Sensing and regulation of cell volume - we know so much and yet understand so little
Toft-Bertelsen, Trine L.; Larsen, Brian R.; MacAulay, Nanna

Published in:
Channels (Austin)

DOI:
10.1080/19336950.2018.1438009

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Sensing and regulation of cell volume – we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role?

Trine L. Toft-Bertelsen, Brian R. Larsen & Nanna MacAulay

To cite this article: Trine L. Toft-Bertelsen, Brian R. Larsen & Nanna MacAulay (2018) Sensing and regulation of cell volume – we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role?, Channels, 12:1, 100-108, DOI: 10.1080/19336950.2018.1438009

To link to this article: https://doi.org/10.1080/19336950.2018.1438009

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Accepted author version posted online: 09 Feb 2018. Published online: 09 Feb 2018.

Submit your article to this journal

Article views: 272

View related articles

View Crossmark data
Sensing and regulation of cell volume – we know so much and yet understand so little: TRPV4 as a sensor of volume changes but possibly without a volume-regulatory role?

Trine L. Toft-Bertelsen, Brian R. Larsen, and Nanna MacAulay

Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark

ABSTRACT
Cellular volume changes lead to initiation of cell volume regulatory events, the molecular identity of which remains unresolved. We here discuss experimental challenges associated with investigation of volume regulation during application of large, non-physiological osmotic gradients. The TRPV4 ion channel responds to volume increase irrespectively of the molecular mechanism underlying cell swelling, and is thus considered a sensor of volume changes. Evidence pointing towards the involvement of TRPV4 in subsequent volume regulatory mechanisms is intriguing, yet far from conclusive. We here present an experimental setting with astrocytic cell swelling in the absence of externally applied osmotic gradients, and the lack of evidence for involvement of TRPV4 in this regulatory volume response. Our aim with these new data and the preceding discussion is to stimulate further experimental effort in this area of research to clarify the role of TRPV4 and other channels and transporters in regulatory volume responses.

INTRODUCTION

Maintenance of cell volume is a homeostatic imperative for cells of most origins [1] and cellular responses suited to restore cell volume are set in motion in response to conditions causing cell swelling or shrinkage. Despite the widespread phenomenon and the numerous situations in which cell and tissue volume is compromised during physiology and pathophysiology, the molecular mechanisms governing cell volume homeostasis remain disputed and/or undefined. While many of the suggested volume regulatory (transport) mechanisms appear to sense volume changes, rather than aberrant changes in surrounding osmotic pressure, a few bona-fide osmo-sensing channels and transporters, i.e. BetP, ProP and OpuA have been discovered [2–6]. These membrane proteins sense changes in the osmolarity of the surrounding fluid via alterations in membrane properties/protein-lipid interactions and/or by changes in the intracellular K⁺ concentration, although direct effects via changes in the hydration state of the proteins cannot be excluded [7]. Despite the fact that abruptly arising, large osmotic challenges rarely, if ever, occur within mammalian tissue, a convenient, and therefore common, manner of investigating volume regulatory responses is by introduction of excessive non-physiological osmotic challenges of up to 250 mOsm [8–16]. It is, in addition, not unusual that hyposmotic challenges of this magnitude are experimentally obtained by a dilution of the physiological test solution with distilled water [13–15,17]. Although this experimental approach is intended to simply change the osmotic pressure, the ionic strength will be diminished. This dilution thus causes drastic changes within the ionic equilibrium potentials, associated with a shift in the membrane potential and, in addition, the driving forces for a range of ion channels and transporters. These side effects are predicted to introduce serious confounding elements into the experimental set-up and may thus skew the outcome. We recommend that mannitol is included in the control solution (equiosmolar replacement of NaCl) and its subsequent removal will thus reduce the osmolarity without affecting the ionic strength [9,18,19].

A range of studies imply a requirement for aquaporins (AQPs) for activation of volume-sensitive ion channels,
and possibly regulatory events, to take place [10,20,21] (Fig. 1). However, as AQPs are required to translate an abruptly introduced osmotic challenge into swift cell volume changes, the non-physiological experimental approach of introducing large osmotic gradients favors such conclusions [8,9,19,22]. In most physiological settings, the buildup of osmotic gradients will necessarily occur gradually with increased transmembrane transport activity and will represent the rate-limiting factor for cell swelling – rather than the osmotic water permeability (and hence AQP expression) of the cell membrane. Of interest, with a few exceptions such as pyramidal neurons [23] and stomach epithelium, the majority of cellular structures are rather water permeable even in the absence of AQPs, most likely via the multitude of water permeable cotransporters and uniporters present in these cells [24–26]. Striking examples are the AQP4-expressing astrocytes, the water permeability of which is reduced by only 50% (at 37°C) upon AQP4 knock-out [15] or knock-down [16]. As these cells are extremely water permeable to begin with, a 50% reduction of their osmotic water permeability still leaves them with the ability to equilibrate with a sudden osmotic challenge of −140 mOsm well within a few seconds, at the physiological temperature of 37°C (Fig. 2). It follows that a physiologically relevant gradual buildup of an osmotic gradient (e.g. 1 mOsm at a time) will be instantly equilibrated – whether AQP4 is expressed or not. This phenomenon was illustrated in an experimental setting with astrocytic cell swelling in the absence of an introduced osmotic challenge: During neuronal activity in murine hippocampal slices (achieved by electric stimulation), the extracellular space (ECS) shrinks, mainly due to astrocytic cell swelling [27,28]. Genetic deletion of AQP4 did not prevent, or even reduce, this cell swelling [21], illustrating that the osmotic water permeability of the astrocytic cell membrane does not represent the rate-limiting step during astrocytic cell swelling (at least under these experimental conditions). We later demonstrated that the stimulus-induced astrocytic cell swelling relies on cotransporter-mediated water transport [27].

Cell volume regulation

For cells to maintain their volume when faced with a stressor causing alterations in cell volume, their cellular response depends on a volume sensor coupled to a downstream mechanism causing transmembraneous shift of osmotic particles (either as separate entities or residing within one molecular transducer). Volume regulation most likely does not rely on one set of mechanisms but is rather predicted to depend on the molecular make-up of

Figure 1. Contribution of AQP4 to astrocytic swelling and Ca²⁺ signaling. A: Cortical slices from wildtype (filled symbols) and AQP4-deficient (open symbols) mice were exposed to a hyposmotic gradient (−20%, 60 mOsm (dashed lines)). Such osmotic challenge induced astrocytic swelling in slices from wildtype mice while these were non-detectable in slices from AQP4-deficient mice (marked with a red box), monitored with two-photon imaging of slices loaded with Texas red hydrazide. Verification of selective dye uptake in astrocytes was confirmed by two-photon imaging of slices from mice expressing GFP in astrocytes (Glt-1-EGFP BAC transgenic mice). A larger gradient of −30%, 90 mOsm (solid lines) induced similar swelling in slices from both strains of mice. B: Astrocytes from wildtype (top panel) and AQP4-deficient (lower panel) mice were loaded with Rhod2 AM and exposed to a hyposmotic gradient of −20% mOsm. Ca²⁺ dynamics were monitored ~200 sec after introduction of the osmotic challenge (and the equivalent swelling marked with the red box in panel A). At this time point, wildtype astrocytes displayed Ca²⁺ spikes while AQP4-deficient astrocytes did not, presumably due to their absent (or limited) cell swelling. Modified from [20] with permission.

Figure 2. Characterization of water transport in astrocytes from wildtype and AQP4-deficient mice. Primary culture of astrocytes from wildtype mice (top panel) or AQP4-deficient mice (lower panel) were faced with a hyposmotic challenge of −140 mOsm (marked with an arrow) as obtained by 1:1 dilution of PBS with distilled water. The cellular swelling was monitored at 12°C (left) or 37°C (right) by the calcein quenching method. Modified from [15] with permission.
of altered cell volume or, alternatively, secondarily to swelling-induced intracellular Ca\(^{2+}\) transients. Such Ca\(^{2+}\) dynamics may lead to activation of ion channels such as Ca\(^{2+}\)-dependent K\(^+\) channels [53,54] and/or initiation of cell signaling pathways with downstream activation of other transport mechanisms effectuating cell volume regulation. However, the linkage between cellular modulators that cause the volume-mediated Ca\(^{2+}\) dynamics and molecular pathways effectuating the volume regulatory response remains unresolved. Several volume-/stretch-sensitive Ca\(^{2+}\)-permeable channels have been identified [55–61], one of which is the transient receptor potential melastatin 4 (TRPV4) ion channel. TRPV4, also known as the vanilloid receptor related and osmotically activated channel (VR-OAC [62]) or the OSM9-like transient receptor potential channel, member 4 (OTRPC4 [62,63]), is a nonselective cation channel expressed in many cell types: i.e. Müller cells, astrocytes, in neurons of the circumventricular organs, in mechanosensitive neurons of the mammalian inner ear hair cells, in the epithelia of the trachea, oviduct, lung and cochlea, in the airway, blood vessels, and in certain segments of the kidneys [62–70], many of which are key mechanosensory and osmosensory tissues.

TRPV4 – an ion channel sensitive to abrupt volume changes

TRPV4 is a cation-permeable ion channel originally described as an osmo-sensor due to its activation by large hyposmotic challenges [63,71]. With such externally applied osmotic challenges, co-expression of an(y) AQP promotes the fast rate of osmotically-induced cell swelling leading to TRPV4 activation in astrocytes, Müller cells, and TRPV4-expressing oocytes [8,9,19,22]. However, TRPV4 activation readily occurred by cell swelling induced by cotransport of water in the absence of an externally applied osmotic challenge and presence of an AQP [9] and TRPV4 is therefore a genuine sensor of abrupt volume changes irrespective of the origin of the cell swelling. This observation thus promotes the term ‘volume-sensitive’ rather than ‘osmo-sensitive’ [9]. Nevertheless, the structural determinant underlying the repeatedly observed coupling of cell swelling to TRPV4 channel opening [8–11,19,22,62,63] remains unresolved.

With its robust activation upon cell volume increase, TRPV4 has been proposed as a candidate to translate cell swelling to cell volume regulation
via its Ca$^{2+}$ permeability, which places it in a favorable position as a main conductor of the Ca$^{2+}$ influx required for volume regulatory mechanisms in some settings. The studies addressing the role of TRPV4 in regulatory volume responses were all performed by introduction of a non-physiologically large hyposmotic challenge, which is likely to introduce experimental confounders that may complicate the identification of the volume sensor and/or the molecular mechanisms effectuating the regulatory volume decrease. Of note, as TRPV4-mediated Ca$^{2+}$ influx, in itself, cannot generate regulatory volume decrease, TRPV4 activity must necessarily couple to downstream effectors, currently unidentified, which then promote the loss of electrolytes and water.

Contribution of TRPV4 to cell volume regulation during physiological relevant events

To investigate a potential role for TRPV4 in regulating cell volume during a physiologically relevant cell swelling in situ, independent on an applied osmotic gradient, we approximated a native setting by using acute hippocampal brain slices from rats. Neuronal activity in the brain causes release of K$^{+}$ into the ECS where astrocytes act as K$^{+}$ sinks to prevent extracellular K$^{+}$ accumulation and a subsequent widespread depolarization [28,79–82]. In parallel with the management of K$^{+}$, the ECS shrinks [27,28,83–85], a phenomenon primarily attributed to the swelling of nearby astrocytic structures [83,85–86]. Thus electrical stimulation resulting in synaptic activity leads to a brief change in cell volume without application of an osmotic gradient to the test solution. This experimental scenario allowed us to test the involvement of TRPV4 in the return of astrocytic cell volume following the stimulus-evoked cell swelling. The relative change in size of the ECS was monitored via a tetramethyl ammonium (TMA$^+$)-sensitive microelectrode upon bath application of TMA$^+$ (1.5 mM) as described in detail in [27,28]. In brief: Electrical stimulation of the CA1 Schaeffer collaterals of the hippocampus results in a shrinkage of the ECS and thus an increase in concentration of the membrane impermeable TMA$^+$. This volume trace then serves as an indirect readout of (astrocytic) cell swelling; see representative traces of stimulus-evoked ECS shrinkage illustrated in (Fig. 3A-C, left). To resolve the involvement of TRPV4 in the volume response, the non-selective TRPV4 inhibitor ruthenium red (RR; 1 μM) was applied to the recording chamber and the volume response recorded after ~6 min (Fig. 3A). An additional volume response was recorded after another 10 min of inhibitor incubation to ensure that the inhibitor had reached its full effect at the time of recording (for all test conditions). Inhibition of TRPV4 caused a slight increase in peak ECS shrinkage (to 105.5 ± 1.4% of control, $p < 0.05$, n = 7 slices from 4 rats) (Fig. 3A, right) but did not affect the regulatory
Volume regulation is an essential property of all cell types and a range of volume-sensing ion channels and transporters have been revealed and implicated in cell volume regulation throughout the years. Nevertheless, the finer details regarding exactly how volume changes occur in physiology, and which mechanisms are involved in returning cell volume to its origin, remain largely unresolved. TRPV4 is a well-established sensor of volume changes, although predominantly during swift cell swelling [9]. Regardless, its implication in the subsequent cell volume regulatory events is less evident, and possibly not even pertinent under more physiological experimental conditions, in which cell swelling is obtained in the absence of externally applied osmotic gradients. For reasons of technical ease, experimenters often introduce such non-physiologically large osmotic gradients to study the ensuing volume-dependent activity of transporters and ion channels. While cell swelling/shrinkage is readily obtained in this manner, mammalian cells hardly experience these conditions in situ and we may simply be studying a different rate-limiting step under such circumstances. Cells exposed to an osmotic gradient ought to swell to a similar degree, whether or not an AQP is expressed, and whether or not the osmotic gradient is applied externally or from altered cellular transport activity in vivo. However, the rate with which it swells will depend on expression of an AQP. Abrupt introduction of a large osmotic gradient will thus allow investigation of cellular responses to a swift cell swelling of a magnitude and speed rarely observed in physiology and most prominently in settings with expression of an AQP. As a range of pathologies are associated with altered fluid dynamics, it is imperative that the research field as a whole obtains better tools as well as understanding of the molecular mechanisms underlying these fascinating volume regulatory properties. Our aim with this follow-up article is to pinpoint a few potential pit-falls along the path to reach this understanding.

Conclusion

Volume regulation is an essential property of all cell types and a range of volume-sensing ion channels and transporters have been revealed and implicated in cell volume regulation throughout the years. Nevertheless, the finer details regarding exactly how volume changes occur in physiology, and which mechanisms are involved in returning cell volume to its origin, remain largely unresolved. TRPV4 is a well-established sensor of volume changes, although predominantly during swift cell swelling [9]. Regardless, its implication in the subsequent cell volume regulatory events is less evident, and possibly not even pertinent under more physiological experimental conditions, in which cell swelling is obtained in the absence of externally applied osmotic gradients. For reasons of technical ease, experimenters often introduce such non-physiologically large osmotic gradients to study the ensuing volume-dependent activity of transporters and ion channels. While cell swelling/shrinkage is readily obtained in this manner, mammalian cells hardly experience these conditions in situ and we may simply be studying a different rate-limiting step under such circumstances. Cells exposed to an osmotic gradient ought to swell to a similar degree, whether or not an AQP is expressed, and whether or not the osmotic gradient is applied externally or from altered cellular transport activity in vivo. However, the rate with which it swells will depend on expression of an AQP. Abrupt introduction of a large osmotic gradient will thus allow investigation of cellular responses to a swift cell swelling of a magnitude and speed rarely observed in physiology and most prominently in settings with expression of an AQP. As a range of pathologies are associated with altered fluid dynamics, it is imperative that the research field as a whole obtains better tools as well as understanding of the molecular mechanisms underlying these fascinating volume regulatory properties. Our aim with this follow-up article is to pinpoint a few potential pit-falls along the path to reach this understanding.

Abbreviations

- AQP4 aquaporin 4
- ECS extracellular space
- GAPDH Glyceraldehyde 3-phosphate dehydrogenase
- GSK101 GSK1016790A
- OTRPC4 QSM9-like transient receptor potential channel, member 4
- RR ruthenium red
- SPAK/WNK SPS1-related proline/alanine-rich kinase/with no lysine
- TMA+ tetramethyl ammonium
TRPV4
Transient receptor potential vanilloid 4

VR-OAC
Vanilloid receptor related and osmotically activated channel

Acknowledgments

We are grateful for the technical assistance provided by Anca Stoica.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

This project was supported by the VELUX Foundation [VELUX33842] (TLTB), the Lundbeck Foundation [R151-2013-14120] (BRL), and the Novo Nordisk Foundation [NNF15OC0017052] (BRL).

ORCID

Trine L. Toft-Bertelsen [http://orcid.org/0000-0001-9009-0094]

Brian R. Larsen [http://orcid.org/0000-0003-2654-6645]

Nanna MacAulay [http://orcid.org/0000-0002-7800-6600]

References

