The red-blue conundrum
an archaeo-linguistic approach to red dyes and blue flowers in prehistory
Nørtoft, Mikkel Johansen

Published in:
Archaeological Textiles Review

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
Unspecified

Citation for published version (APA):
ARCHAEOLOGICAL TEXTILES REVIEW

2017 issue
Contents

Editorial

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial</td>
<td>2</td>
</tr>
</tbody>
</table>

Articles

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Weaving Sword at Miletus? Combat or Weaving Sword and the Complexities of Gender Construction</td>
<td>3</td>
</tr>
<tr>
<td>Laura B. Mazow</td>
<td></td>
</tr>
<tr>
<td>First Identification of Club Moss Use in Roman Britain</td>
<td>17</td>
</tr>
<tr>
<td>Margarita Gleba, Elizabeth M. Fouls, Al Teasdale and Hannah Russ</td>
<td></td>
</tr>
<tr>
<td>Reconstructing the Tunic from Lendbreen in Norway</td>
<td>24</td>
</tr>
<tr>
<td>Marianne Vedeler and Lena Hammarlund</td>
<td></td>
</tr>
<tr>
<td>Making a Reconstruction of the Egtved Clothing</td>
<td>33</td>
</tr>
<tr>
<td>Ida Demant</td>
<td></td>
</tr>
<tr>
<td>The Red-Blue Conundrum: an Archaeo-linguistic Approach to Red Dyes and Blue Flowers in Prehistory</td>
<td>44</td>
</tr>
<tr>
<td>Mikkel Nørtoft</td>
<td></td>
</tr>
</tbody>
</table>

Projects

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The Central Timna Valley Project: 5 Years of Ongoing Textile Research</td>
<td>67</td>
</tr>
<tr>
<td>Vanessa Workman, Orit Shamir, Naama Sukenik, Margarita Gleba and Erez Ben-Yosef</td>
<td></td>
</tr>
<tr>
<td>The Gallo-Roman Textile Collection from Les-Martres de-Veyre in France</td>
<td>71</td>
</tr>
<tr>
<td>Catherine Breniquet, Marie Bèche-Wittmann, Christine Bouilloc and Camille Gaumat</td>
<td></td>
</tr>
<tr>
<td>The Textile from Tvis in Denmark</td>
<td>82</td>
</tr>
<tr>
<td>Ulla Mannering</td>
<td></td>
</tr>
</tbody>
</table>
Conferences

Consuming Clothes (Glasgow, UK) 85
David Lumb

Interweaving Cultures (Madrid, Spain) 86
María Consuelo Escandell Ferrando

The Competition of Fibres (Berlin, Germany) 88
Ana Grabundzija and Chiara Schoch

Mixtura Texturalis. People and Textiles in the Carpathian Basin (Budapest, Hungary) 90
Viktória Kiss, Judit Pásztókai-Szeőke and Boglárka Weisz

NESAT XIII (Liberec, Czech Republic) 92
John Peter Wild

Dynamics and Organisation of Textile Production in Past Societies (Łódź, Poland) 93
Agata Ulanowska, Małgorzata Siennicka and Małgorzata Grupa

Plants as Fibre Resources: Approaches from the Science and Art Perspectives (Maastrict, Netherlands) 96
Jenni A. Suomela

Early Textiles Study Group (Cambridge, UK) 97
Gwendoline Pepper

CIETA Conference (St Petersburg, Russia) 98
Susanne Lervad

Egyptian Textiles and Their Production: Word and Object (Copenhagen, Denmark) 99
Marie-Louise Nosch

Resources: New Books 101

News 110
Introduction
This study explores the linguistic origins of the English word *madder* in Proto-Indo-European (PIE). The reconstructed PIE language is the ancient mother tongue of such language branches as Germanic, Italic (with Latin), Greek, Celtic, Slavic, Baltic, Hittite, Tocharian and many others.

When investigating cultural words in the Indo-European languages and comparing them with archaeological findings, it is important to consider where and when the speakers of the Proto-Indo-European language, as well as its descendants, lived. This matter has been the subject of great debate. One group of archaeologists claimed an Indo-European “homeland” in Anatolia 8000 to 6000 BC (Renfrew 1995, but recently largely conceded, Renfrew 2017). Another group of comparative linguists (and other archaeologists) claimed a homeland in the Pontic-Caspian steppes 4500 to 2500 BC (Mallory 1989; Anthony 2007). Recently, two major independent studies (with more to follow) in the new field of ancient genomics have provided strong support for the steppe-hypothesis, and a large migration of Indo-European speakers of the Pontic-Caspian semi-nomadic pastoralist Yamnaya culture into Central and Northern Europe forming the Corded Ware culture around 3000 BC (Allentoft et al. 2015; Haak et al. 2015) (fig. 2).

This paper adopts the steppe hypothesis in order to discuss the etymological origins of the English plant name *madder*, and cross reference it with archaeological finds.

Proto-Germanic (the latest reconstructable stage of all the historical Germanic language branches) is thought by most linguists to have been spoken from c. 500 BC to AD 200, probably in southern Scandinavia (Ringe 2006, 67; Schrijver 2014, 158).

The main objective of this paper is to find the missing link between *madder*-red and the original PIE meaning of “blue”, this paper widens the scope of dye plants to others with pigmented roots. It suggests that the missing link could be a blue-flowered plant species from the Boraginaceae family which has red-pigmented roots, perhaps originally used for cosmetics.
and their pigmented roots are known for their use as cosmetics. Most of these contain naphthoquinone pigments such as alkannin, shikonin and their many derivatives, but only some Boraginaceae genera have species with concentrations high enough to be used in dyeing. The best known are *Alkanna*, *Lithospermum*, *Onosma*, and *Arnebia* (Cardon 2007, 60–74). Dyed textiles exist from the southern end of the Pontic-Caspian region (late 4th millennium BC), but their specific dyestuffs are unknown. If people in this region dyed with Rubiaceae, Boraginaceae or completely different plants there is no evidence of which plants they used (Shishlina et al. 2003). The English word *madder* can be traced back to PIE through sound laws (see info box on p. 52 for an explanation of sound laws), which makes it worth exploring in the quest for the origins of early Indo-European dyestuffs.

Madder and its wild sisters

The madder-plant has been important across Eurasia for obtaining a red textile dye from different red anthraquinone dyestuffs, primarily alizarin, purpurin and rubiadin. “Madder-plants” and “madder-type plants” refer here to any of the dyestuffs or plants from the Rubiaceae family specifically *Rubia*, *Galium*, or *Asperula*.

There are different species of which one in particular has been cultivated (*Rubia tinctorum* containing primarily alizarin). It is native to the Middle East and the eastern Mediterranean, but also cultivated in southern and central Europe. Others have been gathered from the wild, and are also known as wild madder, bedstraw and woodruff (*Rubia peregrina*, *Galium* and *Asperula*). They contain primarily pseudopurpurin, purpurin and rubiadin. The wild species are native to most of Europe, and some to many parts of Asia (Cardon 2007, 108, 112, 122–28).

The roots of madder are usually harvested in early autumn when the plant is three years old, and then washed and dried. They are best used crushed or ground finely to free as much of the colourants as possible in the dye bath. A madder dyeing recipe is found on a Babylonian tablet as early as the 7th century BC, describing how red wool can be obtained by boiling it in water with alum, and then boiling it again with madder in water mixed with bran water. However, it is normally only heated slowly to 75 °C or 80 °C, because the wool can turn brown at too high a temperature. The use of alum opens the scales of the wool so the pigment is better fixed to the fibres (Cardon 2007, 113–14, 127).

A wide range of colours can be obtained with madder, depending on the age of the plant and the soil conditions and whether the roots are fresh, dried or fermented. Other factors such as the pH value, natural wool colour, dyeing method (heating, fermentation or double dyeing), and the choice of mordant (copper, iron, tin, chromium or aluminum from plants or minerals) also play a role in the final result. The colour range is especially wide when madder is combined with other dyes, such as weld (*Reseda luteola*) for orange yellows, with tannins for browns or with woad (*Isatis tinctoria*) for violets and blacks, as found in textiles from Masada, Israel (AD 66 to 74). The madder dye technology was especially refined by dyers in Medieval Europe with the rise of the wool cloth industry (Cardon 2007, 113–16).

Before the dyestuff alizarin was synthesised in the 19th century (Chenciner 2000, 258–66), the red dyes produced with madder were a luxury product, emphasising status and identity for hundreds of years. Apart from other subspecies of the *Rubia* genus, some of which have been detected through textile dye analyses (*Rubia cordifolia*, *Rubia peregrina* and *Rubia akane*) in

Symbols and abbreviations

- *= reconstructed word in a proto-language
- ‘ ‘ = used for the translated meaning of a word
- “ “ = literal translation
- () = botanical name
- => = developed into
- <= = developed from
- >>> = borrowed into
- <<< = borrowed from
- PIE = Proto-Indo-European
- s.v. = Latin sub verbo/voce ‘(see) under the word X’, used in database references
Galium and Asperula have been used for dyeing red. These are characterised by their much lower alizarin content compared to purpurin and/or rubiadin (Cardon 2007, 127).

According to various literary and ethnographical sources, Galium boreale and G. mollugo are preferable as substitutes for the cultivated Rubia tinctorum. Others recommend Galium verum (fig. 3), G. sylvaticum or G. aparine. These options may depend on availability and soil conditions in different regions (Grierson 1986, 77; Cardon 2007, 127–28).

The use of woodruff (Asperula sp.) instead of Rubia tinctorum has also been reported (Don 1834, 638) and Linné has similar accounts for Asperula in 1742 (Anderberg & Anderberg 2016, s.v. "Asperula tinctoria") (fig. 4). An underinvestigated species in the Rubiaceae family in terms of dyeing, is field madder (Sherardia arvensis) (fig. 5) which, according to one author, should give a pinkish dye (Riley 1997). Thus far, no further information about it as a dye plant and no chemical dye analysis has come to light. It grows across Europe and in the Caucasus (fig. 5). Asperula arvensis, native to southern Europe and Asperula orientalis/azurea, native to Mediterranean and Middle Eastern regions have blue flowers (fig. 6), but there is no evidence for either as a dye plant. Suggesting they were used for dyeing in prehistory is therefore problematic (Anderberg & Anderberg 2016, s.v. “Asperula”).

Reddish dyes in prehistory

One method of determining whether prehistoric textiles were dyed with them or any other plant is by performing dye analyses such as high performance liquid chromatography (HPLC). These techniques have shown that, at least since the Early Iron Age in Scandinavia (c. 500 BC to AD 400), organic dyes from plants have been used to dye textiles (Vanden Berghe et al. 2009). Similar analyses have been carried out on textiles from the Iron Age in Hallstatt, Austria, and the Bronze Age in Xinjiang, China, both showing (among others) the dyestuff alizarin, which is predominant in Rubia tinctorum (Zhang et al. 2008; Grömer 2013, 193; Hoffmann-de Keijzer et al. 2013; Kramell et al. 2014). See table 1 for a list of madder-dye finds.

Apart from the many instances of alizarin detected in prehistoric textiles, some Hallstatt textiles from the Bronze Age (HallTex 205 (fig. 1) and HallTex 242), contain predominantly purpurin, indicating the use of other Rubiaceae, such as Galium verum, Asperula sp., or Rubia peregrina (Hoffmann-de Keijzer et al. 2013, 147–49). The same is true for a textile in Högom, Sweden from the Migration Period (AD 400 to 540) (Vanden Berghe et al. 2009, 1920) and for a silk rope from Japan) (Mouri & Laursen 2012), also the wild genera Galium and Asperula have been used for dyeing red. These are characterised by their much lower alizarin content compared to purpurin and/or rubiadin (Cardon 2007, 127).
The earliest securely dated madder-dyed textile, dyed without the use of alum mordant, is in Egypt from Tel-el-Amarna c. 1350 BC. A later find with madder fixed on alum-mordanted linen textiles from the royal hoard at Deir el-Bahri, Egypt, is dated to c. 1050 BC (Cardon 2007, 119).

The earliest madder-type dye in Scandinavia is from the Early Iron Age, in the Skærsø textile (1st century BC), but other unspecified red dyes, although heavily degraded were also detectable at trace level (Vanden Berghe et al. 2009, 1912, 1919). Further, ellagic acid, probably tannin, was detected in some of the textiles.
that they were dyed, but that the dyestuffs had been degraded enough to fall below trace level, since the oak coffins also have an acidic environment, and are considerably older. Thus, the dyeing of textiles could have taken place in Scandinavia contemporarily with the Hallstatt and Xinjiang textiles of the Bronze Age, although the specific dyestuffs in Bronze Age Scandinavia are unknown.

Occasionally, a red colour can be observed on a textile but with no dyestuff being detected in HPLC analysis, as is the case with the red textiles from Hammerum, c. AD 200 (Mannering & Ræder Knudsen 2013, 158) and Lønne Hede, 1st century AD (Scharff & Sommer 2011).

In contrast, the Danish Bronze Age oak coffin textiles show no dyes, but some of them tannins (Frei et al. 2017, supplementary data), which could also indicate a mordant or dye (Vanden Berghe et al. 2009, 1918). Therefore, as with Huldremose I, it is possible that they were dyed, but that the dyestuffs had been degraded enough to fall below trace level, since the oak coffins also have an acidic environment, and are considerably older. Thus, the dyeing of textiles could have taken place in Scandinavia contemporarily with the Hallstatt and Xinjiang textiles of the Bronze Age, although the specific dyestuffs in Bronze Age Scandinavia are unknown.

Occasionally, a red colour can be observed on a textile but with no dyestuff being detected in HPLC analysis, as is the case with the red textiles from Hammerum, c. AD 200 (Mannering & Ræder Knudsen 2013, 158) and Lønne Hede, 1st century AD (Scharff & Sommer 2011).
<table>
<thead>
<tr>
<th>Year of Excavation</th>
<th>Location</th>
<th>Technique</th>
<th>Weight of Evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 BC</td>
<td>China</td>
<td>Analysis</td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>2100 BC</td>
<td>Egypt</td>
<td>Evidence</td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>1000 BC</td>
<td>Greece</td>
<td>Observation</td>
<td>Weak</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Early evidence for madder-type dyes on textiles in prehistory.
2016). In these cases, it can be difficult to determine the source of the dyestuff (if present). However, an experiment with the roots of the tannin dye plant *Potentilla erecta* has been carried out in order to dye red by fermentation instead of boiling. This yielded a bright red colour, but only ellagic acid (and its equivalents) was detected in the dye analysis. Furthermore, *Potentilla erecta* has been known in ethnographical sources from Finland to be used as a source for dyeing and tanning red colours (Vajanto 2015, 49–50, 103, 104 (App. 5); Scharff & Sommer 2016). Thus, it is evident that a wide range of red dyestuffs, some still unknown, could have been used in prehistory.

It is possible to trace the practise of colouring and dyeing textiles back to the 4th millennium BC. In the Cave of the Warrior in Wadi el-Makkukh, near Jericho, Palestine, a large textile is sprinkled with red spots of haematite (red ochre) and iron oxide. It also has a decorative weft thread on the end of the warp with a dark brown colour that, although unidentified, was shown to have been dyed prior to weaving (Koren 2006, 182-84).

A similar find has been made in the Majkop/Novosvobodnaya textiles in the steppes of Southern Russia north of the Caucasus, i.e. on the edge of the Indo-European “homeland”. These textiles are indirectly dated to c. 3400–3100 BC (Anthony 2007, 63). They contain the oldest wool found to date, dyed with an unidentified dark-brown tannin dyestuff in the fibres and a mineral (montroydite) red colour painted or sprinkled on the textile. There are, however, some indications that the textile could have been imported to northern Caucasus. The evidence for this is the spin direction, tablet-weaving technique, raw materials, and the similarity of this textile to the textiles of the Cave of the Warrior (Shishlina et al. 2003, 331, 337). Apart from wool, the finds from this site also contained linen fibres, as well as cotton-like fibres. Since cotton cultivation is not reported in the northern Caucasus for this period, but in Mehrghar, Pakistan (c. 5000 BC) and North Arabia (4450–3000 BC), it could be another indicator of import (Betts et al. 1994; Shishlina et al. 2003, 338–39). Although the specific dyestuff has not been tested in the early steppe textiles, it is clear that dyeing of textiles took place at least in the second half of the 4th millennium BC, whether or not it was local or imported to the northern Caucasus. Unfortunately, no dye analyses have been made on the dyed steppe textiles from Novosvobodnaya/Klady. A textile from Sugokleya Kurgan in Ukraine, examined by Margarita Gleba was unfortunately impregnated with acrilate (Gleba 2009, 7), which may present problems for dye analyses in the future.

Nevertheless, all of these examples demonstrate that dyeing with red plant roots was an established part of European prehistoric textile production.

Plant name research

Plant names can be very difficult to research historically and etymologically. Wild plants often have many synonyms. A name for one species spreads to another species because of similarity in appearance, usage or folk tales. Sometimes, the spread of a plant name across species can originate from an earlier nomenclatural prototype. One example is the spread of the names *marzanilla*/*chamomilla* in Spain from an original group of “proto-species”. These two names went from being used in Spain about species with similar flowers, of which some were herbal remedies, to being used about a total of 62 different species whether grouped by appearance or similar use (Morales & Pardo-de-Santayana 2010).

Another issue is the loss of local plant names due to the influence of literary tradition. Examples are the dominant literary languages Latin and Greek, which by means of great literary works from Dioscorides, Pliny and Theophrastus, influenced plant names in many languages, and were used by later authors such as Carl von Linné. Local plant names in languages with less literary traditions were often undocumented and forgotten when other more industrial plants were imported from other countries.

The best case for researching the deeper origins of a plant name occurs when a word apparently defies analysis. The name of a plant can retain and follow regular sound laws, or even retain older pronunciations. Such a word in English is *madder* and its cognates (= related words). Its name does not relate to any other original lexemes in Germanic vocabulary.

Cognates of English madder

Germanic cognates

The Germanic language branch comprises the sub branches:

- West Germanic (English, Dutch, Frisian, and the German dialects)
- North Germanic (Old Norse and its descend-ants Danish, Swedish, Norwegian, Icelandic, and Faroese)
- East Germanic (Gothic, now extinct).

The historical spread of the words in this section can be seen in fig. 7. English *madder* (*Rubia*) is recorded in Old English with the variants *maddre*, *médre*, *madere*, *mêderu*, *medere*, *meder*, *Rubia* and *Galium*). The
Fig. 7. Diagram of the proposed semantic and phonological development and spread of PIE "modʰ-". Dotted lines into blue bubbles indicate a loanword exchange.
blue-flowered Rubiaceae Sherardia arvensis) is known in Modern English as madderlen (a term coined in 1786), and as (blue) field madder with older forms in Old English feldmædere, feldmedere (here with an unexplained mistranslation ‘rosemary’) (Bierbaumer & Sauer 2007, s.v. “madder”, “feldmædere”). Old English is part of the West Germanic branch which also includes Old High German with the cognate matara (Rubia) (Britten & Holland 1886, 318; Toller & Bosworth 1921, 654; Vasmer 1955, II:106; De Vries 1962, 375; Holthausen 1974, 210; Orel 2003, 252). There could be an r-less variant in Proto-Germanic *madō- to explain the problematic form in West Frisian mīde ‘madder’, which perhaps spread to Middle Low German and Middle Dutch miède, ‘madder’, and Dutch mee-krap ‘madder’ (Kroonen 2013, 346).

In the North Germanic branch, we have Norwegian maure, New Norwegian modre, mora, Swedish måra, madra (Galium, Asperula tinctoria), and blå-madra for another Rubiaceae (Sherardia arvensis). All these North Germanic names go back to Old Norse modra (and in place names in Norway and Iceland) from an earlier Proto-Norse *madrō (Fritzner 1954, 618; Falk & Torp 1960, 705–6; De Vries 1962, 375; Kylstra et al. 1996, 2:254; Magnússon 2008, 597; Anderberg & Anderberg 2016, s.v. “Rubiaceae”).

From all these, it is possible to reconstruct a Proto-Germanic *madrā-, showing variants with (for West Germanic), or without (for North Germanic), an internal -a-. This variation is still seen in Old English mædere, mædre.

An internal Proto-Germanic *-a- is also suggested by borrowings from Germanic to some Finno-Ugric languages in the Baltic area (Kroonen 2013, 346), perhaps already at a Proto-Germanic stage into the Iron Age Proto-Finnic *matara. This developed into Finnish matura (Galium), sini-matara (“blue madder”, Sherardia arvensis), Estonian madar (genitive madara) (Galium), madarik (the blue Sherardia arvensis), lõhnar madar (“scented madder”, Asperula), Ludian madaro ‘orange/red-dyeing lichen species (Parmelia saxatilis)’ (Lönnrot 1802, 1047; Kujola 1944, 226; Tamm 1981, 286; Saapak 1982, 470; Griersen 1986, 186–87), Karelian matara, matara ‘plant, from which a red or yellow dyestuff is collected’, and Ingrian mättärä ‘dyestuff (lichen or moss)’ (Virtaranta & Virtaranta 1983, 278; Kylstra et al. 1996, 2:254). The name has been further borrowed into Latin as madaras and into Russian as matura (Galium boreale) (Berneker 1913, 67). It is evident from the material presented here that this word has come to be associated with both Rubiaceae and lichen species in the languages of northern Europe.

As the evidence suggests, many of these names denote the cultivated Rubia tinctorum, but as the same name seems to appear for other Rubiaceae species, such as Galium, Asperula and Sherardia, it may be that the literary tradition produced the names for the cultivated Rubia species, and thus the prehistoric equivalent of the word could have been assigned to the wild Rubiaceae. Anthony Esposito (2003, 233) goes as far as stating: “The word in [Old English] and [Old Norse] could not originally have denoted the exotic Rubia, but probably belonged to various species of the allied genera Asperula and Galium, some of which are still used as substitutes for madder.”

However, as the Iron Age textiles from Hallstatt and one of the Pre-Roman Iron Age textiles from Denmark show predominantly alizarin (= Rubia tinctorum) in one sample, as well as alizarin + purpurin (Galium, Asperula, Rubia peregrina or similar) in a tassel (Van den Berghe et al. 2009, 1917, 1918), it is likely that this word was used about both the wild and cultivated plants, in the sense ‘red-dyeing plant/root’ at the time of Proto-Germanic.

From Proto-Germanic *madrō-, it is possible to work way backwards by means of sound laws to Pre-Proto-Germanic/late PIE *madrō- (regularly *a < *o, *ō < *ā, *d < *d̄) and further back to PIE *modro- *elh₂ (regularly *-ē > feminine *-er-elh₂ in the Proto-Indo-European system (Beekes & De Vaan 2011, 199, 220)).
Cognates to Proto-Germanic *madrő-

There are formal cognates (i.e. related words conforming to the sound laws) to the Proto-Germanic *mad(a)rő- in the Slavic branch of Indo-European, e.g. in the West Slavic sub branch: Czech modrý, H. Slovak modrý; Polish modry, Slovenian modrī, Upper Sorbian mődəry, they all mean ‘blue’, and not ‘red’, which is problematic for the reconstructed meaning of the PIE word.

The same meaning can be seen in the South Slavic branch, e.g.: Serbo-Croatian mődăr, t. mődra, n. mődro; mődăr (Croatian), f. mődra, n. mődro and Slovene mődar, f. mődra, also meaning ‘blue’. All these words would go back to a Proto-Slavic *modró ‘blue’ (Berneker 1913, 66–67; Derksen 2008, 302–21).

More Indo-European branches can be identified. In the Tocharian branch: Tocharian B motar-istse ‘green’ borrowed into Tocharian A as motaristsi ‘some sort of dark colour’. The Tocharian suffix -istse is secondary, so an original Proto-Tocharian *motar- can be assumed, which, according to Douglas Adams (2013, 511–12), could go back to a Proto-Indo-European u-stem *modr-o-u, perhaps meaning ‘colour (ing agent), dye-stuff’ (?) derived from a Proto-Indo-European verbal noun *modr-, ‘colour (ing)’.

In the oldest branch, Anatolian, there might also be a cognate in Hittite an-ta-ra- (pronounced with syllabic n-, i.e. ndrā-). Again, the meaning is ‘blue’, and also exhibits a *-ro-adjective, but here with a zero-grade in the PIE root. The development seems to have gone from (early) PIE *mgdr-o-rō > *mgdr- > Hittite an-ta-ra- (i.e. /ndrā-/) (Machek 1949, 131–32; Kloekhorst 2008, 186). Thus, there is an *-r- suffix in all four branches:

- Proto-Germanic *mad(a)r-o-ō ‘Rubiaceae species’ < *modr-o-eh₂- (feminine)
- Proto-Slavic *modrō ‘blue’ < *modr-o-o- (masculine o-stem),
- Proto-Tocharian *motar- ‘green’ < *modr-o-u- (masculine u-stem)
- Hittite antara (ndrā-) ‘blue’ < *mgdr-o-rō- (zero-grade).

According to the consensus model of the chronology of the split of the Indo-European languages, the Hittite branch broke off from the Indo-European proto-language and homeland around 700 to 1000 years (c. 4300 to 4000 BC) before Tocharian (c. 3300 BC), and the rest of the branches (c. 3300 to 2500 BC) (Mallory 1989; Anthony 2007; Allentoft et al. 2015; Haak et al. 2015). Therefore, it is perhaps not so problematic to accept that a secondary o-grade *modr-o-eh₂ (masculine/feminine) could have formed in these intermediary 700 to 900 years from an earlier zero-grade *mgdr-o-. On that basis, the most likely original meaning for this word is ‘blue’.

The next, and much more difficult problem, is determining why this word went from meaning ‘blue’ to meaning ‘red’, or ‘red-dyeing root, Rubiaceae’. Adams (2013, 512) suggests that: “It is possible the bedstraws were originally named for their characteristic yellow-green flowers”. This has some problems: 1) yellow and green are perhaps the most common colours of plants in the wild, 2) Galium or Asperula species usually do not have green flowers (most plants have green stems and leaves), and 3) why would plants with yellow flowers be named after the colour blue?, and 4) only Tocharian has the meaning ‘green’.

Other Indo-European Rubiaceae names

Two other widely used names for several Rubiaceae species are the French garance and Slavic broč. Their origins do not seem to go back to Indo-European, but to a confusion of words in Vulgar Latin bractea/brattæa/ blætea ‘gold foil’, from where it is not further traceable (Niedermann (1921, 436–40). Slavic also has the word marēna (Rubia tinctorum or other Rubiaceae), which could be secondarily derived from a PIE root *mōr- ‘to smear’ (Berneker 1913, 18).

Other names for the madder plants which seem to be secondary derivations are Old English wrætte and Old High German reza ‘madder’ < PIE *uṇod-īeh₂- ‘root’ (Kroonen 2013, 595). In Greek, ereuthé-danō ‘red dye, Rubia tinctorum’ and erthrō-danō seem to be secondary derivations from a PIE root *h₁reu-dan- ‘red’, a widespread root in Indo-European. The same root is found in Old Irish riám ‘red dye’ < Proto-Celtic *rowd-smon- ‘red dye’ perhaps from PIE *h₁reu-dan-smon- (but this formation is only seen in Celtic), which could have been used about the red (possibly Celtic) Hallstatt textiles (Stifter 1998, 208, 211).

The fact that the dye-related names for the madder plants in Indo-European languages have a variety of different origins could suggest that madder was only used as a dye-plant after the Indo-European languages split up. These names often seem to have been derived from existing and relatable PIE vocabulary such as colour-terms (‘red’), or borrowed in historical times from unknown sources.

An alternative to Rubiaceae

If the Germanic names for Rubiaceae with dyeing abilities are only associated with ‘red’ in Germanic but other Indo-European language branches point to an original meaning ‘blue’, there is still a need for an explanation for this semantic change in the prehistory of Germanic. As it seems to have been associated with
<table>
<thead>
<tr>
<th>Species</th>
<th>Flower colour (where available)</th>
<th>Root colourant (alkannin/shikonin and derivatives)</th>
<th>Vernacular name (English unless otherwise stated)</th>
<th>Distribution</th>
<th>Reference (all including Papageorgiou et al. 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanna/Archichus trinctoria</td>
<td>blue</td>
<td>alkannin (1.24-1.47%)</td>
<td>Alkanet</td>
<td>Mediterranean, Balkans, Middle East, Central Europe</td>
<td>Akgun et al. 2011</td>
</tr>
<tr>
<td>Anemis hispidissima</td>
<td>yellow</td>
<td>alkannin, shikonin</td>
<td>Arabian primrose, Nigerian: Jinn mutum 'the blood of man'</td>
<td>North Africa to northern India</td>
<td>Cardon 2007, 73-74</td>
</tr>
<tr>
<td>Anemis nobilis</td>
<td>purple/dark brown, late yellow</td>
<td>alkannin</td>
<td>Hindi: Ratanjot 'ruby red'</td>
<td>High mountains of eastern Afghanistan</td>
<td>Arora et al. 2012, 176; Cardon 2007, 65</td>
</tr>
<tr>
<td>Anemis/Macrotheca densiflora/trinctoria</td>
<td>yellow</td>
<td>alkannin (57 mg/g, 5.7% of air-dry material)</td>
<td>Arnebia</td>
<td>Greece, Anatolia</td>
<td>Boxan et al. 1997</td>
</tr>
<tr>
<td>Anemis europaea</td>
<td>dark purple</td>
<td>shikonin (1.5 mg/g, 0.15%), shikonin (19.7 mg/g, 1.97%)</td>
<td>Ligur: Soghagul, Chinese: Zicao</td>
<td>Central Asia</td>
<td>Hu 2007, 152; Cardon 2007, 65-67</td>
</tr>
<tr>
<td>Anemis guttata</td>
<td>yellow</td>
<td>shikonin (0.078 mg/g, 0.0078%)</td>
<td>Purple herb (not official)</td>
<td>Central Asia to Mongolia</td>
<td>Hu 2007, 152; Cardon 2007, 65-67</td>
</tr>
<tr>
<td>Cynoglossus officinalis</td>
<td>reddish-purple</td>
<td>shikonin</td>
<td>Hound’s tongue</td>
<td>Most of Europe</td>
<td></td>
</tr>
<tr>
<td>Echium plantagineum/lycopice</td>
<td>purplish blue to purple</td>
<td>shikonin</td>
<td>Purple viper’s bugloss, Paterson’s curse, Salvation Jane</td>
<td>Western and southern Europe, Eastern and Middle Asia</td>
<td></td>
</tr>
<tr>
<td>Echium rubrum/russicum</td>
<td>red</td>
<td>shikonin (0.0044-0.16 mg/g air-dry material, 0.00004-0.0016%)</td>
<td>Red bugloss, Red-flowered viper’s grass</td>
<td>Russia</td>
<td>Dresler et al. 2015, 700; Dresler et al. 2017, 693</td>
</tr>
<tr>
<td>Echium vulgare</td>
<td>blue</td>
<td>shikonin (0.0048-0.28 mg/g air-dry material, 0.00048-0.028%)</td>
<td>Viper’s bugloss, Bluweed</td>
<td>Pontic-Caspian steppes, Europe, Anatolia</td>
<td>Dresler et al. 2015, 700; Dresler et al. 2017, 693</td>
</tr>
<tr>
<td>Lappula squarrosa</td>
<td>light blue</td>
<td>shikonin</td>
<td>Stickseed</td>
<td>Most of Europe, Russia, Anatolia</td>
<td></td>
</tr>
<tr>
<td>* Lithospermum arvense*</td>
<td>white (with blue subsp.)</td>
<td>acetylshikonin</td>
<td>Field gromwell, German: Schenckwurz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Lithospermum/Buglossoides purpurea-currulium*</td>
<td>blueish purple</td>
<td>maclurin-equivalent</td>
<td>Purple gromwell</td>
<td>Britain, Central Europe, South Russia, Mediterranean, Anatolia</td>
<td>Grömer et al. 2013, 263</td>
</tr>
<tr>
<td>* Lithospermum erythrhorizon*</td>
<td>white</td>
<td>shikonin (0.472-3.0 mg/g, 0.0472-3.0%)</td>
<td>Red-root gromwell, purple gromwell</td>
<td>Eastern Eurasia</td>
<td>Hu 2007, 152; Krivosheilova et al. 1976;</td>
</tr>
<tr>
<td>* Lithospermum officinalis*</td>
<td>white</td>
<td>shikonin (0.079 mg/g, 0.0079%)</td>
<td>Stone gromwell</td>
<td>Pontic-Caspian steppes, Europe, Mediterranean</td>
<td></td>
</tr>
<tr>
<td>Onosma/Arnebia echidodes</td>
<td>pale yellow</td>
<td>alkannin/shikonin (0.06-67.1 mg/g, 0.63-6.71%)</td>
<td>Prophet’s flower, Hairy onosma</td>
<td>Mediterranean Europe, Iran, Himalayas, Kashmir, Siberia</td>
<td>Cardon 2007, 63-65</td>
</tr>
<tr>
<td>Onosma paniculata</td>
<td>purplish flowers</td>
<td>shikonin (0.05 mg/g, 0.0057%), shikonin (2.86 mg/g, 0.0286%)</td>
<td>Onosma, Chinese: Zicao</td>
<td>Southern China</td>
<td>Hu 2007, 152; Cardon 2007, 63-65</td>
</tr>
<tr>
<td>Onosma hookeri</td>
<td>blueish purple</td>
<td>shikonin (0.093 mg/g, 0.0093%), shikonin (0.747 mg/g, 0.00747%)</td>
<td>Onosma, Chinese: Zicao, Hindi: Ratanjot</td>
<td>Afghanistan</td>
<td>Hu 2007, 152; Cardon 2007, 63-65</td>
</tr>
</tbody>
</table>

Table 2. Boraginaceae mentioned in the article with their respective dyestuffs (and concentration, as available), and flower colour.
a ‘red dyeing root’ in Proto-Germanic, another family of plants with similar red-pigmented roots, the Boraginaceae, offer some helpful evidence. These yield highly concentrated red/purple dye in species of the genera *Alkanna/Anchusa, Arnebia, Onosma*, and *Lithospermum* (Cardon 2007, 60–74).

Boraginaceae

One Boraginaceae species described for its red and purple root-pigment in antiquity is *Alkanna*, or *Anchusa* (Dioscorides, c. AD 77, Theophrastus, 4th to 3rd century BC), and for its medicinal uses by Hippocrates, c. 400 BC (Papageorgiou et al. 1999, 271–73). The word *poin-ki-jo/a* in Mycenaean refers to a red colour or red plant substance, possibly madder or alkanet, suggesting it may have been used as a dyestuff in Europe in the Bronze Age (Bendall 2017, 315, note 55). Other genera from the same family are used in different parts of Asia. *Arnebia nobilis*, for example, can dye textiles (Arora et al. 2012) and *Arnebia guttata* is still used for its pigment by Pamir nomads today (Soelberg 2016, 30–31). *Lithospermum erythrorhizon* (“red-root”) was cultivated for its dye and medicinal properties in China, probably from the beginning of the Common Era (Papageorgiou et al. 1999, 274). *Alkanna/Anchusa* is a main source of the dyestuff alkanin, and *Arnebia sp.*, *Lithospermum erythrorhizon* and *Lithospermum officinale* are sources of shikonin, two dyestuffs that are red at pH 6.8, purple at pH 8.8, and blue at pH 10, or deep red in an oily or greasy media and violet in an alkaline media (Khattak et al. 2015, 903). The related species *Lithospermum arvense* contains acetylshikonin and other derivatives (Papageorgiou et al. 1999, 277). These, and many other plants in the Boraginaceae family are known to be used as dye, pigment, and cosmetics in history and folklore. A list of the many variants of alkanin and shikonin, and their occurrences in Boraginaceae-species can be found in Papageorgiou et al. (1999, 276–78), and some of their reported dyestuff concentrations from the literature are compiled in table 2. A few other genera of Boraginaceae are *Onosma* sp., *Echium* sp., *Cynoglossum* sp., and *Lappula* sp. Some species of *Onosma* and *Arnebia* are grouped together in India as *ratanjot*, meaning ‘ruby red’, because of their red root pigment, and are imported to Indian markets from Afghanistan (Cardon 2007, 65; Arora et al. 2009).

The different genera are widespread in most of Eurasia, especially *Echium* and *Lithospermum* (figs 8-12). Many of the names of these species are associated with cosmetic or red-colouring properties (Table 3) and seem to be grouped together and intertwined in the nomenclature as well, often taking each other’s names, such as Danish *sminkerod*, Swedish *sminkrot*, German *Schminkwurz* (“cosmetic root”), *Bauernschminke* (“peasant cosmetic”) about *Lithospermum arvense* (Cardon 2007, 60–74).

The fresh roots of *Lithospermum arvense* were used as a cosmetic for its red-colouring by “country girls” in Finland and Lapland as described by Linné in *Flora*...
Suecica, and witnessed by Marzell in 1936 in Krosno Odrzańskie in western Poland (Marzell 1951, 1342). In Missouri, the related Lithospermum canescens was called Indian-paint because the Native Americans used the root in this way (Marzell 1951, 1342). The German name Schmink for Lithospermum arvense indicates an association with cosmetics since 1590 (Svanberg 2000, 83). However, dyeing experiments with it have not yet been undertaken or remain undocumented.

One Early Iron Age sample from Huldremose II, Denmark, showed a dyestuff the authors termed “Unknown 3”, which looked similar to alkannin (perhaps from alkanet, Alkanna tinctoria) or a lichen species called Scandinavian orchil (Ochrolechia tartarea). However, for historical reasons, and because of a probable parallel in Norway, the authors lean towards orchil (Vanden Berghe et al. 2009, 1913, 1918). The red pigment produced a deep red colour when it was extracted from 10 g of Alkanna tinctoria roots in a solution of 200 mL denatured alcohol (93%) in a bottle and left for three days. The extract was then put in a pot with alum-mordanted wool yarn and water until the yarn floated. The colour turned a “red cabbage violet”. It was then heated and the

![Fig. 9. Echium vulgare near Saratov, south-western Russia (Image: Wiki-user Le.Loup.Gris). Distribution of Echium vulgare in Europe (Euro+Med Plantbase).](image1)

![Fig. 10. Alkanna tinctoria in Torreilles, France (Image: Jean Tosti). Distribution of Alkanna tinctoria in Europe (Euro+Med Plantbase).](image2)
colour changed to a deep violet or "eggplant colour" (fig. 13).
As denatured alcohol was not available in prehistory, another extraction method would be necessary. One method is extraction with fat or grease (Cardon 2007, 62) but this is probably not suitable for textile dyeing. According to Dominique Cardon (pers. comm. 24 November 2017), the extraction works well using mead, and Cardon has also had success with dyeing wool using the mead-extracted Boraginaceae pigment (from Alkanna tinctoria and Onosma). Cardon (2007, 62) also mentions the historical use of hydromel (low-alcohol mead, honey-water, or perhaps an English translation error from the French hydromel referring to regular mead) for this extraction.
Mead has been found widely in prehistoric containers, at least since the Bell Beakers (Guerra-Doce 2003), and the word is very securely reconstructed to PIE as *médʰ-u- ‘mead, honey’, attested in nine branches: Germanic, Greek, Celtic, Baltic, Slavic, Indic, Iranian, Tocharian, Anatolian (Hyllested 2003, 49; Kroonen 2013, 361; Nortoft 2017, 95). One blue Boraginaceae species, Echium vulgare, also native to the Pontic-Caspian steppe (fig. 9), is a key component in bees’ honey production (Martín Arroyo et al. 2017). With these facts in mind, one might further speculate about
a connection between PIE *médʰ-u- ‘mead, honey’ and *modʰ-r-/*mdʰ-ro- ‘blue, blue (dye) plant(?).’ However, that would be another study, entirely. The shikonin content of the blue-flowered *Echium vulgare* (and its derivatives) is very low. It is measured to 4.8 mg/kg (= 0.0048 mg/g (0.00048%)) of air-dried material in one study (Dresler et al. 2015, 700), but 0.284 mg/g (0.0284%) in another (Dresler et al. 2017, 692–93). Further studies would be welcome. *Lithospermum officinale*’s shikonin content is measured as 0.079 mg/g (0.0079%, with 0.002 mg uncertainty) (Dresler, et al. 2017, 692–93). In comparison, *Alkanna tinctoria* yields 1.24 to 1.47% alkannin (Akgun et al. 2011), and *Lithospermum erythrorizon* c. 3% shikonin (Krivoshchekova et al. 1976, 652) (Table 2). However, the shikonin level of *Arnebia guttata*, still used as cosmetic by the wakhi-nomads of Afghanistan (see above), is measured at 0.078 mg/g (0.0078%), almost the same as *Lithospermum officinale*.

Fig. 13. The process of dyeing wool with *Alkanna tinctoria* by Jane Nøhr (with permission). a. Extracted dye solution from roots, b. Dye solution sample on cotton pad, c. Dye bath with wool, d. Fabric dyed with *Alkanna tinctoria*.
officinal. Thus, the even higher shikonin measurement for *Echium vulgare* (up to 0.0284%) might also be enough to have been used as cosmetic in the steppes. One of the Bronze Age Hallstatt textiles (HallTex 205) that contained purpurin (= *Galium* or *Rubia peregrina*) also contained a maclurin-equivalent (Grömer 2013, 263) that the authors suggest could be from the root of purple gromwell (*Lithospermum purpurocaeruleum*) bearing purple or bright blue flowers depending on the season (fig. 14). However, maclurin is typically connected with yellowish dyes, so a red-blue association is less probable. Nevertheless, it could testify to a knowledge of using textile dye from some Boraginaceae roots in Bronze Age Hallstatt.

Other Boraginaceae also have characteristic blue flowers, such as *Lithospermum arvense* var. *coeruleum* and *Lithospermum purpurocaeruleum* bearing purple or bright blue flowers depending on the season (fig. 14). However, maclurin is typically connected with yellowish dyes, so a red-blue association is less probable. Nevertheless, it could testify to a knowledge of using textile dye from some Boraginaceae roots in Bronze Age Hallstatt.

Other Boraginaceae also have characteristic blue flowers, such as *Lithospermum arvense* var. *coeruleum* and *Lithospermum purpurocaeruleum* bearing purple or bright blue flowers depending on the season (fig. 14). However, maclurin is typically connected with yellowish dyes, so a red-blue association is less probable. Nevertheless, it could testify to a knowledge of using textile dye from some Boraginaceae roots in Bronze Age Hallstatt.

The blue flowers are also reflected in some Boraginaceae names (Table 3), such as Swedish blå sminkrot about *Lithospermum arvense* var. *coeruleum* and Danish blåfrue (“blue-lady”), Swedish blåeld (“blue-fire”), Finnish sinikuntteri, Russian sinij cvet (sinij- = “blue”) and English blueweed, all used about *Echium vulgare* (Marzell 1951, 192-193).

In the Slavic languages, the PIE root *modʰ-r-* ‘blue’ appears in several plant names, some of them Boraginaceae (highlighted in bold): Slovincian modrinc (Delphinium consolida, *Echium vulgare*), modré krêpkî ‘forget-me-not (*Myosotis palustris*, another blue Boraginaceae sp.), modrî mleč ‘chicory (*Cichorium intybus*), Kashubian Zwêczajny módrič (*Echium vulgare*), Kashubian módîk ‘blue cornflower (*Centaurea sp.*),

It is important to remember, however, that the Slavic plant names in *modr-* could be secondarily derived, as they are still identifiable as ‘blue’ to Slavic speakers to some extent. Most of the Slavic non-Boraginaceae plants are also found in the PIE homeland (see below). Perhaps the Indo-European word *modʰ-r-* was
Archaeological Textiles Review No. 59

60

Articles

originally a descriptive term for blue-flowered plants, such as *Echium vulgare* until the Corded Ware/Bell Beaker/Unetice period and later referred to the pigmented roots of blue Boraginaceae sp. (*Echium vulgare*, *Lithospermum purpurocaeruleum*). It may have only later been assigned to the red-dyeing roots of the Rubiaceae species in the prehistory of Germanic (fig. 7).

Boraginaceae in archaeobotany

The archaeobotanical record also merits study in order to assess what plants were present in the PIE homeland, and the target area of Indo-European peoples’ migrations into Europe around 3000 BC. Archaeobotanical studies have often focused on domesticated crops, which makes looking for wild weeds in the literature difficult. In the case of steppe research, the excavations were often conducted without the benefit of flotation methods and other techniques for finding plant remains (Anthony 2007, 129). However, awareness of these methods is improving, and no doubt there will be more archaeobotanical data available in the future. Therefore, there is no current definitive evidence when comparing the linguistic and archaeobotanical data, but there is a likely indication of the availability and intentional collection of wild Boraginaceae in prehistory.

Limited access to archaeobotanical databases in this study identified finds of *Lithospermum* sp. (arvense, officinale, and purpurocaeruleum), *Alkanna/Anchusa* sp., a few (but some plentiful) finds of *Echium* sp., one find of *Lappula* sp., and one of *Arnebia* sp. (fig. 15). Supplementary data, further literature and maps of dye plants are available at: http://prehistoricmap.com/Nortoft2017appendix.pdf. Although the prehistoric distribution of the plants (fig. 15) seems to be widespread today in most of Eurasia (figs 8-12), they mostly appear in archaeobotany around the Mediterranean. This may be the result of a sample bias because of a poor archaeobotanical tradition in Russia. *Lithospermum officinale* seeds are found in large, concentrated numbers in the Cucuteni culture (phase A2, 4400 to 4200 BC) of Copper Age Romania (Solcan et al. 2014). These seeds have also been found in several finds from the Catacomb culture (2300 to 2200 BC), where there were local descendants of the Indo-European-speaking Yamnaya herders of the steppe.
region. The seeds are also found on an orange-dyed headdress of the same culture (Shishlina et al. 2005), and in the Crimean Neolithic period as early as 5836 to 5358 BC (Salavert et al. 2014, 4). They are also found with a cataplasm in the late Mierzanowize culture (1750 to 1600 BC) of Poland, which shows the plants’ association with medicine (Baczyńska & Lityńska-Zając 2005). However socially important this plant may have been, its flowers are not blue, but white, and its dye concentration (shikonin content c. 0.0079%) is quite low compared to some other Boraginaceae that are known to dye wool. Therefore, the blue or purple colour on wool dyed with *Alkanna tinctoria* is unlikely to have been achieved with *Lithospermum officinale*, which makes it a poor candidate for an association with the original meaning of PIE *modʰ-r- ‘blue’.

Nutlets of the blue-flowered *Lithospermum purpurocaeruleum* are found in abundance at two other Cututeni (Copper Age, phases A2-B: c. 4400 to 3350 BC) sites. They were found in two dwellings at Izvoare, Romania: 8,000 nutlets (half of them perforated) in one and 1,091 in the other. At Bodești, Romania, 75 nutlets were found. They were deposited in pots and goblets, demonstrating meticulous gathering and modification of these seeds, which the authors suggest had a social and ritual significance through a wide range of medical properties in this and many other Boraginaceae species (Solcan et al. 2014). There are no published studies on the shikonin/alkannin content of *Lithospermum purpurocaeruleum* known to date. Thus, the yellow-dyeing maclurin-equivalent (together with purpurin) in Bronze Age Hallstatt reported by Grömer et al. (2013, 263) is the only trace of its possible use as a textile dye. Perhaps this could be interpreted as a transition period using roots of both *Lithospermum* sp. and Rubiaceae for textile dyeing, and accordingly associating the plant names of *Lithospermum* and bedstraws.

Echium vulgare, with characteristic blue flowers, has been found in the Srubnaya-Albar phase (c. 1890 to 1650 BC) in the vegetation of Kammenyi Ambar, Trans Urals, Russia (Stobbe et al. 2016, 1694, 1699). Although this is the easternmost periphery of the proposed homeland area, the Srubnaya culture was mainly of Yamnaya descent, occupying largely the same area as their Yamnaya and Catacomb ancestors (Anthony et al. 2016, 13; Unterländer et al. 2017, 7). This plant has bright blue flowers, and despite its low concentration of shikonin (from 0.00048 to 0.0283% in different studies), it could provide enough red pigment for cosmetics or similar, despite its name still being attached to its prominent blue flowers. It could also be a factor that some plant seeds are better preserved than others. *Lithospermum officinale* nutlets have very hard shells, which give its Latin name, meaning “stone seed” (Anderberg & Anderberg 2016, s.v. "Lithospermum officinale"). This might explain its meaning “stone seed” (Anderberg & Anderberg 2016, s.v. "Lithospermum officinale"). This might explain its meaning “stone seed” (Anderberg & Anderberg 2016, s.v. "Lithospermum officinale").

It could also be a factor that some plant seeds are better preserved than others. *Lithospermum officinale* nutlets have very hard shells, which give its Latin name, meaning “stone seed” (Anderberg & Anderberg 2016, s.v. "Lithospermum officinale"). This might explain its meaning “stone seed” (Anderberg & Anderberg 2016, s.v. "Lithospermum officinale"). This might explain its meaning “stone seed” (Anderberg & Anderberg 2016, s.v. "Lithospermum officinale").

This development occurs in the Pontic-Caspian steppes 4500 BC to 3000 BC before the Indo-Europeans migrate to Central Europe.

2) Pre-Proto-Germanic, Late PIE (perhaps also the Slavic branch?) *modhr*- ‘blue flowered Boraginaceae with (red?) pigmented roots’ designating *Echium vulgare*, *Alkanna/Anchusa sp.* (strong dyestuff), *Lithospermum purpurocaeruleum*, *Lithospermum arvense* (blue variant). This development occurs after 3000 BC following migration of Indo-European peoples to Central Europe.

3) Proto-Germanic *madrōn*- ‘red-dyeing plants, Rubiaceae’. This development occurs in Scandinavia from 500 BC.

If more archaeobotanical blue-flowered and pigmented Boraginaceae such as *Echium vulgare* or *Lithospermum purpurocaeruleum* are found in the homeland in the PIE period, there would be even stronger evidence for these plants being the original designation of PIE *modh*-.

This development could be comparable to that of *Chamomila* in Spain, whereby the name of the...
“proto-typical” species in Spain is grouped by the appearance of the flowers and its use as herbal tea, but later also associated with other plants with either similar flowers or the same use as a herbal (Morales & Pardo-de-Santayana 2010, 298–299). This solution rests on circumstantial evidence from various disciplines and other explanations may be feasible. Nevertheless, the linguistic difficulty of ‘blue’ > ‘red’ presented here suggests that the dyeing properties and archaeobotanical finds of Boraginaceae (and experimentation with dyeing methods) deserve more thorough exploration in the future, in addition to dye-stuff analyses on prehistoric dyed textile finds from the Pontic-Caspian steppes.

Acknowledgements
I would like to thank Ulla Mannering for taking me on as an intern at the National Museum of Denmark and the Centre for Textile Research for opening a new world of textiles to me, and giving me this opportunity to write my first article. I would also like to thank Eva Andersson Strand and Marie-Louise Nosch for encouraging me, and their colleagues at CTR and Sagnelandet Lejre for teaching me many basic skills of textile archaeology; Jane Malcolm-Davies for sparking my interest in textiles and natural sciences in archaeology on the ATOMS course in 2016; and the teachers and students of Indo-European Studies at University of Copenhagen for fruitful discussions.

Bibliography
Don, G. (1834) A General History of the Dichlamydeous Plants,

Altenglisches etymologisches Wörterbuch

Author: mattbeets@gmail.com