Dairy consumption, systolic blood pressure, and risk of hypertension

Mendelian randomization study

Ding, Ming; Huang, Tao; Bergholdt, Helle K M; Sørensen, Thorkild I.A.; Linneberg, Allan René; Sandholt, Camilla Helene; Pedersen, Oluf ; Hansen, Torben; Kilpeläinen, Tuomas O; CHARGE Consortium; Nordestgaard, Børge G; Ellervik, Christina; Qi, Lu; Mendelian Randomization of Dairy Consumption Working Group

Published in:
The BMJ

DOI:
10.1136/bmj.j1000

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC

Citation for published version (APA):
Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

Mendelian Randomization of Dairy Consumption Working Group

ABSTRACT

OBJECTIVE
To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal.

DESIGN
Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable.

SETTING
CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.

PARTICIPANTS
Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis.

MAIN OUTCOME MEASURES
The instrumental variable estimation was conducted using the ratio of coefficients approach. Using meta-analysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized.

RESULTS
Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29 serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval −0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (β=1.35, 95% confidence interval −0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: β=−0.21, 95% confidence interval −0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with −0.11 (95% confidence interval −0.20 to −0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11).

CONCLUSION
The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.

WHAT IS ALREADY KNOWN ON THIS TOPIC
Observational studies showed that dairy intake was associated with lower systolic blood pressure and lower risk of hypertension

WHAT THIS STUDY ADDS
Using a Mendelian randomization approach, we found that genetically determined dairy consumption was not associated with systolic blood pressure or risk of hypertension

Introduction

Raised blood pressure is an important risk factor for cardiovascular disease and has been the top single contributor to the global burden of morbidity and mortality, leading to 94 million deaths each year.1 In clinical trials, lowering blood pressure has been shown to be effective in reducing the incidence of cardiovascular disease.2 Each 5 mm Hg reduction in blood pressure is associated with a 20% lower risk of coronary heart disease and a 29% lower risk of stroke.3

Maintaining a healthy diet is critical for the prevention of hypertension4; whether dairy products should be incorporated into such a diet is, however, controversial. In epidemiological studies, the association of dairy consumption with blood pressure has been inconsistent. Several observational studies have reported inverse associations of dairy consumption with systolic blood pressure and risk of hypertension5-7; however, such associations were not observed in other studies.8,9,10 Two meta-analyses of prospective cohort studies consistently indicated that dairy consumption was associated with lower systolic blood pressure and lower risk of hypertension.11,12 Owing to the observational nature of the studies included, the reported associations might not indicate causality.

In recent years, Mendelian randomization analysis has been widely used to assess potential causal estimates of various risk factors with health outcomes. This approach has the advantage over traditional observational studies of minimizing confounding by using genetic markers as instrumental variables of environmental risk factors. An SNP (single nucleotide polymorphism) rs4988235 upstream from the lactase persistence gene (LCT-13910) has been consistently related to dairy intake in multiple populations,13,14 representing a strong instrumental variable for analyzing the causal relation between dairy intake and disease risk.

In this study, using data collected from 32 studies with 197 332 participants, we performed an instrumental variable analysis to examine the possible causal effect of dairy consumption on systolic blood pressure and
risk of hypertension. In addition we conducted a meta-analysis to summarize the results of eight randomized clinical trials assessing dairy intake intervention on changes in systolic blood pressure.

Methods

Study design and population

We used an instrumental variable approach to examine associations of dairy consumption with systolic blood pressure and risk of hypertension. We collected data from 22 observational studies with 171,213 participants within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. All participants provided written informed consent. The web appendix describes the studies in the analysis.

To provide comprehensive evidence on associations of dairy intake with systolic blood pressure and risk of hypertension, we conducted a systematic review of previously published cohort studies and randomized clinical trials. In the web appendix, we describe the process of the systematic review in detail.

Dairy consumption

Dairy products included skim/low fat milk, whole milk, ice cream, yogurt, cottage/ricotta cheese, cream cheese, other cheese, and cream. In most of the studies, dairy intake was self reported by food frequency questionnaire. We calculated total dairy consumption as the sum of all dairy categories (see table 1 in the web appendix for a detailed description of dairy consumption in the included studies).

Outcome measures

The outcome of our Mendelian randomization included systolic blood pressure and risk of hypertension. Given that systolic blood pressure is superior to diastolic blood pressure as a major risk factor of cardiovascular disease, we used systolic blood pressure as the main outcome in our analysis (see table 1 in the web appendix for the detailed measurement of systolic blood pressure in the included studies). For participants taking antihypertensive drugs, we added 15 mm Hg to systolic blood pressure to adjust for treatment effects.15-17 Hypertension was defined as a systolic blood pressure of 140 mm Hg or higher or current use of antihypertensive drugs.

SNP rs4988235

Table 1 in the web appendix shows genotyping platforms, genotype frequencies, Hardy-Weinberg equilibrium P values, and call rates for lactase persistence SNP rs4988235. The SNP rs4988235 was not genotyped or imputed in two studies; proxy SNPs (rs309137: r² = 0.77; rs1446585: r² = 1.00) were used instead.

Statistical analyses

We initially conducted statistical analyses within each included study in accordance with a standard analysis plan. As lactase persistence is inherited as a dominant trait,7 we used dominant models (CC vs CT/TT genotype) to examine associations of LCT-13910 rs4988235 with dairy intake, systolic blood pressure, and risk of
hypertension adjusting for baseline age, sex, ethnicity, and region. We examined associations of dairy consumption with systolic blood pressure and risk of hypertension using linear or logistic models adjusting for baseline age, body mass index, blood pressure, smoking status, physical activity, total energy intake, and alcohol consumption at baseline.

Patient involvement
No patients were involved in setting the research question or the outcome measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked to advise on interpretation or writing up of results. There are no plans to disseminate the results of the research to study participants or the relevant patient community.

Results
We included 22 studies with 171,213 participants from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. Table 1 shows the baseline characteristics of the studies. Of the 22 studies, nine were conducted in the US, nine in countries in northern Europe, three in countries in southern Europe, and one in Australia. The frequency of CC alleles varied across studies. In most of the studies, participants were
white, and dairy intake was assessed prospectively before measuring systolic blood pressure.

By conducting a systematic review, we additionally identified 10 published cohort studies with 2619 participants and eight randomized clinical trials with 735 participants. Figure 1 in the web appendix shows the flowchart of study selection. The clinical trials examined the effect of dairy intake on systolic blood pressure over one month to 12 months of interventions.22-29 In the cohort studies, seven assessed systolic blood pressure as the outcome5-10 30 31 and five used hypertension as the outcome.5 30-33 Tables 2 and 3 in the web appendix show the characteristics of the published trials and cohorts.

In observational analysis, each serving/day increase in dairy consumption was associated with lower systolic blood pressure (β=−0.11, 95% confidence interval −0.20 to −0.02 mm Hg; P=0.02) and was not associated with a lower relative risk of hypertension (odds ratio 0.98, 95% confidence interval 0.97 to 1.00; P=0.11) (figs 1 and 2). In the randomized clinical trials, however, dairy intake did not show a significant effect on changes in systolic blood pressure over one month to 12 months of interventions (comparing intervention with control group: β=−0.21, −0.98 to 0.57 mm Hg; P=0.60) (fig 3). No publication bias of included cohorts and clinical trials was found (systolic blood pressure in cohorts: Egger’s test P=0.51; hypertension in cohorts: P=0.46; randomized clinical trials: P=0.33) (fig 2 in the web appendix).

Compared with the CC genotype, the CT/TT genotype of LCT-13910 rs4988235 was associated with higher dairy consumption (0.23 (95% confidence interval 0.17 to 0.29) serving/day (about 55 g/day); P<0.001), and the Z statistic was 7.51, showing that the instrumental variable was strong and valid (fig 4). However, significant heterogeneity was found across studies (I²=80.0%; P<0.001 for heterogeneity). Compared with the CC genotype, the CT/TT genotype of LCT-13910 rs4988235 was not associated with systolic blood pressure (0.31, −0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27) (figs 5 and 6). Using LCT-13910 rs4988235 as the instrumental variable, we estimated that genetically determined dairy consumption was not associated with systolic blood pressure (β=1.35, 95% confidence interval −0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24).

To explore sources of heterogeneity in the association of LCT-13910 rs4988235 with dairy intake, we conducted stratified analyses by region or country, frequency of the CC genotype, CT/TT genotype of LCT-13910 rs4988235 was not associated with systolic blood pressure (0.31, −0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27) (figs 5 and 6). Using LCT-13910 rs4988235 as the instrumental variable, we estimated that genetically determined dairy consumption was not associated with systolic blood pressure (β=1.35, 95% confidence interval −0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24).

To explore sources of heterogeneity in the association of LCT-13910 rs4988235 with dairy intake, we conducted stratified analyses by region or country, frequency of the CC genotype, race, study design, and measurement of systolic blood pressure. We classified Denmark, the Netherlands, Sweden, and Finland as northern European countries and Italy, Spain, and France as southern European countries. Among studies with a CC genotype frequency of 12% or less, or studies conducted in northern European countries, we found no heterogeneity of LCT-13910 rs4988235 with dairy intake, and the instrumental variable remained strong in both subgroups. Genetically determined dairy consumption was unrelated to systolic blood pressure and risk of hypertension within each stratum, which was consistent with the main finding.
No effect modification on causal estimates was found by CC frequency, region or country, race, study design, and systolic blood pressure measurement.

In sensitivity analyses, we applied the instrumental variable analysis within each study and combined the instrumental variable estimates using meta-analysis. The results were consistent with the main findings (fig 3 in the web appendix). We examined the associations of dairy consumption with systolic blood pressure and risk of hypertension by modeling the LCT-13910 genotype in recessive and additive inheritance manner (figs 4 and 5 in the web appendix). Genetically determined dairy consumption was not associated with systolic blood pressure or risk of hypertension using the recessive model, and it was weakly associated with higher systolic blood pressure using the additive model (table 4 in the web appendix).

In restriction analysis, the instrumental variable estimates were consistent with the main findings when excluding studies that used proxy SNPs, studies that used LCT-13910 rs4988235 in Hardy-Weinberg disequilibrium, or studies where LCT-13910 rs4988235 was not statistically significantly associated with higher dairy intake using dominant models.

Discussion

In this study, using Mendelian randomization analysis in 32 studies (22 observational studies, 10 previously published cohort studies) with 197,332 participants, we examined the potential causal effect of dairy consumption on systolic blood pressure and risk of hypertension. Using the LCT-13910 gene variant affecting lactase persistence as the instrumental variable, our study showed that genetically determined dairy intake did not affect systolic blood pressure or risk of hypertension. Furthermore, a meta-analysis of the results from published randomized clinical trials showed that dairy consumption had no effect on changes of systolic blood pressure in response to interventions over one month to 12 months.

Strengths and weaknesses of this study

Our study has several strengths. First, we carried out a large instrumental variable analysis on the causality of dairy intake on systolic blood pressure and hypertension. The large sample size provided us with enough power to estimate the causal effect of dairy intake on systolic blood pressure. Second, the single nucleotide polymorphism (SNP) rs4988235 for lactase persistence is a well-established variant associated with dairy intake, with a solid biological basis, and is therefore a highly valid instrumental variable. Third, we summarized published randomized clinical trials on dairy consumption with systolic blood pressure. Although clinical trials have shorter follow-up time than cohort studies, they still provided further supportive evidence to the instrumental variable results.

Our study has several limitations. First, given the variability of the CC allele across studies and the different prevalence of hypertension across countries, population stratification might exist. However, as most of the studies included were genetically homogeneous, we performed instrumental variable analysis within each study first and...
combined the instrumental variable results through meta-analysis. The instrumental variable results were consistent with the main findings. Second, the pleiotropic effect of SNP rs4988235 is not known. However, SNP rs4988235 was located in the MCM6 gene upstream from LCT-13910, and neither gene has been found to have additional biological function besides lactase persistence.13 Third, dairy consumption was self reported by questionnaire and might be affected by measurement errors. If measurement errors were random, the observed associations would be biased to the null. However, the results for instrumental variable estimates would not be biased, although the confidence interval might be larger. Fourth, we included total dairy intake as the main exposure; however, lactase content differs between dairy products. For example, Swiss cheese and mozzarella contain trivial amounts of lactase. Similar to the measurement error of dairy intake, the variability in lactase content of dairy products might not bias the instrumental variable estimates but might widen the confidence intervals. Fifth, several studies examined dairy consumption and systolic blood pressure using a cross sectional study design, and even if instrumental variable analysis was used this might result in reverse causation. However, no statistically significant effect modification by study design was found in stratified analysis, indicating that reverse causation caused by study design might be minimal.

Possible explanations and implications
Compared with the CC genotype, the CT/TT genotype was associated with 0.23 serving/day (about 55 g/day) higher dairy intake. In previous cohort studies, a 55 g/day increment in dairy intake was estimated to be statistically significantly associated with 0.03 mm Hg lower systolic blood pressure, and 1%, 2%, and 1% lower risks of hypertension,12 type 2 diabetes,40 and cardiovascular disease,41 respectively. However, in our study, the CT/TT genotype was associated with a 0.31 mm Hg higher systolic blood pressure, and genetically determined dairy consumption did not decrease systolic blood pressure or risk of hypertension using instrumental variable estimation. Moreover, the meta-analyzed results of clinical trials showed that dairy intake had no effect on changes in systolic blood pressure. There could be two reasons that the reported associations from observational studies were inconsistent with our instrumental variable results. First, even if yogurt and specific nutrients in dairy such as milk peptides have antihypertensive effects, specific dairy products such as yogurt only compose a small fraction of total dairy products and could not explain the general observational association between dairy intake and outcome. Second, higher low fat dairy intake was more likely to be associated with a healthy diet and lifestyle.42 Therefore, the observed inverse association of particularly low fat dairy intake with systolic blood pressure might be due to confounding of intake of other food items and a healthy lifestyle. However, as one fundamental assumption for the instrumental variable to be valid is that the instrumental variable is associated with the outcome only through the exposure under study,43
Hypertension

<table>
<thead>
<tr>
<th>Variables</th>
<th>SNP rs4988235 with dairy intake</th>
<th>SNP rs4988235 with SBP</th>
<th>Z statistic (P value)</th>
<th>FT (%) (P value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumental variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC genotype frequency*</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNP rs4988235</td>
<td>0.27 (0.24-0.30)</td>
<td>0.19 (0.15-0.23)</td>
<td>Z statistic (P value)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>11.64 (0.010)</td>
<td>0.90 (0.76-1.06)</td>
<td>FT (%) (P value)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0.21 (0.08-0.51)</td>
<td>0.27 (0.08-0.52)</td>
<td>Z statistic (P value)</td>
<td></td>
</tr>
<tr>
<td>African</td>
<td>0.29 (0.27-0.31)</td>
<td>0.26 (0.25-0.27)</td>
<td>FT (%) (P value)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.76 (0.51-1.11)</td>
<td>0.20 (0.16-0.23)</td>
<td>Z statistic (P value)</td>
<td></td>
</tr>
<tr>
<td>Study design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-sectional</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>0.21 (0.13-0.30)</td>
<td>0.24 (0.14-0.33)</td>
<td>FT (%) (P value)</td>
<td></td>
</tr>
<tr>
<td>Self-reported</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

we could not separate the effect of individual dairy products in our study to further explain the inconsistency between observational and instrumental results using the current instrumental variable. And it is difficult to find a specific instrumental variable for each dairy product.

To tackle the heterogeneity of the association between SNP rs4988235 and dairy intake across studies, we conducted stratified analysis by CC frequency and region or country. SNP rs4988235 was consistently associated with higher dairy intake across subgroups, showing the robustness of our instrumental variable. No heterogeneity was found among studies conducted in northern Europe or among studies with a CC frequency of 12% or less, perhaps because these populations consume a relatively high amount of dairy products, and SNP rs4988235 was found to be associated completely with lactase persistence in north Europeans. No associations of genetically determined dairy intake with systolic blood pressure and risk of hypertension were found in both subgroups, which were consistent with our main finding.

Conclusion

The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by our comprehensive instrumental variable analysis and systematic review of existing clinical trials.

Members of the Mendelian Randomization of Dairy Consumption Working Group

Ming Ding, research fellow, Tao Huang, assistant professor, 1, 2, 4
Helle K M Bergholdt, research fellow, 5, 6, 7
Alexis C Frazier-Wood, assistant professor, 2, 8
Stella Aslibekyan, assistant professor, 2, 9
Kari E North, professor, 10, 11 Trudy Voortman, research fellow, 12
Manuela Graff, research assistant professor, 13 Caren E Smith, scientist, 13
Chao-Qiang Lai, research geneticist, 13 Anette Varbo, doctoral student, 14
Rozen N Lemaire, research associate professor, 15
Ester A L de Roodt, professor, 20
Frieder E Fumero, associate professor, 21
Dolores Corella, professor, 22
Carol A Wang, research associate, 23
Anne Tjønneland, research leader, 24
Kim Overvad, professor, 25
Thorkild IA Sørensen, professor, 26
Mary F Feitosa, associate professor, 27
Mary K Wojczynski, assistant professor, 23 Mika Hakonen, professor, 28 Shafqat Ahmad, research fellow, 19 Frida Renstrom, research fellow, 29
Bruce M Piaty, professor, 30
David S Siscovick, professor, 31 Inès Barroso, senior group leader, 32
Ingegard Johansson, professor, 33 Dena Hernandez, biologist, 14
Luigi Ferrucci, scientific director, 34
Stefania Bandinelli, geriatrician, 35
Allan Linneberg, professor, 36
Camilla Helene Sandholt, research fellow, 37
Oluf Pedersen, professor, 38 Torben Hansen, professor, 39
Christina-Alexandra Schulz, doctoral student, 40
Emily Sonestedt, associate professor, 41 Marju Orho-Melander, professor, 42 Tsu-An Chen, senior statistician, 43 Jerome I Rotter, professor, 44 Mathew A Allison, professor, 45 Stephen S Rich, professor, 46 Jose V Sorli, professor, 47
Oscar Coltell, professor, 48 Craig E Pennell, professor, 49 Peter R Eastwood, professor, 50 Albert Hofman, professor, 51 Andre G Utterlinden, professor, 52 M Carola Zillikens, associate professor, 53 Frank J A van Rijn, research associate, 54 Mary M Chu, research fellow, 55 Lynda M Rose, associate professor, 56 Paul M Ridker, professor, 57 Jorma Vikari, professor, 58 Olli Raitakainen, project coordinator professor, 59 Terho Lehtimaki, professor, 60 Vera Mikkila, associate professor, 61 Walter C Willett, professor, 62 Yueyi Wang, biostatistician, 63 Katherine L Tucker, professor, 64 Jose M Ordovas, senior scientist, 65 Tuomas O Kähönen, associate professor, 66 Michael A Province, professor, 67 Paul W Franks, professor, 68 Donna K Arnett, professor, 69 Toshiko Tanaka, staff scientist, 70 Ulla Toft, associate professor, 71 Ulrika Ericson, associate researcher, 72 Oscar H Franco, professor, 73 CHARGE consortium, Danush Mozaffarian, professor, 74 Frank B Hu, professor, 75 Daniel I. Chanman, associate professor, 76
Borge G Nordestgaard, professor, 77 Christina Ellervik, associate professor, 78 Lu Qi, professor, 79

1 BMJ 2017;356:j1000 | doi: 10.1136/bmj.j1000

Table 2: Stratified analysis on causal estimates of dairy consumption (serving/day) with systolic blood pressure (mm Hg) and risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.
Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA;
3 Saw Swee Hock School of Public Health, National University of Singapore, Singapore;
4 Yong Loo Lin School of Medicine, National University of Singapore; 5 School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA; 6 Department of Clinical Biochemistry, Naestved Hospital, Denmark; 7 Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg Frederiksberg, Denmark; 8 Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; 9 USA; 10 School of Medicine, Tulane University, New Orleans, USA; 11 Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA; 12 Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; 13 Carolina Center for Genome Sciences, University of North Carolina; 14 Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, Netherlands; 15 Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University Boston, USA; 16 Department of Clinical Biochemistry, Copenhagen University Hospital, Denmark; 17 Department of Medicine, University of Washington, WA, USA; 18 Department of Internal Medicine, Massachusetts General Hospital, Boston; 19 INSERM UMR S 007, Unité de recherche, Inserm, Paris, France; 20 Université Paris Diderot Sorbonne Paris Cité, France; 21 Sorbonne Universités UPME Univ Paris 2; Université Paris Descartes; 22 Department of Preventive Medicine and Public Health, University of Valencia, Spain; 23 CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; 24 School of Women’s and Infants’ Health, University of Western Australia, Australia; 25 Danish Cancer Society Research Centre, Copenhagen, Denmark; 26 Department of Public Health, Aarhus University, Denmark; 27 Department of Cardiology, Aalborg University Hospital, Denmark; 28 Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark; 29 Institute of Preventive Medicine Bispebjerg and Frederiksberg Hospitals, Copenhagen; 30 Department of Genetics Washington University School of Medicine, Saint Louis, MO, USA; 31 Department of Clinical Physiology, Tampere University Hospital, Finland; 32 Department of Clinical Physiology, University of Tampere School of Medicine; 33 Department of Clinical Sciences, Lund University, Malmö, Sweden; 34 Department of Biobank Research, Umeå University, Sweden; 35 Department of Epidemiology, University of Washington, WA, USA; 36 Department of Health Sciences, University of Washington, WA; 37 New York Academy of Medicine, New York, USA; 38 Welcome Trust Sanger Institute, Cambridge, UK; 39 NIH National Human Genome Research Institute, Cambridge, MA, USA; 40 Department of Biobank Research, Umeå University, Sweden; 41 Laboratory of Neurogenetics National Institute on Aging, Bethesda, USA; 42 Translational Gerontology Branch, Baltimore, USA; 43 Geriatric Unit, Local Health Tuscany Centre, Florence, Italy; 44 Research Centre for Prevention and Health, Copenhagen, Denmark; 45 Department of Clinical Experimental Research, Rigshospitalet, Denmark; 46 Faculty of Health Sciences, University of Aarhus, Denmark; 47 Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; 48 Department of Clinical Sciences in Malmö, Lund University, Sweden; 49 Institute for Translational Genomics and Population Sciences, University of Southern Denmark, Odense, Denmark; 50 Division of Preventive Medicine, University of California San Diego, La Jolla, USA; 51 Center for Public Health Genomics, University of Virginia, Charlottesville, USA; 52 Department of Computer Languages and Systems, University Jaume I, Castellon, Spain; 53 Centre for Sleep Science, University of Western Australia, Australia; 54 Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; 55 Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 56 Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA; 57 Division of Medicine, Tampere University Hospital, Finland; 58 Department of Medicine, University of Turku, Finland; 59 Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland; 60 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku; 61 Department of Clinical Chemistry, Tampere University Hospital, Finland; 62 Department of Clinical Chemistry, University of Tampere School of Medicine, Finland; 63 Department of Food and Environmental Sciences, University of Helsinki, Finland; 64 Channing Division of Network Epidemiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA; 65 Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, USA; 66 Department of Epidemiology and Population Genetics, Centro Nacional Investigación Cardiovasculares (CINC), Madrid, Spain; 67 Instituto Madrileño de Estudios Avanzados en Alimentación Madrid, Spain; 68 Department of Public Health and Clinical Medicine Section for Medicine, Umeå University, Sweden; 69 Friedman School of Nutrition Science & Policy, Tufts University, Boston, USA; 70 Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, USA; 71 Broad Institute of MIT and Harvard, Cambridge, MA, USA; 72 Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen, Denmark; 73 Department of Production, Research and Innovation, Region Sjælland, Søren, Denmark; 74 Department of Laboratory Medicine, Naestved Hospital, Denmark; 75 Duke University, Durham, NC, USA; 76 The authors of the GLACIER Study acknowledge the funding agencies supporting the Northern Sweden Diet Database and the Vasterbotten Intervention Project, including the Swedish Research Council. The authors of the YFS gracefully acknowledged the expert technical assistance in the statistical analyses by Ville Aalto, Inna Lisinen, and Mika Helminen. The authors of the Raine study are grateful to the Raine participants and their families, and to the Raine research staff for cohort coordination and data collection. This work was supported by resources provided by the Pwasey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. The authors also gratefully acknowledge the NH&MRC for their long term funding to the study over the past 25 years and also the following institutes for providing funding for core management of the Raine study: University of Western Australia (UWA); Curtin University; Raine Medical Research Foundation; UWA Faculty of Medicine, Dentistry, and Health Sciences; Telethon Kids Institute, Women’s and Infant’s Research Foundation (King Edward Memorial Hospital); and Edith Cowan University. We acknowledge the assistance of the Western Australian DNA Bank (National Health and Medical Research Council of Australia National Enabling Facility), the Raine study participants for their ongoing participation in the Raine study team for study coordination and data collection; the UWA Centre for Science for use of its facility; and the Sleep Study Technicians. The authors of the ARIC study thank the staff and participates for their important contributions. Dr Dolores Corella acknowledges the collaboration of the Real Colegio Complutense at Harvard University, Cambridge, MA, USA.

Contributors: LQ obtained funding from the National Institutes of Health, MD, TH, HKB, CE, and LQ designed the study. MD and TH collected the data. MD, TH, and HKB provided statistical expertise. MD drafted the first draft of the manuscript. LQ contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript. MD, TH, HKB, BGN, CE, and LQ are the guarantors of this investigation and contribute equally to this work.

Funding: Funding: LQ is recipient of the National Heart, Lung, and Blood Institute (HL107191, HL107193, HL036594, HL104359, HL088521, U01HG004399, HG008128, HL090479), the National Institute of Diabetes and Digestive and Kidney Diseases (DK007178, DK100383, DK078616), the Boston Obesity Nutrition Research Center (DK46200), the United States–Israel Binational Science Foundation grant (201136), and the American Heart Association Scientist Development Grant (1113554N). The authors of the ARIC study are supported by the National Heart, Lung, and Blood Institute (HHSN268201100005C, HHSN268201100006C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C).
16 Ehret GB, Munroe PB, Rice KM, et al. International Consortium for
14 Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose
10 Samara A, Herbeth B, Ndiaye NC, et al. Dairy product consumption,
8 Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and
6 Zong G, Sun Q, Yu D, et al. Dairy consumption, type 2 diabetes, and
5 Wang H, Fox CS, Troy LM, Mckeown NM, Jacques PF. Longitudinal
4 Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease,
3 Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering
23 Tanaka S, Uenishi K, Ishida H, et al. A randomized intervention trial of