D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions root S-NN=5.02 TeV

Acharya, S.; Adamova, D.; Adolfsson, Jan; Aggarwal, MM.; Rinella, G.A.; Agnello, Maria; Ahammed, Z.; Ahmad, N.; U. Ahn, S.; Aiola, S.; Akindinov, A.; Alam, SN; Alba, J.L.B.; Albuquerque, DSD; Aleksandrov, D.; Alessandro, B.; Alfaro-Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Bearden, Ian; bsm989, bsm989; Pimentel, Lais Ozelin de Lima; Chojnacki, Marek; Thoresen, Freja; Gaardhøje, Jens Jørgen; Pacik, Vojtech; Nielsen, Børge Svane; Bourjau, Christian Alexander; Christensen, Christian Holm; Bilandzic, Ante; Gajdosova, Katarina; Zaccolo, Valentina; Zhou, You

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.120.102301

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

Download date: 07. apr., 2019
D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at √sNN = 5.02 TeV

S. Acharya et al.*

(ALICE Collaboration)

(Received 23 July 2017; revised manuscript received 16 November 2017; published 9 March 2018)

The azimuthal anisotropy coefficient v2 of prompt D0, D+, D++, and D*+ mesons was measured in midcentral (30%–50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair √sNN = 5.02 TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, |y| < 0.8, in the transverse momentum interval 1 < pT < 24 GeV/c. The measured D-meson v2 has similar values as that of charged pions. The D*+ v2, measured for the first time, is found to be compatible with that of nonstrange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.

DOI: 10.1103/PhysRevLett.120.102301

Quantum chromodynamics predicts that strongly interacting matter under extreme conditions of a high temperature and energy density undergoes a transition from the hadronic phase to a color-deconfined medium, called quark-gluon plasma (QGP) [1–4]. Heavy-ion collisions at ultrarelativistic energies provide suitable conditions for the QGP formation and for characterizing its properties.

Heavy quarks (charm and beauty) are predominantly produced in hard scatterings before the QGP formation [5,6]. Therefore, they experience all stages of the medium evolution, interacting with its constituents via elastic [7] and inelastic (radiation of gluons) [8,9] processes (see [6,10] for recent reviews).

Evidence of in-medium interactions and energy loss of charm quarks is provided by the strong modification of the transverse momentum (pT) distributions of heavy-flavor hadrons in heavy-ion collisions with respect to pp collisions. A large suppression of heavy-flavor hadron yields was observed for pT > 4–5 GeV/c in central nucleus-nucleus collisions at the RHIC [11–14] and the LHC [15–19].

Measurements of anisotropies in the azimuthal distribution of heavy-flavor hadrons assess the transport properties of the medium. The collective dynamics of the expanding medium converts the initial-state spatial anisotropy [20] into final-state particle momentum anisotropy. This anisotropy is characterized by the Fourier coefficients vn of the distribution of the particle azimuthal angle Ψ relative to the initial-state symmetry plane angle Ψn (for the nth harmonic) [21,22]. In noncentral collisions, the largest contribution corresponds to v2 = ⟨cos[2(Ψ − Ψ2)]⟩, called elliptic flow [22,23]. The D-meson v2 at low pT provides insight into the possible collective flow imparted by the medium to charm quarks [24], while at high pT it is sensitive to the path-length dependence of parton energy loss [25,26]. At low and intermediate pT, a fraction of charm quarks could hadronize via recombination with light quarks from the medium, leading to an increase of the D-meson v2 with respect to that of charm quarks [27–29]; the comparison of the v2 of D mesons without and with strange-quark content could be sensitive to these effects and to the charm coupling to the QGP and hadronic matter [30].

A positive heavy-flavor elliptic flow was observed in Au-Au collisions at √sNN = 200 GeV [11,31,32] and in Pb-Pb collisions at √sNN = 2.76 TeV [19,33–36]. Calculations based on heavy-quark transport in a hydrodynamically expanding medium describe the measurements [37–46]. Precise measurements of heavy-flavor v2 constrain model parameters, e.g., the heavy-quark spatial diffusion coefficient Ds in the QGP, which is related to the relaxation (equilibration) time of heavy quarks τQ = ⟨mQ/T⟩Ds, where mQ is the quark mass and T is the medium temperature [47].

In this Letter, we report on the v2 of D0, D+, D++, and, for the first time at the LHC, D*+ mesons, and their antiparticles, in Pb-Pb collisions at √sNN = 5.02 TeV, for the 30%–50% centrality class. The analysis uses Pb-Pb collisions collected with the ALICE detector [48,49] in 2015. The interaction trigger consisted in coincident signals in the two scintillator arrays of the V0 detector, covering full azimuth in the pseudorapidity (η) regions −3.7 < η < −1.7 and 2.8 < η < 5.1. Events from beam-gas interactions are removed using time information from the V0 and the neutron zero-degree calorimeters.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Only the events with a primary vertex reconstructed within ±10 cm from the detector center along the beam direction are analyzed. Events are selected in the centrality class 30%–50%, defined in terms of percentiles of the hadronic Pb–Pb cross section, using the amplitude of the V0 signals [50,51]. The number of selected events is 20.7 × 10^6, corresponding to an integrated luminosity L_{int} ≈ 13 μb^{-1} [51].

The D mesons and their antiparticles are reconstructed using the decay channels D^0 → K^-π^+, D^+ → K^-π^+π^+, D^{*+} → D^0π^+, and D_s^+ → φπ^+ → K^+K^-π^+. The analysis procedure [34,52] searches for decay vertices displaced from the interaction vertex, exploiting the mean proper decay lengths of about 123, 312, and 150 μm of D^0, D^+, and D_s^+ mesons, respectively [53]. Charged-particle tracks are reconstructed using the inner tracking system (ITS) and the time projection chamber (TPC), which are located within a solenoid magnet that provides a 0.5 T field, parallel to the beam direction. D^0, D^+, and D_s^+ candidates are defined using pairs and triplets of tracks with |η| < 0.8, p_T > 0.4 GeV/c, 70–159 TPC space points, and 2–6 hits in the ITS (at least one in the two innermost layers). D^+ candidates are formed by combining D^0 candidates with tracks with |η| < 0.8, p_T > 0.1 GeV/c, and at least three ITS hits. The selection of tracks with |η| < 0.8 limits the D-meson acceptance in rapidity, which varies from |y| < 0.6 for p_T = 1 GeV/c to |y| < 0.8 for p_T > 5 GeV/c. The main variables used to select the D candidates are the separation between the primary and decay vertices, the displacement of the tracks from the primary vertex, and the pointing of the reconstructed D-meson momentum to the primary vertex. For the selection of D_s^+ → φπ^+ → K^-K^+π^+ decays, one of the two pairs of opposite-sign tracks must have an invariant mass compatible with the φ-meson mass [53]. Further background reduction results from the particle identification. A ± 3σ window around the expected mean values of the specific ionization energy loss dE/dx in the TPC gas and time of flight from the interaction point to the time-of-flight (TOF) detector is used for each track, where σ is the resolution on the two variables. For D_s^+ candidates, tracks not matched to a hit in the TOF (mostly at low momentum) are required to have a 2σ compatibility with the expected dE/dx in the TPC. These selections result in signal-to-background ratios between 0.04 and 2.8 and a statistical significance between 3 and 20, depending on the D-meson species and p_T.

The second harmonic symmetry plane Ψ_2 is estimated, for each collision, by the event plane (EP) angle, denoted ψ_2, using the signals produced by charged particles in the eight azimuthal sectors of each V0 array. Effects of nonuniform V0 acceptance are corrected for using the gain equalization method [54]. The ψ_2 was calculated by classifying D mesons in two groups, according to their azimuthal angle relative to the EP Δφ = φ_D − ψ_2: in plane \([0, π/4)\) and \((3π/4, π)\), and out of plane \((π/4, 3π/4)\) and \((5π/4, 7π/4)\). Integrating the dN/dφ distribution in these two Δφ intervals, \(v_2\) can be expressed as [34]:

\[
v_2\{\text{EP}\} = \frac{1}{R^2} \frac{π N_{\text{in-plane}} - N_{\text{out-of-plane}}}{4 N_{\text{in-plane}} + N_{\text{out-of-plane}}},
\]

where \(N_{\text{in-plane}}\) and \(N_{\text{out-of-plane}}\) are the D-meson yields in the two Δφ intervals. The factor \((1/R^2)\) is the correction for the resolution in the estimation of the symmetry plane Ψ_2 via the EP angle ψ_2. It is calculated using three subevents of charged particles in the V0 and in the positive and negative η regions of the TPC [22]. The separation of at least 0.9 units of pseudorapidity (|Δη| > 0.9) between the D mesons and the particles used in the ψ_2 calculation suppresses nonflow contributions to \(v_2\) (i.e., correlations not induced by the collective expansion but rather by decays and jet production).

Simulations showed that the D-meson reconstruction and selection efficiencies do not depend on Δφ [34]; therefore, Eq. (1) can be applied using the D-meson raw yields, without an efficiency correction. The raw yields were obtained from fits to the D^0, D^+, and D_s^+ candidate invariant-mass distributions and to the mass difference \(ΔM = M(Kππ) - M(Kπ)\) distributions for D^{*+} candidates. In the fit function, the signal was modeled with a Gaussian and the background with an exponential term for D^0, D^+, and D_s^+ candidates and with the function \(a\sqrt{ΔM - m_{ππ}}e^{b(ΔM - m_{ππ})}\) for D^{*+} candidates. The mean and the width of the Gaussian were fixed to those obtained from a fit to the sum of the invariant-mass distributions in the two Δφ intervals, where the signal has a higher statistical significance. In the D^0 invariant-mass fit, the contribution of signal candidates with the wrong K-π mass assignment (about 2%–5% of the raw signal depending on p_T) was taken into account by including an additional term, parametrized from simulations with a double-Gaussian shape, in the fit function [34].

The measured D-meson yield includes the contributions of prompt D mesons, from c-quark hadronization or strong decays of D^* states, and of feed-down D mesons from beauty-hadron decays. The observed \(v_2\), measured with Eq. (1), is a linear combination of the prompt and feed-down contributions: \(v_2^{\text{obs}} = f^{\text{prompt}} v_2^{\text{prompt}} + (1 - f^{\text{prompt}}) v_2^{\text{feed-down}}\), where \(f^{\text{prompt}}\) is the fraction of prompt D mesons in the raw yields and \(v_2^{\text{feed-down}}\) is the elliptic flow of D mesons from beauty-hadron decays. To calculate \(v_2^{\text{prompt}}\) or \(v_2^{\text{feed-down}}\), a hypothesis on \(v_2^{\text{feed-down}}\) is used. The measured \(v_2\) of nonprompt J/ψ [19] and the available model calculations [37,55,56] suggest that 0 < \(v_2^{\text{feed-down}} < v_2^{\text{prompt}}\). Assuming a uniform probability distribution of \(v_2^{\text{feed-down}}\) in this interval, the central value for \(v_2^{\text{prompt}}\) is calculated considering \(v_2^{\text{feed-down}} = v_2^{\text{prompt}}/2\); thus, \(v_2^{\text{prompt}} = 2 v_2^{\text{obs}}/(1 + f^{\text{prompt}})\). The \(f^{\text{prompt}}\) fraction is estimated, as a function of p_T, as described in Ref. [57], using
the FONLL [58] calculation for the beauty-hadron cross section, the beauty-hadron decay kinematics from EvtGen [59], the reconstruction efficiencies for feed-down D mesons from the simulation, and a hypothesis for the nuclear modification factor of the feed-down D mesons, $R_{AA}^{\text{feed-down}}$. The nuclear modification factor is defined as the ratio of the p_T-differential yields in nucleus-nucleus and pp collisions scaled by the average number of nucleon-nucleon collisions in the considered centrality class [60]. By comparison of the R_{AA} of prompt D mesons [61] and J/ψ mesons from beauty-hadron decays [19] in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, the assumptions $R_{AA}^{\text{feed-down}} = 2R_{AA}^{\text{prompt}}$ for nonstrange D mesons and $R_{AA}^{\text{feed-down}} = R_{AA}^{\text{prompt}}$ for the D_s^+ meson are made to compute f_{prompt}.

The systematic uncertainty from feed-down on v_2^{prompt} was estimated by varying the central value of $v_2^{\text{feed-down}} = v_2^{\text{prompt}}/2$ by $\pm v_2^{\text{prompt}}/\sqrt{12}$, corresponding to ±1 rms of a uniform distribution in $0 < v_2^{\text{prompt}} < \infty$. The uncertainty on f_{prompt} was obtained from the variation of the FONLL calculation parameters and from the variation of the $R_{AA}^{\text{feed-down}}$ hypothesis in $1 < R_{AA}^{\text{feed-down}}/R_{AA}^{\text{prompt}} < 3$ for nonstrange D mesons [15] and $1 < R_{AA}^{\text{feed-down}}/R_{AA}^{\text{prompt}} < 3$ for D_s^+ mesons [52]. The value of the absolute systematic uncertainty from feed-down ranges from 0.001 to 0.030.

The other sources of systematic uncertainty are related to the signal extraction from the invariant-mass distribution, nonflow effects, and centrality dependence in the EP resolution correction R_2.

The signal extraction uncertainty was estimated by varying the background fit function and leaving the Gaussian width and mean as free parameters in the fit. Furthermore, an alternative method for the yield extraction based on counting the histogram entries in the signal invariant-mass region, after subtracting the background estimated from a fit to the sidebands, was considered. The absolute systematic uncertainties on v_2 due to the yield extraction range from 0.005 to 0.040 for D^0, D^+, and D^{*+} and from 0.015 to 0.070 for D_s^+ mesons. As a check of a possible efficiency dependence on Δp_T, the analysis was repeated with different selection criteria, and no systematic effect was observed.

The EP resolution correction R_2 depends on collision centrality [34]. The value used in Eq. (1) was computed assuming a uniform distribution of the D-meson yield within the centrality class. This value was compared with those obtained from the weighted averages of the R_2 values in narrow centrality intervals, using as weights either the D-meson yields or the number of nucleon-nucleon collisions. In addition, to account for the presence of possible nonflow effects in the estimation of R_2, its value was recomputed using two different pseudorapidity gaps between the sub-events of the TPC tracks with positive or negative η. A systematic uncertainty of 2% on R_2 was estimated.

The v_2 of prompt D^0, D^+, D^{*+}, and D_s^+ mesons in the 30%–50% centrality class is shown in Fig. 1. The symbols are positioned at the average p_T of the reconstructed D mesons: this value was determined as the average of the p_T distribution of candidates in the signal invariant-mass region, after subtracting the contribution of the background candidates estimated from the sidebands. The v_2 for D^0, D^+, and D^{*+} are consistent, and they are larger than zero in $2 < p_T < 10$ GeV/c. The D^0 v_2 is compatible with the measurement by the CMS Collaboration [62]. The average of the v_2 measurements for D_s^+ mesons in the three p_T intervals within $2 < p_T < 8$ GeV/c is positive with a significance of 2.6σ, where σ is the uncertainty of the average v_2, calculated using quadratic propagation for the statistical and uncorrelated systematic uncertainties (signal extraction) and linear propagation for the correlated systematic uncertainties (R_2 and feed-down correction). The average v_2 and p_T of D^0, D^+, and D^{*+},
shown in the bottom panel in Fig. 1, was computed using the inverse of the squared statistical uncertainties as weights. The systematic uncertainties were propagated treating the R_2 and feed-down contributions as correlated among D-meson species.

Figure 2 shows that the average v_2 of D^0, D^+, and D^{*+} at $\sqrt{s_{NN}} = 5.02$ TeV is compatible with the same measurement at $\sqrt{s_{NN}} = 2.76$ TeV ($L_{int} \approx 6$ mb$^{-1}$) [33], which has uncertainties larger by a factor of about 2 compared to the new result at 5.02 TeV. Note that the vertexing and tracking performance improved in 2015, and in Ref. [33] the correction for feed-down was made with the assumption $v^{\text{feed-down}}_2 = v^{\text{prompt}}_2$. The assumption used in the present analysis, $v^{\text{feed-down}}_2 = v^{\text{prompt}}_2/\sqrt{2}$, would increase the values at $\sqrt{s_{NN}} = 2.76$ TeV by about 10%.

The average D-meson v_2 is also compared with the $\pi^\pm v_2$ at $\sqrt{s_{NN}} = 2.76$ TeV measured with the EP method [63,64] considering a pseudorapidity separation of two units between η and the particles used to measure the EP angle, and the scalar-product method [65], also based on two-particle correlations. The comparison of the D-meson v_2 at $\sqrt{s_{NN}} = 5.02$ TeV and of the pion v_2 at $\sqrt{s_{NN}} = 2.76$ TeV is justified by the observation that the p_T differential v_2 of charged particles, which is dominated by the pion component, is compatible at these two energies [66]. The D-meson v_2 is similar to that of π^\pm in the common p_T interval (1–16 GeV/c), and it is lower in the interval below 4 GeV/c, the difference reaching about 2σ in 2–4 GeV/c, where a mass ordering of v_2 is observed for light-flavor hadrons and described by hydrodynamical calculations [65].

In Fig. 3, the average v_2 of the three nonstrange D-meson species is compared with theoretical calculations that include a hydrodynamical model for the QGP expansion (models that lack this expansion underestimated the D-meson v_2 measurements at $\sqrt{s_{NN}} = 2.76$ TeV in

$2 < p_T < 6$ GeV/c [34]). The BAMPS-el [44], POWLANG [45], and TAMU [38] calculations include only collisional (i.e., elastic) interaction processes, while the BAMPS-el+rad [44], LBT [46], MC@sHQ [43], and PHSD [42] calculations also include energy loss via gluon radiation. All calculations, with the exception of BAMPS, include hadronization via quark recombination, in addition to independent fragmentation. The MC@sHQ and TAMU results are displayed with their theoretical uncertainty band. All calculations provide a fair description of the nuclear modification factor of D mesons in central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV in $1 < p_T < 8$ GeV/c [15].

The v_2 measurement at $\sqrt{s_{NN}} = 5.02$ TeV is described by most of these calculations, in which the interactions with the hydrodynamically expanding medium impart a positive v_2 to charm quarks. The model-to-data consistency was quantified using the reduced χ^2 in the p_T interval where all calculations are available (2–8 GeV/c): The LBT, MC@sHQ, PHSD, and POWLANG models have $\chi^2/\text{ndf} < 1$, and the TAMU, BAMPS-el+rad, and BAMPS-el models have a χ^2/ndf of 4.1, 6.7, and 1.9, respectively. The χ^2 calculation includes the data uncertainties and the model uncertainties when available. For BAMPS-el+rad, the low value of v_2 is caused by the absence of the recombination contribution [44]. For TAMU, the rapid decrease of v_2 with increasing p_T is due to the lack of radiative energy loss, which is also reflected in R_{AA} values larger than the measured ones at high p_T [15]. For most of these calculations, the medium effect on heavy quarks can be expressed using the dimensionless quantity $2\pi TD_s(T)$ [47]. In the interval from the critical temperature for QGP formation $T_c \approx 155$ MeV [2] to $2T_c$, the ranges of $2\pi TD_s(T)$ are 1–2 for BAMPS-el, 6–10 for BAMPS-el+rad, 2–6 for LBT [67], 1.5–4.5 for MC@sHQ [6], 4–9 for PHSD [42], 7–18 for POWLANG [10], and 4–10 for TAMU [6]. The calculations that describe the data with $\chi^2/\text{ndf} < 1$ use $2\pi TD_s(T)$ in the range of 1.5–7 at T_c. Remarkably, this range is consistent with that obtained by the comparison of the $D^0 v_2$ in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV to
model calculations [32], and it includes the values obtained by lattice QCD calculations [68,69] which are independent of the collision energy, because they encode a property of the medium evaluated at a fixed temperature. The corresponding thermalization time [47] for charm quarks is
\[\tau_{\text{charm}} = \left(m_{\text{charm}}(T) / T \right) D_s(T) \approx 3-14 \text{ fm}/c \] with \(T = T_c \) and \(m_{\text{charm}} = 1.5 \text{ GeV}/c^2 \). These values are comparable to the estimated decoupling time of the high-density system [70]. It should also be pointed out that the models differ in several aspects, related to the medium expansion and the heavy quark-medium interactions both in the QGP and in the hadronic phase.

In summary, we have presented a measurement of the elliptic flow \(v_2 \) of prompt \(D^0, D^+, D^{*+}, \) and \(D_s^+ \) mesons in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \). The average \(v_2 \) of nonstrange \(D \) mesons was measured with statistical and systematic uncertainties smaller by a factor about 2 with respect to our measurement at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \). The results at the two energies are compatible within statistical uncertainties. The \(D_s^+ v_2 \) was for the first time measured at the LHC, although with a limited precision, and found to be compatible with that of nonstrange \(D \) mesons. The comparison of the \(D \)-meson \(v_2 \) with that of pions and with model calculations indicates that low-momentum charm quarks take part in the collective motion of the QGP and that collisional interaction processes as well as the recombination of charm and light quarks both contribute to the observed elliptic flow. The calculations that describe the measurements use heavy-quark spatial diffusion coefficients in the range of \(2\pi T D_s(T) \approx 1.5-7 \) at the critical temperature \(T_c \).

The ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research–Natural Sciences, the Carlsberg Foundation, and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI, and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg...
Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSTDA), Suranaree University of Technology (SUT), and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

[16] B. Abelev et al. (ALICE Collaboration), Production of Muons from Heavy Flavor Decays at Forward Rapidity in pp and Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 109, 112301 (2012).
[31] L. Adamczyk et al. (STAR Collaboration), Elliptic flow of electrons from heavy-flavor hadron decays in Au+Au

[34] B. Abelev et al. (ALICE Collaboration), Azimuthal anisotropy of D-meson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 90, 034904 (2014).

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

Benemerita Universidad Autónoma de Puebla, Puebla, Mexico

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

Budker Institute for Nuclear Physics, Novosibirsk, Russia

California Polytechnic State University, San Luis Obispo, California, United States

Central China Normal University, Wuhan, China

Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France

Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Rome, Italy

Chicago State University, Chicago, Illinois, United States

China Institute of Atomic Energy, Beijing, China

COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan

Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

Department of Physics, Aligarh Muslim University, Aligarh, India

Department of Physics, Ohio State University, Columbus, Ohio, United States

Department of Physics, Pusan National University, Pusan, Republic of Korea

Department of Physics, Sejong University, Seoul, Republic of Korea

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics and Technology, University of Bergen, Bergen, Norway

Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy

Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy

Dipartimento di Fisica and Astronomia dell’Università and Sezione INFN, Bologna, Italy

Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy

Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy

Dipartimento di Fisica ‘E.R. Cataniello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy

Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy

Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy

Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

European Organization for Nuclear Research (CERN), Geneva, Switzerland

Excellence Cluster Universe, Technische Universität München, Munich, Germany

Faculty of Engineering, Bergen University College, Bergen, Norway

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

Faculty of Science, P.J. Šafárik University, Košice, Slovakia

Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway

Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Gangneung-Wonju National University, Gangneung, Republic of Korea

Gauhati University, Department of Physics, Guwahati, India

Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

Helsinki Institute of Physics (HIP), Helsinki, Finland

Hiroshima University, Hiroshima, Japan

Indian Institute of Technology Bombay (IIT), Mumbai, India

Indian Institute of Technology Indore, Indore, India

Indonesian Institute of Sciences, Jakarta, Indonesia

INFN, Laboratori Nazionali di Frascati, Frascati, Italy

INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

INFN, Sezione di Bari, Bari, Italy

INFN, Sezione di Bologna, Bologna, Italy

INFN, Sezione di Cagliari, Cagliari, Italy

INFN, Sezione di Catania, Catania, Italy

INFN, Sezione di Padova, Padova, Italy

INFN, Sezione di Roma, Rome, Italy