolution of $v_2(p_T)$ for π^\pm, K^\pm, and $p+\bar{p}$ is compared to calculations from the MUSIC and iEBE-VISHNU hybrid models in figure 17. Both models describe the shape evolution for $p+p$ over the p_T range $0.7 < p_T < 3\text{ GeV}/c$. The iEBE-VISHNU model reproduces the shape evolution for π^\pm and K^\pm for $p_T < 1.5\text{ GeV}/c$. Calculations from the MUSIC model deviate strongly from the observed shape evolution for π^\pm and K^\pm in peripheral collisions.

As quark density depends on centrality, the maximum v_n is expected to be found at higher p_T in more central collisions. To further quantify this aspect of the shape evolution of $v_n(p_T)$, the p_T of π^\pm, $p+\bar{p}$, $\Lambda+\bar{\Lambda}$, and K^0_S where $v_2(p_T)$ and $v_3(p_T)$ reach a maximum, divided by number of constituent quarks n_q, is reported in figure 18 as a function of centrality. The ϕ-meson and K^\pm are not included since the kinematic range and granularity of the measurements do not allow for a reliable extraction of a maximum. The left panel of figure 18 shows that the p_T/n_q at which $v_2(p_T)$ reaches a maximum, denoted as $p_T|v_2|^\text{max}/n_q$, decreases with increasing centrality percentile for collision centralities larger than 5–10%, following the expectations from the hypothesis of hadronization.
Figure 15. (Colour online) Centrality dependence of $v_2(p_T)$ ratio to $20-30\%$ for π^\pm, K^\pm, $p+\bar{p}$, and inclusive charged particles [44]. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

Figure 16. (Colour online) Centrality dependence of $v_3(p_T)$ ratio to $20-30\%$ for π^\pm, K^\pm, $p+\bar{p}$, and inclusive charged particles [44]. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

through coalescence. The systematic uncertainties as presented in figure 18 have been evaluated directly on $p_T|n_{\text{max}}/n_q$ to accurately take into account that some systematic uncertainties can be point-by-point correlated in p_T. In the $0\text{–}5\%$ centrality interval, there is a hint of a lower $p_T|n_{\text{max}}/n_q$ than in the $5\text{–}10\%$ centrality class for all particle species. The observed $p_T|v_{2\text{max}}/n_q$ is compatible among all particle species with the exception of the
Figure 17. (Colour online) Centrality dependence of $v_2(p_T)_{\text{ratio}}$ to 20–30% for π^\pm (upper panels), K^\pm (middle panels), and $p+\bar{p}$ (lower panels) compared to hydrodynamical calculations from the MUSIC model using IP-Glasma initial conditions (magenta) [82], the iEBE-VISHNU hybrid model using AMPT (orange) or TRENTo (cyan) initial conditions [83]. Statistical and systematic uncertainties of the data points are shown as bars and boxes, respectively.

Figure 18. (Colour online) Centrality dependence of $p_T|v_{2\text{max}}/n_q$ (left) and $p_T|v_{3\text{max}}/n_q$ (right) divided by number of constituent quarks, n_q, for π^\pm, $p+\bar{p}$, $\Lambda+\bar{\Lambda}$, and K_0^\pm. Points are slightly shifted along the horizontal axis for better visibility in both panels. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

$p+\bar{p}$ $p_T|v_{2\text{max}}/n_q$, which is slightly lower in the 0–20% centrality range. The right panel of figure 18 presents $p_T|v_{3\text{max}}/n_q$, which shows, within the large uncertainties, a weak (if any) centrality dependence for π^\pm and K_0^\pm and no centrality dependence for $p+\bar{p}$ and $\Lambda+\bar{\Lambda}$. The $p_T|v_{3\text{max}}/n_q$ is the same for the different particle species within uncertainties.
In the scenario of ideal hydrodynamics, \(v_n \) is a power law function of the radial expansion velocity of the medium [95, 96] so that \(v_n \propto p_{T}^{n} \) up to \(p_{T} \sim M \) for particles with mass \(M \). Figure 19 shows \(|v_n|^{1/n}/p_T \) as function of \(p_T \) for \(n = 2 \) and \(n = 3 \) in various centrality intervals for inclusive charged particles [44], \(\pi^{\pm}, K^{\pm}, p+\overline{p}, \Lambda+\overline{\Lambda}, K_0^0 \), and the \(\phi \)-meson (\(n = 2 \) only). When \(v_n \propto p_{T}^{n} \), the observable \(|v_n|^{1/n}/p_T \) should be a constant. For \(\pi^{\pm} \) and the inclusive charged particles, the \(v_n \propto p_{T}^{n} \) scaling is broken both for \(v_2 \) and \(v_3 \) for all centrality intervals, as is also hypothesized in [97]. It should be noted however that the kinematic constraints imposed on the measurement preclude testing the scaling hypothesis in the full relevant momentum region. The scaling holds up to \(p_T \approx 1 \text{ GeV}/c \) for \(K^{\pm} \) and \(K_0^0 \), and up to \(p_T \approx 2 \text{ GeV}/c \) for \(p+\overline{p}, \Lambda+\overline{\Lambda} \), and the \(\phi \)-meson for the 0–5% and 10–20% centrality intervals. Similar qualitative observations are found in the three hydrodynamical calculations [82, 83].

If \(v_n \) indeed exhibits a power law dependence on \(p_{T}^{n} \), ratios of the form of \(v_n^{1/n}/v_m^{1/m} \) are \(p_{T} \)-independent. Previous measurements at RHIC [98, 99] and the LHC [100, 101] have shown that the ratios \(v_n^{1/n}/v_m^{1/m} \) show little to no \(p_{T} \) dependence up to about 6 GeV/c independent of the harmonic \(n \) and \(m \) for peripheral and semi-central collisions. However, a \(p_{T} \) dependence is observed for central collisions, which might be due to fluctuations in the initial geometry [99]. The ratios \(v_3/|v_2|^{3/2} \), \(v_4/|v_2|^{4/2} \), and \(v_4/|v_3|^{4/3} \), which probe the same scaling but are in practice more sensitive, are shown in figures 20, 21, and 22, respectively. For each figure, \(v_n/|v_m|^{n/m} \) is shown for inclusive charged particles [44], \(\pi^{\pm}, K^{\pm} \) and \(p+\overline{p} \) in various centrality intervals. For \(v_3/|v_2|^{3/2} \) and \(v_4/|v_2|^{4/2} \), no obvious \(p_{T} \) dependence is found for inclusive charged particles between 5–50% collision centrality. For the 0–5% centrality class, the ratios are flat for \(p_T < 3 \text{ GeV}/c \) and rise monotonically for higher momenta. No particle type dependence of the ratios is found for \(p_T > 1.5 \text{ GeV}/c \), below which the ratios for \(p+\overline{p} \) \(v_n \) rise. This rise of the \(p+\overline{p} \) \(v_n \) ratios can be attributed to an increase of radial flow which affects the independent harmonics differently. For the ratio

![Figure 19. (Colour online) Centrality dependence of \(|v_n|^{1/n}/p_T \) of inclusive charged particles [44], \(\pi^{\pm}, K^{\pm}, p+\overline{p}, \Lambda+\overline{\Lambda}, K_0^0 \), and the \(\phi \)-meson for \(n = 2 \) (upper panels) and \(n = 3 \) (lower panels). Statistical and systematic uncertainties are shown as bars and boxes, respectively.](image)
Figure 20. (Colour online) Centrality dependence of $v_3/|v_2|^{3/2}$ for inclusive charged particles [44], π^{\pm}, K^{\pm}, and $p+\bar{p}$. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

Figure 21. (Colour online) Centrality dependence of $v_4/|v_2|^{4/2}$ for inclusive charged particles [44], π^{\pm}, K^{\pm}, and $p+\bar{p}$. Statistical and systematic uncertainties are shown as bars and boxes, respectively.

$v_4/|v_3|^{4/3}$, no p_T dependence is observed over the full centrality range. Large statistical uncertainties do not allow conclusions to be drawn on the behaviour of $p+\bar{p}$ v_n in the $v_4/|v_3|^{4/3}$ ratio.

4.5 Comparison with v_n of identified particles at $\sqrt{s_{NN}} = 2.76$ TeV

The transport properties and initial condition models can be further constrained by studying the energy dependence of anisotropic flow. Figure 23 presents the $v_2(p_T)$, $v_3(p_T)$, and $v_4(p_T)$ of π^{\pm}, K^{\pm}, and $p+\bar{p}$ compared to ALICE measurements performed at $\sqrt{s_{NN}} = 2.76$ TeV [28].

The v_n coefficients at $\sqrt{s_{NN}} = 2.76$ TeV have been measured using the scalar product method, taking the particle of interest under study and the charged reference particles from different, non-overlapping pseudorapidity regions between $|\eta| < 0.8$. Assuming no
anisotropic flow in minimum bias pp collisions at the same collision energy, the non-flow contributions are estimated from minimum bias pp collisions and subtracted from the measured \(v_n \) coefficients. Ratios of the measurements presented in this paper to a cubic spline fit to the ones performed at \(\sqrt{s_{NN}} = 2.76 \) TeV are given in the figure for each presented centrality interval and flow coefficient. The uncertainties in these ratios are obtained by summing the statistical and systematic uncertainties on the independent measurements in quadrature, and propagating the obtained uncertainties as uncorrelated.

An increase of radial flow with increasing collision energy is expected to lead to a suppression of \(v_n \) at low \(p_T \), an effect which would be most pronounced for heavier particles. Although a possible suppression of \(p+\bar{p} \) \(v_n \) at \(\sqrt{s_{NN}} = 5.02 \) TeV can be seen between \(1 \lesssim p_T \lesssim 3 \) GeV/c in central collisions and additionally for \(v_2(p_T) \) of \(\pi^\pm \) and K\(^\pm \) at the same centrality interval, the precision of the results does not allow for conclusions to be drawn as the measurements at different collision energies are compatible within uncertainties.

Figure 24 shows the \(v_2(p_T) \) of \(\Lambda+\bar{\Lambda}, \ K_0^S \), and the \(\phi \)-meson compared to ALICE measurements performed at \(\sqrt{s_{NN}} = 2.76 \) TeV [27], where the \(v_2 \) coefficients at \(\sqrt{s_{NN}} = 2.76 \) TeV have been measured using the scalar product method with an \(|\Delta \eta| > 0.9 \) gap to suppress non-flow. No differences are observed between the \(K_0^S \) and \(\Lambda+\bar{\Lambda} \) \(v_2(p_T) \) measured at two different collision energies. The strongly improved precision of the \(\phi \)-meson measurement at \(\sqrt{s_{NN}} = 5.02 \) TeV, both in terms of statistical uncertainty and granularity in \(p_T \), shows that the \(v_2(p_T) \) follows a mass ordering at low \(p_T \) and groups with mesons after \(p_T \approx 3 \) GeV/c for all centrality intervals.

5 Summary

In summary, the elliptic, triangular, and quadrangular flow coefficients of \(\pi^\pm, K^\pm, p+\bar{p}, \Lambda+\bar{\Lambda}, K_0^S \), and the \(\phi \)-meson have been measured in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV over a broad range of transverse momentum and in various centrality ranges. The preci-
Figure 23. (Colour online) The p_T-differential v_2 (top), v_3 (middle), and v_4 (bottom) of π^\pm, K^\pm, and $p+p$ compared to ALICE measurements performed in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV (coloured bands) \cite{28} for the 0–5%, 10–20%, and 40–50% centrality classes. For the measurements at \(\sqrt{s_{NN}} = 5.02 \) TeV, statistical and systematic uncertainties are shown as bars and boxes, respectively. For the measurements at \(\sqrt{s_{NN}} = 2.76 \) TeV, the thickness of the bands corresponds to the quadratic sum of statistical and systematic uncertainties. The ratios of measurements at \(\sqrt{s_{NN}} = 5.02 \) TeV to a cubic spline fit to the measurements at \(\sqrt{s_{NN}} = 2.76 \) TeV are also presented for clarity.

The measurement of these measurements provide constraints for initial-state fluctuations and transport coefficients of the medium. The magnitude of v_n increases with decreasing centrality up to the 40–50% centrality interval for all particle species. This increase is stronger for v_2 than for v_3 and v_4, which indicates that collision geometry dominates the generation of elliptic flow while higher flow coefficients are mainly generated by event-by-event fluctuations in the initial nucleon and gluon densities. This interpretation is also supported by the non-zero, positive v_n found in the 0–1% centrality interval. In most central collisions (i.e. 0–1% and 0–5%), v_3 and v_4 reach a similar magnitude as v_2 at different p_T values depending on particle mass, after which they increase gradually. For $p_T < 3$ GeV/c, the v_n coefficients show a mass ordering consistent with an interplay between anisotropic flow and the isotropic expansion (radial flow) of the collision system. In this transverse momentum range, the iEBE-VISHNU hydrodynamical calculations describe the measured v_n of π^\pm, K^\pm, and $p+p$ fairly well for $p_T < 2.5$ GeV/c, while MUSIC reproduces the measurements for $p_T < 1$ GeV/c. It should be noted that neither of the presented hydrodynamical models is able to fully describe the measurements. At intermediate transverse momenta...
Figure 24. (Colour online) The p_T-differential v_2 of $\Lambda+\bar{\Lambda}$, K_0^s, and the ϕ-meson compared to ALICE measurements performed in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV (coloured bands) [27] for the 0–5%, 10–20%, and 40–50% centrality classes. For the measurements at $\sqrt{s_{NN}} = 5.02$ TeV, statistical and systematic uncertainties are shown as bars and boxes, respectively. For the measurements at $\sqrt{s_{NN}} = 2.76$ TeV, the thickness of the bands corresponds to the quadratic sum of statistical and systematic uncertainties. The ratios of measurements at $\sqrt{s_{NN}} = 5.02$ TeV to a cubic spline fit to the measurements at $\sqrt{s_{NN}} = 2.76$ TeV are also presented for clarity.

(3 < p_T < 8–10 GeV/c), particles show an approximate grouping by the number of constituent quarks at the level of ±20% for all flow coefficients in the 0–50% centrality range. The ϕ-meson v_2, which tests both particle mass dependence and type scaling, follows $p+\bar{p}$ v_2 at low p_T and π^\pm v_2 at intermediate p_T. The baryon v_n has a magnitude larger than that of mesons for p_T < 8–10 GeV/c, indicating that the particle type dependence persists up to high p_T. For p_T > 10 GeV/c, the v_2 of $p+\bar{p}$ is compatible with that of π^\pm within uncertainties. The shape evolution of $v_2(p_T)$ as function of centrality shows different trends for π^\pm, K^\pm, and $p+\bar{p}$ and varies between 20% (10%) to 250% (55%) for $p+\bar{p}$ (K^\pm) at low p_T from most central to peripheral collisions; variations are more pronounced for $v_3(p_T)$, in particular for central collisions. Ratios $v_3/[v_2]^{3/2}$ and $v_4/[v_2]^{4/2}$ are flat for $p_T < 3$ GeV/c and rise monotonically for higher momenta for the 0–5% centrality class. No particle type dependence of the ratios is found for p_T > 1.5 GeV/c, below which the ratios for $p+\bar{p}$ v_n rise, which can be attributed to an increase of radial flow which affects the independent harmonics differently. For the ratio $v_4/[v_3]^{4/3}$, no p_T dependence is observed over the full centrality range. The measurements are compatible with those performed in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV within uncertainties.

Acknowledgments

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the
Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba and Centro de Investigaciones En-
ergéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

The ALICE collaboration

California Polytechnic State University, San Luis Obispo, California, United States
Central China Normal University, Wuhan, China
Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi’, Rome, Italy
Chicago State University, Chicago, Illinois, United States
China Institute of Atomic Energy, Beijing, China
Chonbuk National University, Jeonju, Republic of Korea
Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
Creighton University, Omaha, Nebraska, United States
Department of Physics, Aligarh Muslim University, Aligarh, India
Department of Physics, Ohio State University, Columbus, Ohio, United States
Department of Physics, Pusan National University, Pusan, Republic of Korea
Department of Physics, Sejong University, Seoul, Republic of Korea
Department of Physics, University of California, Berkeley, California, United States
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics and Technology, University of Bergen, Bergen, Norway
Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Faculty of Science, P.J. Šafárik University, Košice, Slovakia
Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Gangneung-Wonju National University, Gangneung, Republic of Korea
Gauhati University, Department of Physics, Guwahati, India
Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
Helsinki Institute of Physics (HIP), Helsinki, Finland
Hiroshima University, Hiroshima, Japan
Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Indian Institute of Technology Bombay (IIT), Mumbai, India
Indian Institute of Technology Indore, Indore, India
Indonesian Institute of Sciences, Jakarta, Indonesia
INFN, Laboratori Nazionali di Frascati, Frascati, Italy
INFN, Sezione di Bari, Bari, Italy
INFN, Sezione di Bologna, Bologna, Italy
INFN, Sezione di Cagliari, Cagliari, Italy
INFN, Sezione di Catania, Catania, Italy
INFN, Sezione di Padova, Padova, Italy
INFN, Sezione di Roma, Rome, Italy
INFN, Sezione di Torino, Turin, Italy
INFN, Sezione di Trieste, Trieste, Italy
Inha University, Incheon, Republic of Korea
Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
Institute for Theoretical and Experimental Physics, Moscow, Russia
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
Institute of Physics, Bhubaneswar, India
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Institute of Space Science (ISS), Bucharest, Romania
Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
iThemba LABS, National Research Foundation, Somerset West, South Africa
Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
Nagasaki Institute of Applied Science, Nagasaki, Japan
Nara Women’s University (NWU), Nara, Japan
National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
National Centre for Nuclear Research, Warsaw, Poland
National Institute of Science Education and Research, HBNI, Jatni, India
National Nuclear Research Center, Baku, Azerbaijan
National Research Centre Kurchatov Institute, Moscow, Russia
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
NRC Kurchatov Institute IHEP, Protvino, Russia
NRNU Moscow Engineering Physics Institute, Moscow, Russia
Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia