Addendum

Adam, J.; Adamova, D.; Aggarwal, MM.; Rinella, G.A.; Agnello, A.; Agrawl, N.; Ahammed, Z.; Ahn, S.U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akkindinov, A.; Alam, SN; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro-Molina; Alici, A.; Alkin, A.; Almaraz, J.R.M.; Alme, J.; Bearden, Ian; Pacik, Vojtech; Zhou, You; Gajdosova, Katarina; Chojnacki, Marek; Gaardhøje, Jens Jørgen; Christensen, Christian Holm; Nielsen, Børge Svane; Bourjau, Christian Alexander; bsm989, bsm989; Pimentel, Lais Ozelin de Lima; Thoresen, Freja; Bilandzic, Ante; Zaccolo, Valentina; Bøggild, Hans

Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP06(2017)032

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Addendum: Centrality dependence of high-p_T
D-meson suppression in Pb–Pb collisions at
$\sqrt{s_{\text{NN}}} = 2.76$ TeV

The ALICE collaboration

E-mail: ALICE-publications@cern.ch

Addendum to: JHEP11(2015)205

Abstract: This is an addendum to the article JHEP 11 (2015) 205 [1]. The figures 3 (right), 4 (right) and 5 are updated with published results on non-prompt J/ψ-meson production from the CMS collaboration [2].

ArXiv ePrint: 1506.06604

In [1] the average nuclear modification factor R_{AA} of D^0, D^+ and D^{*+} mesons in Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV measured by ALICE was compared with that of non-prompt J/ψ mesons from B-meson decays measured by the CMS collaboration using 2010 data (7.28 μb$^{-1}$) [3]. A higher-precision measurement based on 2011 data (152 μb$^{-1}$) was recently published by the CMS collaboration [2]. The measurement for the p_T interval 6.5–30 GeV/c is carried out in three rapidity intervals, including $|y| < 1.2$, which is more similar to that of D mesons ($|y| < 0.5$).

Figure 1 shows the average of the D^0, D^+ and D^{*+} nuclear modification factors as a function of centrality in $8 < p_T < 16$ GeV/c, compared with the R_{AA} of non-prompt J/ψ mesons with $6.5 < p_T < 30$ GeV/c [2]. The latter is significantly higher than that of the D mesons in the five centrality intervals from 0–10% to 40–50%. For example, the average difference of the R_{AA} values of D mesons and non-prompt J/ψ mesons in the 0–10% and 10–20% centrality classes is larger than zero with a significance of 3.4 σ, obtained including the systematic uncertainties, and taking into account their correlation between
Figure 1. Comparison of the D meson R_{AA} (average of D^0, D^+ and D^{++}) in $8 < p_T < 16$ GeV/c [1] and of the R_{AA} of non-prompt J/ψ mesons in $6.5 < p_T < 30$ GeV/c measured by the CMS collaboration [2]. The vertical bars represent the statistical uncertainties, while the filled (empty) boxes represent the systematic uncertainties that are correlated (uncorrelated) among centrality intervals. This figure updates figure 3 (right) of [1].

Figure 2. Comparison of the R_{AA} measurements with the calculations by Djordjevic et al. [4] including radiative and collisional energy loss. Lines of the same style enclose a band representing the theoretical uncertainty. For non-prompt J/ψ mesons in $6.5 < p_T < 30$ GeV/c [2] the model results for the case in which the b quark interactions are calculated using the c quark mass are shown as well [7]. This figure updates figure 4 (right) of [1].

The two centrality classes. In figures 2 and 3 these measurements are compared with model calculations [4–6], as originally done in [1].
Figure 3. Comparison of the R_{AA} measurements with the MC@sHQ + EPOS2 model [5] including radiative and collisional interactions (left) and with the TAMU elastic model [6] including collisional interactions via in-medium resonance formation. For both models, results for the case in which the b quark interactions are calculated using the c quark mass are shown as well [7]. In the right-hand panel, the band between lines with the same style represents the theoretical uncertainty. This figure updates figure 5 of [1].

The conclusions of the original publication [1] are confirmed by the comparisons that consider the new J/ψ-meson measurements. In particular, the comparison of the D-meson R_{AA} with the non-prompt J/ψ-meson R_{AA} shows a difference in the suppression of particles originating from c and b quarks in the most central collisions. This observation is described by theoretical calculations in which in-medium parton energy loss decreases with increasing quark mass.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

Institute of Space Science (ISS), Bucharest, Romania
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
iThemba LABS, National Research Foundation, Somerset West, South Africa
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Konkuk University, Seoul, South Korea
Korea Institute of Science and Technology Information, Daejeon, South Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Laboratori Nazionali di Frascati, INFN, Frascati, Italy
Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Lawrence Livermore National Laboratory, Livermore, California, United States
Moscow Engineering Physics Institute, Moscow, Russia
National Centre for Nuclear Studies, Warsaw, Poland
National Institute for Physics and Nuclear Engineering, Bucharest, Romania
National Institute of Science Education and Research, Bhubaneswar, India
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics Department, Creighton University, Omaha, Nebraska, United States
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Athens, Athens, Greece
Physics Department, University of Cape Town, Cape Town, South Africa
Physics Department, University of Jammu, Jammu, India
Physics Department, University of Rajasthan, Jaipur, India
Physik Department, Technische Universität München, Munich, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Politecnico di Torino, Turin, Italy
Purdue University, West Lafayette, Indiana, United States
Pusan National University, Pusan, South Korea
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
Rudjer Bošković Institute, Zagreb, Croatia
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Russian Research Centre Kurchatov Institute, Moscow, Russia
Saha Institute of Nuclear Physics, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
Sezione INFN, Bari, Italy
Sezione INFN, Bologna, Italy
Sezione INFN, Cagliari, Italy
Sezione INFN, Catania, Italy
Sezione INFN, Padova, Italy
Sezione INFN, Rome, Italy
Sezione INFN, Trieste, Italy
Sezione INFN, Turin, Italy
SSC IHEP of NRC Kurchatov Institute, Protvino, Russia

SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France

Suranaree University of Technology, Nakhon Ratchasima, Thailand

Technical University of Košice, Košice, Slovakia

Technical University of Split FESB, Split, Croatia

The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland

The University of Texas at Austin, Physics Department, Austin, Texas, U.S.A.

Universidad Autónoma de Sinaloa, Culiacán, Mexico

Universidade de São Paulo (USP), São Paulo, Brazil

Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

University of Houston, Houston, Texas, United States

University of Jyväskylä, Jyväskylä, Finland

University of Liverpool, Liverpool, United Kingdom

University of Tennessee, Knoxville, Tennessee, United States

University of the Witwatersrand, Johannesburg, South Africa

University of Tokyo, Tokyo, Japan

University of Tsukuba, Tsukuba, Japan

University of Zagreb, Zagreb, Croatia

Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, France

V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia

Variable Energy Cyclotron Centre, Kolkata, India

Vinča Institute of Nuclear Sciences, Belgrade, Serbia

Warsaw University of Technology, Warsaw, Poland

Wayne State University, Detroit, Michigan, United States

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

Yale University, New Haven, Connecticut, United States

Yonsei University, Seoul, South Korea

Zentrum für Technologie transfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany