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Abstract  

Pigs are favorable experimental animals for infectious diseases in humans. However, implant 

associated osteomyelitis (IAO) models in pigs have only been evaluated using high-inoculum 

infection (>108 CFU) models in 1975 and 1993. Therefore, the aim of this paper was to present a 

new low inoculum porcine model of human IAO based on 42 experimental pigs. The model was 

created by drilling an implant cavity in the tibial bone followed by insertion of a small steel 

implant and simultaneous inoculation of Staphylococcus aureus bacteria (n=32) or saline (n=10). 

The infected pigs were either inoculated with 104 CFU (n=26) or 102 and 103 CFU (n=6). All 

animals were euthanized five days after insertion of implants. Pigs receiving the high-inoculum 

infections showed a significantly higher volume of bone lesion, number of neutrophils around 

the implant, concentrations of acute phase proteins in serum and enlargement of regional lymph 

nodes. A positive correlation was present between a high number of surrounding neutrophils and 

high values of all other parameters. Furthermore, a threshold of 40 neutrophils per 10 high power 

fields for the histopathological diagnosis of high grade IAO was defined. In conclusion: this 

paper describes a novel low-inoculum S. aureus porcine model of IAO which was demonstrated 

to be reliable, reproducible and discriminative to human IAO, and represents a requested and 

valuable tool in orthopedic research. This article is protected by copyright. All rights reserved 

Key words: Animal model, Osteomyelitis, Peri-prosthetic Infection, S. aureus 
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Introduction 

Orthopedic implants have become an essential component of modern medicine (1). The number 

of operations with insertion of orthopedic implants is increasing, e.g. in the UK and USA 800 

000 joint arthroplasties are completed annually, with projections of up to 4 million by 2030 (1).  

However, up to 5 percent of patients with an orthopedic implant will develop osteomyelitis 

around the implant (2, 3). Implant associated osteomyelitis (IAO) or prosthetic joint infections is 

among the most severe orthopedic conditions and treatment failure is common (4, 5). In order to 

reduce the incidence of treatment failure and increase the success of prevention and diagnosis, 

more research on IAO is needed. In experimental studies of IAO it is crucial to study the surface 

of the implant, the local bone tissue surrounding the implant and the systemic reactions 

simultaneously. However, this can only be achieved in a reliable, reproducible and 

discriminative animal model of IAO. Pigs have drawn growing attention as experimental animals 

in recent years, and should be advantageous in infective orthopedic research due their 

comparable immune system, bone anatomy and pathophysiology (6). However, pigs have only 

been used twice in 1975 (7) and 1993 (8) as models for IAO. Therefore, in the present study we 

aimed to describe a novel porcine IAO model in detail, i.e. surgical implantation technique and 

quantification of the systemic, regional and local outcome. 

Material and methods 

Design 

The model was based on insertion of a small steel implant into the right tibial bone together with 

either bacteria or saline. Based on inoculum, pigs were allocated into 3 groups, e.g. high-

inoculum dose (104 CFU; Group A), low-inoculum dose (102 or 103 CFU; Group B) and controls 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved 

(Saline; Group C), (Table 1). The Danish Animal Experiments Inspectorate approved the 

experimental protocol (license No. 2013/15-2934-00946). 

Animals 

A total of 42 female Danish Landrace pigs obtained from specific pathogen free herds (9) were 

included. The age of the pigs were either 3 months (30-kilogram body weight (BW)) or 8 months 

(67-77-kilogram BW), (see Table 1). Ten pigs from Group A (Table 1) were basis for a study of 

antibiotic penetration into inflamed bone tissue, and data from this study, pathology excluded, 

was recently published elsewhere (10). At arrival the animals were allowed to acclimatize for 7 

days before entering the trial.  

Anesthetic, analgesic, antibiotic and euthanization protocol 

Premedication, induction of anesthesia and intraoperative analgesic were induced as described 

recently (11). Anesthesia was maintained with Propofol (10 mg/kg BW/hour) and intraoperative 

analgesia with Fentanyl (0.5 mg/hour). At the end of surgery, animals received an intramuscular 

injection 0.1 mg/kg BW of Buprenorphine (0.3mg/ml) resulting in postoperative analgesia for 

the following 6 hours. Thereafter the animals received oral analgesic treatment with Meloxicam 

0.3 mg/kg BW once a day. After skin closure antibiotic ointment was applied to the surgical 

wound (Fucidin, LEO Farma, Ballerup, Denmark) to prevent infections from the environment 

(11). No systemic antibiotic treatment was given. All pigs were euthanized after 5 days by an 

intravenous overdose of pentobarbital 20 %.   

Surgical procedure 

Pigs were placed in right lateral recumbency exposing the medial side of the right tibial bone. On 
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the medial side the tibial tuberosity and crest is covered by the crucial fascia, subcutis and skin. 

This non-muscular area, positioned adjacent to trabecular bone tissue, was found ideal for 

insertion of the implant. The surgical procedure was performed under sterile conditions (Fig. 

1A). Crista tibiae was located by palpation and a scalpel placed over the highest point of crista 

tibiae. A radiographic picture was obtained using mobile C-arm fluoroscopy. The position of the 

scalpel was adjusted until the final position for the implant cavity was achieved (located centrally 

and 10 mm distal and parallel to the growth plate). A skin incision of 20 mm was made over the 

final position followed by a second incision in the subcutaneous tissue down to the periosteum. 

The final incision of 10 mm was made in the periosteum, which was loosened a few mm 

perpendicular to the incision. In the periosteal incision a K-wire (4 mm in diameter) was drilled 

20 mm (pigs of 30 kg BW) or 27 mm (pigs of 67-77 Kg BW) into the trabecular bone tissue 

creating the implant cavity. By placing a sterile cotton gaze pad in the implant cavity 

compression haemeostasis was achieved after 5 minutes. Afterwards the inoculum (10 µL) was 

injected (Figs. 1B + 1C). Injection of inoculum was performed using a pipette with a sterile 

changeable tip. The tip was placed in the bottom of the drill hole during the injection. Thereafter, 

the implant was inserted into the cavity. Implants were made of stainless steel, 2 x 15 mm (pigs 

of 30 kg BW) or 2 x 20 mm (pigs of 80 Kg BW). The periosteum, subcutaneous tissue and skin 

were sutured separately (Fig. 1D).  

Postoperative care 

Animals were followed up daily during the postoperative period and included surgical wound 

inspection, evaluation of gait and if indicated measurements of body temperature. Impaired 

ability to stand, anorexia and systemic signs of sepsis, e.g. depressed respiration and high fever, 

were set as humane endpoints.  
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Inoculum  

A porcine Staphylococcus aureus strain; S54F9 spa-type t1333 was used for inoculation. This 

strain has recently been characterized by whole-genome sequencing (12) and used in various 

porcine models of haematogenous osteomyelitis, endocarditis, encephalitis and sepsis (12). The 

inoculum of S. aureus was prepared as previously described (13) and diluted with sterile 0.9 % 

isotonic saline in order to obtain inoculation doses/volumes of 104, 103 or 102 CFU in 10 µL. 

Blood samples 

On the days of surgery and euthanasia, blood samples were taken from the jugular vein. For 

screening of bacteremia, 2 ml blood samples were collected in heparin tubes and analyzed (13). 

Additionally, 6-8 ml blood was collected in serum tubes, centrifuged and the recovered serum 

stored at -80˚C until processing. Stored serum was used for evaluation of the systemic acute 

phase response by measurement of C-reactive protein (CRP) and serum amyloid A (SAA), 

respectively by enzyme-linked immunosorbent assay (14, 15). 

Macroscopic pathology  

Following euthanasia, the surgical wounds were inspected and opened in the first two layers 

(skin and subcutis). Afterwards, the right hind leg was cut off in the stifle joint. Subsequently, 

the periosteal sutures were opened and the implant removed from the bone. In 17 pigs (9 sham 

inoculated Group C animals, 5 Group A animals inoculated with the high dose and 3 Group B 

animals inoculated with the lower doses) the right tibial bone was sectioned sagittally through 

the implant cavity in order to allow evaluation of the bone tissue surrounding the implant cavity. 

The abdomen and thorax of all 30 kg BW pigs were cut open and the organs inspected in-situ. In 
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these animals the major right and left lnn inguinales profundi where eviscerated and the length 

and width registered.  

Computer tomographic (CT) scanning  

Following euthanasia and removing of the implants, the right hind leg was scanned with a single 

slide CT scanner (Siemens Somatom Emotion, Erlangen, Germany). Tibia was scanned in the 

cranio-caudal direction with a slide thickness of 2 mm (kV = 130 and mAs = 55). The scans were 

reconstructed using a standard soft tissue algorithm (B80s). The following registrations were 

obtained blinded using the software system Osirix Lite; 1) cortical diameter of the implant 

cavity, in order to quantify bone destruction around the implant, and 2) CT volumetry of the 

implant cavity and associated osteomyelitis if present, in order to quantify the total volume of 

bone destruction (16). Pigs of 67-77 kg BW had 0.25 cm3 subtracted from their volume of 

changes, corresponding to the extra length of the implant cavity in these animals. 

Microscopic pathology  

Following removal of the implants, and sagittal sectioning if performed, all left (non inoculated) 

and right (inoculated with saline or bacteria) tibial bones were placed in 10 % formalin. 

Additionally, a sample from the lung, liver, left kidney and spleen were also fixed in formalin. 

For the osseous tissue, formalin fixation was followed by decalcification (13). Following fixation 

in formalin or decalcification, all tissues were cut into representative pieces and processed 

through graded concentrations of alcohol and embedded in paraffin wax.  Tissue sections (4–5 

µm) were stained with haematoxylin and eosin (HE). On a section from the bone piece 

containing the center of the implant cavity, the peri-implanted pathological bone area (PIBA) 

was measured perpendicular to the implant cavity. PIBA was defined as the distance from the 
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beginning of the implant cavity until normal pattern of trabecular bone and bone marrow 

appeared. The number of bacterial aggregates were registered inside PIBA and in selected cases 

immunohistochemical (IHC) staining for S. aureus was performed (13). On the same sections, 

the number of neutrophil granulocytes (NG) inside PIBA were counted by the method developed 

by Morawietz et al. (17). Briefly, first potential hot spots rich in NG were identified at low 

magnification. These areas were then evaluated under high power (x 400 magnification) and all 

cells clearly identifiable as NG were counted. In each high power field (HPF), a maximum of 10 

NG was counted. Ten HPFs were examined in this way, resulting in a maximum count per pig of 

100 NG (17). All PIBA measurements and NG counts were obtained blinded. 

Microbiology 

Following removal of the implants, a swab was taken from the implant cavity of all Group A and 

Group B animals and from four Group C animals and analyzed as previously described (18). 

Selected isolates of bacteria were spa-typed (19). The caudal part of the left lung lobe was 

collected for quantitative microbiology as well (18). 

Implants  

All implants were removed from the tibial bones with a sterile lancet, or by shaking the leg over 

a sterile drape. Selected implants (13 implants from Group A pigs and 2 implants from Group B 

pigs) were placed in 10% formalin for peptide nucleic acid fluorescence in-situ hybridization 

(PNA FISH) (20). A S. aureus specific probe (21) was used to visualize if the bacterium had 

attached to the surface of the implants. The evaluation of implants was blinded.  
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Statistics 

For comparing the size of the regional lymph nodes and PIBA, the NG count and the CT 

measurements between Group A, B and C, the Kruskal-Wallis test was used followed by 

multiple comparisons using Dunn’s test. A repeated measurement ANOVA, followed by 

multiple comparisons using Sidak’s test, was performed for the acute phase response. Receiver-

operating characteristic (ROC) curves were generated to examine the sensitivity and specificity 

between NG counts and clinical (CT scans) and microbiological (inoculated vs. sham inoculated) 

diagnoses depending on different thresholds. All calculations were performed using Prism 

version 7 (Graphpad Software, Inc, California, USA). Statistical significance was assigned to 

differences having P-values ≤ 0.05.  

Results 

Insertion of implants 

Implants were placed at the intended position, e.g. 10 mm below the growth plate in 40 out of 42 

cases. In two cases the position was too close to the growth plate, although still placed within 

trabecular bone tissue. In one case intensive bleeding occurred from the implant cavity 

immediately after inoculation. This animal (Group A1) was excluded from the study due to an 

uncertain infectious inoculum dose. 

Clinical observations 

After recovery from anesthesia, all pigs were lame on the inoculated leg. However, they were 

able to use the leg and walked freely around in the pens. During the first day the lameness 

diminished and disappeared 2 to 3 days after inoculation in 39 out of 41 pigs. Due to persistent 
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lameness and fewer, two pigs received intramuscular injections of 0.1 mg/kg BW of 

buprenorphine (0.3mg/ml) every 6-8 hour until euthanasia. All animals ate and drank normally 

throughout the experiment. 

Blood samples 

Bacteremia was not observed in any of the animals. The medians for CRP and SAA are 

presented in Figures 2A and 2B. For both acute phase proteins, a significant increase was seen in 

Group A pigs compared to control animals (CRP; P=0.0002, SAA; P=0.05).  

Macroscopic pathology  

Wound infections, present as rupture of skin sutures and inflammation of underlying tissue, were 

observed in 2 out of 10 control animals (Group C) and in 4 out of 31 infected animals (Group A 

+ B). Formation of an abscess in the subcutaneous tissue in connection with the implant cavity 

was not seen in any of the 10 control animals (Group C), whereas it was present in the 25 

animals infected with 104 CFU (Group A) and in 2 out of 6 animals infected with 102 or 103 CFU 

(Group B). In 17 pigs exposed to sagittal sectioning of the right tibial bone, osteomyelitis was 

never seen around the implant cavity in the 9 control pigs, whereas, it was present in 5 out of 5 

animals injected with 104 CFU and 1 out of 3 injected with 103 CFU (Figs. 2C + 2D). The 

osteomyelitis lesion consisted of a demarcated area of sequestrated bone tissue intermingled with 

pus. Macroscopic lesions were not seen in any of the other organs. The length and width of the 

largest right and left lnn inguinales profundi were added and divided by 2 (Fig. 2E). The 

difference between the right and left regional lymph node size is shown in Figure 2F. The 

difference was significantly bigger in both Group A and B animals compared to the control 

animals of Group C (P = 0.0004 and 0.0024, respectively). 
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CT scanning  

Signs of osteomyelitis was seen in 20 out of 24 Group A animals, and in 1 out of 3 Group B 

animals, whereas it was absent in the control animals of Group C. In cases with no signs of 

osteomyelitis, the estimated volume of changes (CT volumentry) represented only the implant 

cavity (Fig. 3A). The estimated volume of changes was significantly (P = 0.007) higher for 

Group A animals compared to Group C animals (Figs. 3B + 3C). The cortical diameter of the 

implant cavity in pigs receiving the high bacterial dose (Group A) increased significantly (P = 

0.0151) compared to the control group (Fig. 3D). Furthermore, cortical sequesters were seen in 7 

animals from Group A. Significant differences were not observed for any of the parameters 

measured by CT between Group B and C. 

Microscopic pathology 

The estimated size of PIBA was significantly (P = 0.0331) higher for Group A animals compared 

to the control animals of Group C (Fig. 4A). A significance was not seen between Group B 

animals infected with the lower bacterial doses and control animals. In all control animals 

belonging to Group C, PIBA consisted of an interrupted thin layer of elongated fibroblasts and 

inflammatory cells lining compressed and osteonecrotic trabecular bone tissue. This layer was 

sporadically intermingled with single neutrophils and osteoclasts and surrounded by edema and 

proliferation of fibroblast and osteoblast blending into the adjacent bone tissue and bone marrow. 

A different pattern of PIBA was seen in Group A animals infected with the high bacterial dose. 

In these animals, a cellular layer of fibroblasts, neutrophils, macrophages, giant cells and 

sometimes debris of necrotic bone tissue were seen bordering the implant cavity. Outside this 

cellular layer osteonecrosis and osteoclasts were seen.  As in the control animals, an outermost 
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osteogenic and fibroblast layer was also present, although with more fibroplasia. Pigs of Group B 

(lower doses) showed either the same changes of PIBA as seen in Group A, but not as extensive, 

or as the control pigs of Group C. No lesions were seen within the left tibial bone, liver, lung, 

spleen or kidney in any of the animals. In general, bacteria were identified within the exudate of 

the implant cavity and inside PIBA. In Groups A and B, bacteria were identified in PIBA of 15 

out of 25 and 2 out of 6, respectively. Bacteria within PIBA stained positive for S. aureus in all 

samples selected for IHC (Fig. 4D). Bacterial colonies were not identified within PIBA of any of 

the control animals. 

The NG count differed significantly (P = 0.0001) between infected Group A pigs receiving the 

high bacterial dose and the non infected control animals of Group C (Fig. 4E). Within Group B, 

receiving the lower bacterial dose, the NG numbers varied widely (Fig 4E). By analyzing the 

ROC curve (The area under the concentration-time curve (AUC) = 0.94), the threshold for 

histopathological differentiation between inoculated (Group A) and sham inoculated animals 

(Group C) was 40 NG in 10 HPFs. This threshold resulted in a sensitivity of 92 % and a 

specificity of 90 % for diagnosing bacterial infection. Two of 25 Group A pigs had a NG count 

below 40. When the NG counts were correlated with a positive or negative diagnosis of 

osteomyelitis based on CT scans (AUC = 0.90), the threshold of 40 NG in 10 HPFs resulted in a 

sensitivity of 94 % and a specificity of 71.4%. Once again the NG count was significantly (P= 

0.0001) higher for pigs diagnosed with osteomyelitis by CT-scanning (Fig. 4F). Group B animals 

were not included in ROC calculations due to the large variability within this group. A positive 

correlation was seen between a high NG count and high values of SAA, CRP, regional lymph 

node size, PIBA size, CT volumetry of lesions and cortical diameter of the implant cavity, see 

Fig.5.  
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Microbiology 

Swabs from the implant cavity demonstrated S. aureus in 23 out of 25 pigs from Group A 

inoculated with 104 CFU. The remaining two pigs showed contamination. In Group B pigs 

inoculated with 102 or 103 CFU, S. aureus was cultured in 3 animals, enterococci species in 2 

animals, and 1 animal was sterile. In the control animals of Group C S. aureus was not cultured. 

All 42 lung samples were sterile. Spa-typing of isolates confirmed S. aureus strain t1333 (used 

for inoculation) in all S. aureus positive isolates from Groups A and B animals.  

Implants  

By PNA FISH all implants from Group B were negative for S. aureus. Within Group A, 

inoculated with the high bacterial dose, PNA FISH positive implants were seen in 7 out of the 13 

investigated cases.  

Discussion 

In this paper a novel low-inoculum S. aureus porcine model of IAO was presented. The model 

successfully replicated the pathogenesis of external contamination during insertion of bone 

implants and prosthesis in humans (1). An objective quantification protocol was used to 

characterize the model, including estimation of the systemic acute phase response, regional 

lymph node size, volume of bone lesions and numbers of NGs surrounding the bone implant. 

The model of IAO inoculated with 104 CFU of S. aureus showed significant results on all 

parameters when compared to sham inoculated control animals. No difference was observed 

between the subgroups of Group A (30 kg BW vs. 67-77 kg BW), Group B (102 vs. 103 CFU) 

and Group C (implant vs. no implant). 
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The present study showed a clear correlation between the number of injected bacteria and 

development of IAO. Pigs of Group B, inoculated with the lower doses (102 or 103 CFU), were 

not significantly different from the control animals of Group C on any of the parameters, except 

for an increase in the size of local lymph nodes. Therefore, the high dose of 104 CFU is 

considered the lowest useful inoculation dose in further studies using the present porcine model. 

The high dose was not associated with secondary spread of the bacteria, as no animal developed 

bacteremia or had embolic lesions in any organs. Previously, only two porcine models of IAO, 

e.g. based on traumatic inoculation of bacteria, have been described. The first porcine model was 

published in 1970 by Koschmieder et al. who created a 1 x 2 cm femoral cortical window and 

inoculated 2 x 108 CFU of S. aureus (7). The model was used for testing the effect of 

gentamicin-impregnated PMMA bone cement. The other model was developed by Patterson et 

al. in 1993 (8). In that study osteomyelitis was induced in the mandible of 8 adult miniature pigs 

by drilling a hole in the mandible. Afterwards sodium morrhuate (sclerosing agent) and 109 CFU 

of S. aureus was injected and either PMMA bone cement or bone wax inserted. Clearly, the 

optimal dose of 104 CFU used for inoculation in the present model is a remarkable reduction in 

the number of bacteria used compared to the two former porcine models. With the dose of 104 

CFU it was possible to re-isolate the same bacterial S. aureus strain as used for inoculation in all 

but 2 animals (showing contamination) using cotton swabs. Therefore, it was concluded that the 

infection occurred due to the inoculated strain. However, cotton swabs are not a recommended 

tool for making microbiological diagnosis of bone infections in patients (22). In regards to 

bacterial attachment to the implant surface PNA FISH showed a low sensitivity. In previous 

studies, PNA FISH has been highly sensitive for identification of bacteria in tissue sections. 

However, the geometry of the present implants hampered a full examination of the entire surface. 
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Recently, it was reported that sonication (implants are sonicated in an ultrasonic bath and the 

fluid from the sonication is cultured) improves the detection of microorganisms attached to an 

implant (23). Therefore, in future studies using the porcine model whole tissue samples and 

sonication of implants (23) are recommended to obtain microbiological diagnosis and estimate 

the number of bacteria attached to the implant surface.  

All orthopedic implants will develop a peri-prosthetic membrane between bone tissue and the 

implant (24). In well-fixed implants these membranes are considerably smaller than 1.0 mm 

compared to cases of aseptic and septic loosening of bone implants and prosthesis (25). In 

agreement with this, the control group in the present study showed a thin layer of cells towards 

the implant cavity and PIBA with values below 1.02 mm. Recently a study demonstrated that 

bone changes (primarily osteonecrosis) occur up to 1.2 mm around an inserted K-wire without 

bacterial inoculation (26). This is also comparable to the present study, in which it is believed 

that some parts of PIBA developed due to drilling of the implant cavity. 

In humans, the peri-prosthetic membrane is defined as a fringe of connective tissue (27). The 

peri-prosthetic membrane can be classified into four different types all of which are associated 

with clinical disease (27). The histopathological findings of Group A pigs can be categorized 

under the type II Peri-prosthetic membrane of the infectious type. Type II is further divided into 

low and high grade of infections (24, 27). Furthermore, the morphology of bone lesions in all 

Group A animals were compatible with score 2, 3 or 4 in the scoring system developed by Petty 

et al. representing different levels of increase in polymorph nuclear leucocytes, microabcesses 

and soft tissue abscesses (28). Histology is considered one of the golden standards for the 

diagnosis of prosthetic joint infections, and samples from the peri-prosthetic membrane is the 

best specimen for the histological diagnosis of IAO (29). Therefore, the NG counts of the preset 
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study was conducted within PIBA, which contained a cellular layer and extracellular 

components, e.g. it is comparable to the peri-prosthetic membrane (27). A threshold of 23 

infiltrating NG in 10 high power fields has been recommended for the histopathological 

diagnosis of septic loosening of prosthesis in humans (17), without taking the grade of infection 

into account (high or low grade). This threshold had a sensitivity of 73 % and a specificity of 95 

% when compared with the microbiological diagnosis (17). In the present study, a threshold of 

40 NG in 10 HPF resulted in sensitivity and specificity values within the same range, although 

with a reduced risk for a false positive outcome as the diagnostic sensitivity was 92 %. Based on 

the present results, the porcine model of IAO (Group A pigs) represents a high grade infection. 

Therefore, the present estimate of approximately 40 NG in 10 HPF could be recommended as a 

cut-off value for histopathological diagnosis of high grade IAO. A cut-off value specific for high 

grade prosthetic infections in humans has not been defined (27). In the porcine model, high NG 

counts were associated to the highest measured values on all parameters (Fig. 5). Therefore, the 

porcine model of IAO showed a reliable logic connection between a high inflammatory response 

vs. size of bone lesions and regional and systemic responses (Fig. 5).  

In humans, clinical signs of IAO are typically seen several months or years following insertion of 

bone prosthesis (1). This time pattern is difficult to replicate in an animal model. However, 

animal models with an earlier onset of infection are still reliable, as the histopathological 

diagnosis of IAO is dependent on finding NGs (30). The most popular animal species for 

modeling IAO are rodents and rabbits (31). However, pigs are closely related to humans in term 

of immunology, anatomy and physiology and represent an excellent animal model for studying 

infectious diseases like IAO (6). In 2016 it was shown, that the porcine and murine immune 

systems show 80 and 20 percent similarity to humans, respectively (6). Furthermore, similar to 
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humans, and in contrast to rodents (32), pigs have high numbers of neutrophils in the peripheral 

circulation (50-70%). In addition to the immunological similarities, porcine bone mineral 

density, anatomy, morphology, remodeling rate and healing are also similar to humans (33). Of 

disadvantages in using pigs as models, it should be mentioned, that the bone growth of 

conventional pigs is very fast. This might, however, be circumvented by using Minipigs. 

Furthermore, the length of the porcine tibia and femur is relatively short compared to humans, 

which in some cases might complicate direct testing of human-designed implants. However, 

compared to rodents and rabbits, the porcine bone size allows sampling of larger quantities for 

various purposes. Recently, the use of small ruminants for modeling of IAO has increased (34), 

despite there being several important differences to human bones such as seasonal bone loss (35) 

and higher trabecular density (36). Furthermore, the ruminant gastrointestinal system, like the 

pseudoruminant system of rabbits, will affect the results when such models are used for testing 

antibiotic treatments. In contrast, pigs provide an adaptable model to evaluate the efficacy of oral 

and systemic antibiotic treatment due to their omnivore physiology.  

The porcine model is a useful, reliable and discriminative tool for examining several different 

aspects of IAO in humans, e.g. the impact of different implant surface coatings, vaccination 

against S. aureus, virulence factors, new diagnostic tests and medical and surgical treatment 

regimes. 
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Table and figure legends 

Table 1 

Study design of the novel porcine model of implant associated osteomyelitis and overview of 

allocation of animals into Groups A, B and C. *PI; post inoculation, ** One animal was 

excluded based on a surgical complication during insertion of bone implant.  

Figure 1 

The surgical procedure used for insertion of a bone implant in the porcine model of implant 

associated osteomyelitis. A: Equipment used for insertion of a steel implant of 2 x 15 mm (a) and 

inoculation of S. aureus bacteria (b). B: the implant (the end is seen in the picture (arrow)), was 

inserted proximally on the medial side of the right tibia. C: The position of the implant (10 mm 

distal and parallel to the growth plate) was achieved with mobile fluoroscopy during surgery. D: 

After surgery the periosteum, subcutis, and skin was closed.  

Figure 2 

Systemic, regional and local reaction to experimentally induced implant associated osteomyelitis 

in the porcine model. Level of significance: *<0.05, **≤0.01, ***≤0.001. Groups A and B were 

inoculated with S. aureus bacteria and Group C with saline. Median and 95 % confidence 

interval. A: Serum levels of C-reactive protein. A significant increase was seen in Group A. B: 

Serum levels of Serum Amyloid A. A significant increase was seen in Group A. C: Tibia from a 

control pig, signs of osteomyelitis was not present around the implant cavity (ic) five days after 

inoculation with saline. D: Tibia from an infected pig, signs of osteomyelitis (o) was seen around 

the implant cavity (ic) five days after inoculation with 104 CFU of S. aureus. E: left (l) and right 
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(r) regional lymph node from an animal inoculated with 104 CFU of S. aureus. Bar = 8 mm F: 

Scatter dot plot with median of the right and left regional lymph node sizes (length and wide 

divided by 2). The right lymph nodes were significantly enlarged for both Group A and Group B 

when compared to Group C. 

Figure 3 

Computer tomographic (CT) scans of the right tibia in the porcine model of implant associated 

osteomyelitis. Level of significance: *<0.05, **≤0.01, ***≤0.001, ****≤0.0001. A and B: The 

green lines surround the area used for volumetry and the yellow lines show how the cortical 

diameters were measured. A: Tibia from a control pig, signs of osteomyelitis was not present 

around the implant cavity (ic) five days after inoculation with saline. B: Tibia from an infected 

pig, signs of osteomyelitis (o) was seen around the implant cavity (ic) five days after inoculation 

with 104 CFU of S. aureus. C: Scatter dot plot with median of the volume of implant cavity plus 

volume of osteomyelitis lesions if present are depicted. The volume was significantly larger for 

pigs inoculated with 104 CFU of S. aureus compared to pigs inoculated with saline. D: Scatter 

dot plot with median of the cortical diameter of the implant cavity are shown. The diameter was 

significantly larger for pigs inoculated with 104 CFU of S. aureus compared to pigs inoculated 

with saline.   

Figure 4 

Histopathological results in the porcine model of implant associated osteomyelitis euthanized 

five days after inoculation. Level of significance: *<0.05, **≤0.01, ***≤0.001, ****≤0.0001. A: 

Scatter dot plot with median of the peri-implanted pathological bone area (PIBA). Groups A and 

B were inoculated with S. aureus bacteria and Group C with saline. The size of PIBA was 
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significantly larger for pigs inoculated with 104 CFU of S. aureus compared to pigs inoculated 

with saline. B: Implant cavity (ic) and surrounding bone pathology of a pig inoculated with 

saline. Necrotic trabecular bone fragments (n) were seen adjacent to the implant cavity. HE, Bar 

= 100 µm. C: Implant cavity (ic) and surrounding bone pathology of a pig inoculated with 104 

CFU of S. aureus. Necrotic bone tissue (n) and accumulation of neutrophil granulocytes (ng), 

giant cells (arrow), macrophages and fibroblasts were present next to the implant cavity. HE, Bar 

= 100 µm. D: PIBA of a pig inoculated with 104 CFU of S. aureus. A colony of positive S. 

aureus bacteria (red) are surrounded by neutrophil granulocytes (ng). IHC, Bar = 50 µm. E: 

Scatter dot plot with median of the distribution of neutrophil granulocytes (NG) in PIBA of 

animals inoculated with a high dose, lower doses or sham inoculated. The NG number was 

significantly higher in pigs inoculated with 104 CFU of S. aureus compared to pigs inoculated 

with saline. F: Scatter dot plot with median of the distribution of NG in comparison with the 

results of the CT scans (osteomyelitis: red, no osteomyelitis: green). The NG number was 

significantly higher in pigs CT-diagnosed with osteomyelitis.   

Figure 5 

Association between numbers of neutrophils (NG) around the bone implant and serum SAA 

concentrations, serum CRP concentrations, difference in regional lymph node size, size of peri-

implanted pathological bone area (PIBA), cortical diameter of implant cavity, and volume of 

bone lesion in the porcine model of implant associated osteomyelitis (IAO). Pigs inoculated with 

104 CFU of S. aureus (red) or saline (green) were included.  
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Group Subgroup Implant 
(Steel) 

Inoculum Dose 
(CFU) 

Body 
weight (kg) 

Number 
of animals 

Time of 
euthanasia PI* 

A 

High dose 

A1 2 x 15 mm S.aureus 104 30 8** 5 

A2 2 x 20 mm S.aureus 104 67-77 18 5 

B 

Lower doses 

B1 2 x 15 mm S.aureus 103 30 3 5 

B2 2 x 15 mm S.aureus 102 30 3 5 

C 

Control 

C1 2 x 15 mm Saline 0 30 7 5 

C2 - Saline 0 30 3 5 
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