Volatile element evolution of chondrules through time

Mahan, Brandon; Moynier, Frédéric; Siebert, Julien; Gueguen, Bleuenn; Agranier, Arnaud; Pringle, Emily A.; Bollard, Jean Francois André; Connelly, James; Bizzarro, Martin

Published in:
Proceedings of the National Academy of Sciences of the United States of America

DOI:
10.1073/pnas.1807263115

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Volatile element evolution of chondrules through time

Brandon Mahan,a,1 Frédéric Moynier,a,b Julien Sieberta,b Bleuenn Gueguenc,d Arnaud Agranier,f Emily A. Pringlea,e Jean Bollard,f James N. Connellyf and Martin Bizzarroaa

aInstitut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7154, 75238 Paris Cedex 05, France; Laboratoire Géosciences Océan, UMR CNRS 6538, Université de Bretagne Occidentale et Institut Universitaire Européen de la Mer, 29280 Plouzané, France; bUMS CNRS 3113, Institut Universitaire Européen de la Mer, 29280 Plouzané, France; cScripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92039; and Center for Star and Planet Formation, University of Copenhagen, DK-1350 Copenhagen, Denmark

Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved July 9, 2018 (received for review April 27, 2018)

Chondrules and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition—rare earth, refractory, main group, and volatile element contents—of a suite of chondrules previously dated using the Pb–Pb system. The volatile element contents of chondrules increase with time from ~1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.

Significance

We present time-anchored elemental abundance data for some of the Solar System’s first solids by tracking Pb–Pb dated chondrule compositions. Volatile element contents generally rise, while redox conditions (based on chondrule Mn/Na ratios) decline beginning ~1 My after Solar System formation (~4,567 Ma). These results reflect a continued rise in volatile element contents and their fugacities during chondrule recycling, and early water influx to the inner Solar System followed by its express removal. These observations support the early formation of Mars under oxidizing conditions and Earth’s protracted growth under more reducing conditions in an environment increasing in volatile contents with time, while also calling into question the coupling of water and volatile elements during Solar System evolution.

Author contributions: F.M. designed research; B.M., F.M., J.S., B.G., A.A., E.A.P., J.B., J.N.C., and M.B. analyzed data; and B.M. wrote the paper with contributions from F.M., J.S., J.N.C. and M.B.

The authors declare no conflict of interest.

Published online August 6, 2018.

www.pnas.org/cgi/doi/10.1073/pnas.1807263115

PNAS | August 21, 2018 | vol. 115 | no. 34 | 8547–8552

1To whom correspondence should be addressed. Email: mahan@ipgp.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807263115/-/DCSupplemental.
(REE) patterns of L chondrite chondrules, as well as the volatile element contents of both L and CR chondrite chondrules. Volatile element abundances and Mn/Na ratios have then been investigated as a function of age to constrain the evolution of volatile contents and provide first-order insights into the prevailing redox conditions during chondrule formation for the first ~4 My of the inner Solar System. These observations, in turn, are placed within the context of Solar System evolution and terrestrial planet formation to provide time-anchored constraints on the conditions of formation for Mars and Earth, and to assess the paradigmatic view that water and volatile elements arrived in the inner Solar System contemporaneously.

Trace Element Results for Individual Chondrules

Eight chondrules from L3.10 NWA 5697 and three chondrules from CR2 NWA 6043 were analyzed for REEs, six refractory and main component elements—W, Zr, Mo, Ti, Nb, and Cr—and nine volatile elements—Mn, Ag, Sb, Na, Rb, Cs, Zn, Sn, and Cd. REEs have been conventionally listed in order of decreasing atomic radius for clarity and ease of comparison with other studies; all other elements have been reported in order of increasing volatility under solar nebula conditions (22). All element data are reported herein as La- and CI-chondrite-normalized abundances (see Materials and Methods). Host meteorite, Pb–Pb age, and other relevant details for all chondrules can be found in Table 1 (17), along with calculated Mn/Na ratios for each chondrule. La- and CI-normalized concentrations for volatile elements are reported in Fig. 1 and Table 2, and La- and CI-normalized data for all elements are reported in SI Appendix, Table S1 along with literature data, with La-normalized abundances in SI Appendix, Table S2 and literature data in SI Appendix, Table S3.

The REE abundances for CR chondrite chondrules are in good agreement with literature values (SI Appendix, Fig. S1 and Table S1), validating the choice of La as a normalizing agent and, more importantly, the data set as a whole.REE abundance data for L chondrite chondrules are by-and-large novel, and, as such, there are very limited data for comparison (9); however, the few available literature values are in good agreement, and the data presented herein shed light on L chondrite chondrule composition (SI Appendix, Fig. S1 and Table S1). In both the L and CR chondrite chondrules, refractory and main group elements are relatively more enriched than volatile elements, especially those with 50% condensation temperatures (T50) below ~800 K, consistent with the generally volatile-depleted nature of chondrules relative to bulk meteorites (13) (Fig. 1).

Table 1. Host meteorite, Pb–Pb age and information for individual chondrules

<table>
<thead>
<tr>
<th>Chondrule</th>
<th>Pb–Pb age</th>
<th>Type</th>
<th>Ol. Fa#</th>
<th>Mn/Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWA 5697 (L3.10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-C1</td>
<td>4,567.57 ± 0.56</td>
<td>I</td>
<td>6.1</td>
<td>0.5</td>
</tr>
<tr>
<td>5-C2</td>
<td>4,567.54 ± 0.52</td>
<td>II</td>
<td>19</td>
<td>2.2</td>
</tr>
<tr>
<td>5-C10</td>
<td>4,567.41 ± 0.57</td>
<td>II</td>
<td>19</td>
<td>2.7</td>
</tr>
<tr>
<td>D-C3</td>
<td>4,566.58 ± 0.57</td>
<td>II</td>
<td>27</td>
<td>3.3</td>
</tr>
<tr>
<td>5-C4</td>
<td>4,566.56 ± 0.53</td>
<td>II</td>
<td>12</td>
<td>2.9</td>
</tr>
<tr>
<td>3-C5</td>
<td>4,566.20 ± 0.63</td>
<td>II</td>
<td>19</td>
<td>2.5</td>
</tr>
<tr>
<td>11-C2</td>
<td>4,564.65 ± 0.46</td>
<td>II</td>
<td>22</td>
<td>0.8</td>
</tr>
<tr>
<td>3-C2</td>
<td>4,563.64 ± 0.51</td>
<td>II</td>
<td>15</td>
<td>1.2</td>
</tr>
<tr>
<td>NWA 6043 (CR2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-C2</td>
<td>4,567.26 ± 0.37</td>
<td>I</td>
<td>9.8</td>
<td>1.5</td>
</tr>
<tr>
<td>2-C2</td>
<td>4,565.06 ± 0.40</td>
<td>II</td>
<td>23.9</td>
<td>1.9</td>
</tr>
<tr>
<td>2-C4</td>
<td>4,563.64 ± 0.51</td>
<td>II</td>
<td>13.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Pb–Pb ages, chondrule type, and olivine fayalite number (Ol. Fa#) from ref. 17. Manganese-to-sodium ratios (Mn/Na) are from the current study.

The majority of data are for chondrules from L3.10 NWA 5697, providing a more complete picture of L chondrite chondrule evolution. Therefore, discussion focuses largely on these chondrules, and, where possible, complementary observations are presented for the chondrules of the CR2 chondrite NWA 6043.

Comparison with Other Chondrules, Bulk Chondrites, and the Bulk Earth

REE patterns for both L and CR (to a lesser degree) chondrite chondrules are similar to that of their host meteorites (SI Appendix, Fig. S1), indicating that the REE contents of chondrules largely set the budget of these elements in the bulk. This is likely owing to chondrules constituting over half the bulk or more by volume in both cases (>60% for OCs) (23, 24). Bulk chondritic patterns are more closely mirrored by older chondrules in CR chondrite chondrules for refractory and main group elements (Fig. 1). For L chondrule chondrules, La- and CI-normalized data indicate that refractory and main group elements are similar to bulk L chondrites and chondrules (where data exist) (Fig. 1). For both L and CR chondrite chondrules, these observations suggest that chondrules generally control bulk chondrite element systematics, as has been previously suggested (25).

Volatiles are enriched in chondrules from the current study, followed by a general depletion trend (e.g., Na, Rb, and Cs), while bulk L chondrite values for these elements display enrichments relative to this trend, suggesting an enriched component for these elements in the host meteorite. The general volatile depletion pattern of the L chondrite chondrules is in good agreement with that for the bulk Earth (Fig. 1). Data for CR chondrules in the current work, as well as in the literature, display relatively higher variations, making further discussion largely untenable.

Age-Dependent Element Systematics

The current study provides compositional data for chondrules that are anchored in time. The abundances of Ag and Sb, and, to a lesser degree, Zn, display stochastic variations concomitant with CAI formation at ~4,567 Ma (1), followed by a general depletion and subsequent increase in abundance (Fig. 2 and Table 2). Fig. 2 reports the abundances of Ag and Sb as a function of chondrule age, as these elements display the most coherent positive trend with time, while elements of higher volatility show more variability. These data provide observational evidence for a general increase in volatile contents in the inner Solar System through time. This volatile element evolution pathway for the inner Solar System is supported by a wealth of literature across a broad range of methodological approaches, e.g., experimental petrology (26), isotope geochemistry (18, 27), and astrophysicochemical modeling (19, 28, 29). These lines of evidence, along with the likely early formation of most chondrules and their later recycling in a volatile-enhanced environment (17, 18), support the view that a fraction of the chondrule population in OCs was formed (recycled) under noncanonical conditions marked by increased volatile contents (30), and, moreover, provide time constraints for the generation of such chondrule populations. The agreement between chondrule volatile element contents and that of the bulk Earth (Fig. 1 and Table 2) further evidence a robust compositional relationship between the two, strengthening the argument that chondrule accretion played an integral role in terrestrial planet formation. More broadly speaking, the current data suggest that increased volatile flux to the inner Solar System began ~1 My after CAI formation and proceeded for at least the next 3 My (Fig. 2 and Table 2), corroborating and elaborating upon previous observations for these same chondrules (18).
Manganese-to-Sodium Ratios of Individual Chondrules

The Mn/Na ratios of the L chondrite chondrules increase from ∼0.5 to over 3 within approximately the first 1 My of the Solar System, and then decline to nearly the starting value (final Mn/Na ≈ 1) over the next 3 My (Fig. 3). Chondrule olivine fayalite contents (17) for L chondrite chondrules increase concomitant with Mn/Na ratios up to their highest values, further validating Mn/Na as an appropriate first-order gauge of prevailing f_{O_2} conditions. These results indicate an increase in f_{O_2}—or at least variable f_{O_2}—beginning with the formation of CAIs and peaking at ∼4,566.5 Ma, followed by a return to more reducing conditions by ∼4,564.5 Ma. This redox path is seemingly at odds with the general enrichment of volatile elements observed (Fig. 2 and Table 2), indicating coeval forces.

Reconciling Volatile Element and Mn/Na Ratio Systematics

The overall redox state of a gas–melt system and the subsequent (re)distribution of volatile elements is not only governed by oxygen fugacity but also by the fugacities of other influential elements that may be present in the gas phase, and it is likely that such mechanisms are at play here. There is ample evidence to indicate that high partial pressures of volatile elements (e.g., K, Na, and S) are behind the simultaneously reduced and volatile-enriched nature of OCs and their chondrules (30, 31). A volatile-rich but water-poor (dry) environment after ∼1 My is consistent with the observed general increase in volatile element contents in the younger chondrules and the subsidence of more oxidizing conditions. Dry volatile influx beginning at ∼4,566.5 Ma readily explains the enhanced volatile contents of L chondrite chondrules relative to CR chondrite chondrules (Table 2),
and explains the same observation for their bulk chondrite hosts, as well as the generally water-poor nature of OCs (and enstatite chondrites) relative to carbonaceous ones (5, 13, 23, 32). Moreover, the timing of the volatile element and redox pathway herein is fully consistent with that suggested by astrophysicochemical models, wherein water levels in the inner Solar System increase dramatically within the first ~ 200 Ky (and thus $f(O_2)$), followed by decline to dry conditions after about 1 My, leading to a relative increase in the fugacities of other volatile species (19, 33). Furthermore, these results indicate a decoupling

Table 2. La- and CI-normalized volatile element abundances for individual chondrules

<table>
<thead>
<tr>
<th>Element</th>
<th>NWA 5697 (L3.10)</th>
<th>NWA 6043 (CR2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>0.06 0.23 0.54</td>
<td>0.29 0.25 0.01</td>
</tr>
<tr>
<td>Ag</td>
<td>0.05 0.12 0.07</td>
<td>0.09 0.14 0.20</td>
</tr>
<tr>
<td>Sb</td>
<td>0.25 0.64 0.94</td>
<td>0.13 8.39 0.58</td>
</tr>
<tr>
<td>Na</td>
<td>0.05 0.04 0.08</td>
<td>0.07 0.05 0.002</td>
</tr>
<tr>
<td>Rb</td>
<td>0.03 0.07 0.08</td>
<td>0.07 0.20 0.01</td>
</tr>
<tr>
<td>Cs</td>
<td>0.02 0.05 0.09</td>
<td>0.02 0.05 0.05</td>
</tr>
<tr>
<td>Zn</td>
<td>0.004 0.004 0.002</td>
<td>0.001 0.010 0.000</td>
</tr>
<tr>
<td>Sn</td>
<td>0.15 0.18 0.33</td>
<td>0.05 0.51 0.18</td>
</tr>
<tr>
<td>Cd</td>
<td>0.02 0.02 0.03</td>
<td>0.01 0.05 0.03</td>
</tr>
</tbody>
</table>

Elements ordered from least to most volatile under solar nebula conditions (22). Please see SI Appendix for La- and CI-normalized abundances for all elements (SI Appendix, Table S1); La-normalized values and calculated Mn/Na ratios (SI Appendix, Table S2); and CI abundances used for normalization, along with literature data for the bulk Earth, L, and CR chondrites and their chondrules (SI Appendix, Table S3).
of water and volatile element evolution in the early inner Solar System, calling for a reexamination of the established notion that water and volatile elements arrived in lockstep to the inner Solar System (34).

On the Formation of Larger Solar System Bodies

Vesta and the angrite parent body are thought to have formed no later than 0.4 My after CAIs (35, 36), and the angrite parent body has the highest reported Mn/Na ratio (~12) of any Solar System body (20), coincident with the timing of high Mn/Na ratios determined in the current study (Fig. 3). Mars, at least half of which is thought to have accreted within the first 2 My of the Solar System (37), has an estimated Mn/Na ratio of 2 to 3 (20), a range strikingly similar to OC chondrules of the same age within the current study, suggesting that a major fraction of Mars could have accreted from OC chondrules (or at least OC-like) resident during this time and thus under similarly oxidizing conditions and increasing volatile contents (Figs. 2 and 3). Proto-Earth is thought to have experienced protracted growth up to ~5 My after CAIs, with ~40% of its accreting material potentially coming from volatile-enriched outer Solar System reservoirs (18). This growth history for Earth suggests significant accretion from a reservoir of relatively reduced chondrules, with subsequent volatile content augmentation through time via remelting/recycling in an increasingly volatile-rich environment (Figs. 2 and 3). Moreover, the volatile element and redox pathway determined in the current study indicate a need to explore the possible decoupling of water and other volatiles such as K, Na, and S. These results provide time-anchored evidence for the early formation of proto-Mars from relatively oxidized materials, and evidence that proto-Earth formed via accretion of variably oxidized, volatile-poor chondrules, followed by appreciable addition of recycled, volatile-enhanced material under more reducing conditions. Such an accretion pathway for Earth elicits the need for formation and differentiation models which consider the decoupling of volatile element and water (redox) evolution. Lastly, the timing of formation, relative distance from the Sun, and chemical composition of Mars and the ordinary (and enstatite) chondrites indicate that perhaps these bodies incorporated the bulk of incoming volatile-rich material from cooler outer regions of the Solar System, depriving Earth and other bodies accreting inside its orbit of their full complement of volatile elements.

Materials and Methods

Dilute sample aliquots were analyzed using the high-resolution inductively coupled plasma mass spectrometer Thermo Scientific Element XR at Laboratoire Géosciences Océan (Université de Brest) for the following isotopes: \(^{114}\)La, \(^{140}\)Ce, \(^{143}\)Pr, \(^{146}\)Nd, \(^{152}\)Sm, \(^{152}\)Eu, \(^{156}\)Gd, \(^{169}\)Tb, \(^{174}\)Dy, \(^{178}\)HO, \(^{172}\)Er, \(^{180}\)Tm, \(^{174}\)Yb, \(^{175}\)Lu, \(^{174}\)W, \(^{172}\)Zr, \(^{175}\)Mo, \(^{177}\)Os, \(^{170}\)Ir, \(^{172}\)Pt, \(^{173}\)Ga, \(^{172}\)Ag, \(^{172}\)Sb, \(^{174}\)Na, \(^{170}\)Rb, \(^{172}\)Cs, \(^{176}\)Rn, \(^{182}\)Sn, \(^{185}\)Sb, \(^{187}\)Tl, \(^{189}\)Po, \(^{190}\)Bi, \(^{192}\)Pb. All elements were calibrated using standard solutions (10, 50, 100, and 1,000 ppm), and their count rates were blank-corrected. Indium \(^{115}\)In was used as an internal standard to correct all data for instrumental mass bias during the analyses. Instrument precision (reproducibility) for all elements was better than 4% (1 relative SD). All analyses within the current study were performed on the same sample disolutions from which aliquots had previously been taken for Pb–Pb dating and Zn isotopic measurements (17), rendering calculations of absolute element concentrations untenable. Therefore, all data have been normalized to La and to CI chondrites. La was chosen as an ideal normalizing element, as its concentrations in both L and CR chondrite chondrules have been previously established and anchor the results (9, 12). Furthermore, La is a

Fig. 3. Calculated Mn/Na ratios for L chondrite chondrules as a function of Pb–Pb age, with individual olivine fayalite number, Fa#, reported in brackets next to individual chondrules (17). Olivine chondrule Fa# is strongly correlated to Mn/Na for the first 1 My of the Solar System \((R^2 = 0.97)\), corroborating an increase in oxygen fugacity during this time. After \(-4.566.5\) Ma, Mn/Na and Fa# decouple \((R^2 = 0.29)\), likely due to incomplete melting of chondrules, gas interaction, and/or variable Fe retention. Typical error for Pb–Pb dating is approximately \(\pm 0.50\) My, i.e., less than the time spanned here, further validating the observed trends for Mn/Na and Fa#. For reference, Mn/Na ratios for Earth, Mars, and the Moon are reported as green, red, and blue shaded regions, respectively, along with present-day bulk \(\Omega\)/\(\delta\) estimates (20, 26, 43, 44).
relatively refractory (T$_{D2} \approx 1,580$ K) (22) and fluid-immobile element and thus is not redistributed during secondary alteration processes (41), and it is sufficiently abundant in all samples for precise measurement.

ACKNOWLEDGMENTS. We thank two anonymous reviewers for their insightful comments and constructive criticism that greatly improved the quality of this paper. We thank Sébastien Charnoz, Francesco Pignatale, Paolo Sossi, and the rest of the Cosmochimie, Astrophysique, et Géophysique Expérimentale (CAGE) team at Institut de Physique du Globe de Paris (IPGP) for fruitful discussions. We acknowledge the financial support of the UniverSityS Labex program at Sorbonne Paris Cité (through French National Research Agency (ANR) Grants ANR-10-LABX-0023 and ANR-11-IDEEX-0005-02). B.M. acknowledges the financial support of the Initiative d’Excellence (IDEX), Université Sorbonne Paris Cité (USPC) through a PhD fellowship. J.S. acknowledges the financial support of the ANR (Project VoToRe, Grant ANR-14-CE33-0017-01). F.M. acknowledges funding from the European Research Council (ERC) under the H2020 framework program/ERC Grant Agreement 637503 (Pristine). M.B. acknowledges funding from the Danish National Research Foundation (Grant DNRF97) and the ERC (ERC Consolidator Grant Agreement 616027, STARDUSTZASTEROIDS). Parts of this work were supported by the IPGP multidisciplinary program Plateau d’Analyse Haute Résolution (PARI), and by the Region Ile-de-France SESAME Grant 12015908.

