Dairy consumption, systolic blood pressure, and risk of hypertension

Mendelian randomization study

Ding, Ming; Huang, Tao; Bergholdt, Helle K M; Sørensen, Thorkild I.A.; Linneberg, Allan René; Sandholt, Camilla Helene; Pedersen, Oluf; Hansen, Torben; Kilpeläinen, Tuomas O; CHARGE Consortium; Nordestgaard, Børge G; Ellervik, Christina; Qi, Lu; Mendelian Randomization of Dairy Consumption Working Group

Published in:
The BMJ

DOI:
10.1136/bmj.j1000

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC

Citation for published version (APA):
Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

Mendelian Randomization of Dairy Consumption Working Group

ABSTRACT

OBJECTIVE

To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal.

DESIGN

Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable.

SETTING

CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.

PARTICIPANTS

Data from 22 studies with 171,213 participants, and an additional 10 published prospective studies with 26,119 participants included in the observational analysis.

MAIN OUTCOME MEASURES

The instrumental variable estimation was conducted using the ratio of coefficients approach. Using meta-analysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized.

RESULTS

Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval −0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (β=1.35, 95% confidence interval −0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: β=−0.21, 95% confidence interval −0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with −0.11 (95% confidence interval −0.20 to −0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11).

CONCLUSION

The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.

WHAT IS ALREADY KNOWN ON THIS TOPIC

Observational studies showed that dairy intake was associated with lower systolic blood pressure and lower risk of hypertension

WHAT THIS STUDY ADDS

Using a Mendelian randomization approach, we found that genetically determined dairy consumption was not associated with systolic blood pressure or risk of hypertension

Introduction

Raised blood pressure is an important risk factor for cardiovascular disease and has been the top single contributor to the global burden of morbidity and mortality, leading to 9.4 million deaths each year.1 In clinical trials, lowering blood pressure has been shown to be effective in reducing the incidence of cardiovascular disease.2 Each 5 mm Hg reduction in blood pressure is associated with a 20% lower risk of coronary heart disease and a 29% lower risk of stroke.3

Maintaining a healthy diet is critical for the prevention of hypertension4; whether dairy products should be incorporated into such a diet is, however, controversial. In epidemiological studies, the association of dairy consumption with blood pressure has been inconsistent. Several observational studies have reported inverse associations of dairy consumption with systolic blood pressure and risk of hypertension5–7; however, such associations were not observed in other studies.8–10 Two meta-analyses of prospective cohort studies consistently indicated that dairy consumption was associated with lower systolic blood pressure and lower risk of hypertension.11,12 Owing to the observational nature of the studies included, the reported associations might not indicate causality.

In recent years, Mendelian randomization analysis has been widely used to assess potential causal estimates of various risk factors with health outcomes. This approach has the advantage over traditional observational studies of minimizing confounding by using genetic markers as instrumental variables of environmental risk factors. An SNP (single nucleotide polymorphism) rs4988235 upstream from the lactase persistence gene (LCT-13910) has been consistently related to dairy intake in multiple populations,11,16 representing a strong instrumental variable for analyzing the causal relation between dairy intake and disease risk.

In this study, using data collected from 32 studies with 197,332 participants, we performed an instrumental variable analysis to examine the possible causal effect of dairy consumption on systolic blood pressure and
In addition we conducted a meta-analysis to summarize the results of eight randomized clinical trials assessing dairy intake intervention on changes in systolic blood pressure.

Methods

Study design and population

We used an instrumental variable approach to examine associations of dairy consumption with systolic blood pressure and risk of hypertension. We collected data from 22 observational studies with 171,213 participants within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. All participants provided written informed consent. The web appendix describes the studies in the analysis.

To provide comprehensive evidence on associations of dairy intake with systolic blood pressure and risk of hypertension, we conducted a systematic review of previously published cohort studies and randomized clinical trials. In the web appendix, we describe the process of the systematic review in detail.

Dairy consumption

Dairy products included skim/low fat milk, whole milk, ice cream, yogurt, cottage/ricotta cheese, cream cheese, other cheese, and cream. In most of the studies, dairy intake was self reported by food frequency questionnaire. We calculated total dairy consumption as the sum of all dairy categories (see table 1 in the web appendix for a detailed description of dairy consumption in the included studies).

Outcome measures

The outcome of our Mendelian randomization included systolic blood pressure and risk of hypertension. Given that systolic blood pressure is superior to diastolic blood pressure as a major risk factor of cardiovascular disease, we used systolic blood pressure as the main outcome in our analysis (see table 1 in the web appendix for the detailed measurement of systolic blood pressure in the included studies). For participants taking antihypertensive drugs, we added 15 mm Hg to systolic blood pressure to adjust for treatment effects. Hypertension was defined as a systolic blood pressure of 140 mm Hg or higher or current use of antihypertensive drugs.

SNP rs4988235

Table 1 in the web appendix shows genotyping platforms, genotype frequencies, Hardy-Weinberg equilibrium P values, and call rates for lactase persistence SNP rs4988235. The SNP rs4988235 was not genotyped or imputed in two studies; proxy SNPs (rs309137: r²=0.77; rs1446585: r²=1.00) were used instead.

Statistical analyses

We initially conducted statistical analyses within each included study in accordance with a standard analysis plan. As lactase persistence is inherited as a dominant trait, we used dominant models (CC vs CT/TT genotype) to examine associations of LCT-13910 rs4988235 with dairy intake, systolic blood pressure, and risk of hypertension.
hypertension adjusting for baseline age, sex, ethnicity, and region. We examined associations of dairy consumption with systolic blood pressure and risk of hypertension using linear or logistic models adjusting for baseline age, body mass index, blood pressure, smoking status, physical activity, total energy intake, alcohol consumption, and years of follow-up. For results collected from all studies using linear or logistic models, we combined results across studies using random effects models. We meta-analyzed the results of observed associations of dairy intake with systolic blood pressure and risk of hypertension within the CHARGE Consortium with results extracted from published cohort studies. The effect of dairy intake on systolic blood pressure from published randomized clinical trials was also meta-analyzed using a random effects model. Statistical heterogeneity across studies was assessed by Cochrane Q test, with $P < 0.1$ indicating significant between study heterogeneity. In addition, we calculated the I^2 statistic to evaluate the percentage of heterogeneity that was due to between study variation. After pooling the association between $\text{LCT-13910 rs4988235}$ and dairy intake across studies by meta-analysis, we quantified the strength of the single SNP as an instrumental variable by Z statistic and P value of the pooled effect estimate. We considered $\text{LCT-13910 rs4988235}$ a strong instrumental variable if the Z statistic was more than 3.2 or the P value was less than 0.0016, which was equivalent to an F statistic greater than 10. We used the instrumental variable ratio method to estimate the possible causal relation of dairy consumption with systolic blood pressure and risk of hypertension. The instrumental variable estimate was calculated as the ratio of the association of the instrumental variable with outcome to the association of the exposure with outcome. We estimated the variance of the instrumental variable ratio using first order Taylor expansion.

We further conducted stratified analysis on the causal estimates of dairy intake with systolic blood pressure and risk of hypertension by frequency of CC alleles ($\leq 12\%$, $> 12\%$), region or country (northern Europe, southern Europe, US), race (white, other), study design (cross sectional, prospective), and measurement of systolic blood pressure (self reported, clinical). We used metaregression to evaluate effect modification by each study level characteristics. In sensitivity analyses, we applied instrumental variable analysis within each study and combined the instrumental variable estimates through meta-analysis; we repeated our analyses using additive (we assumed 0, 1, and 2 for TT, CT, and CC alleles) and recessive models (CC/CT v TT). We conducted restriction analyses by excluding studies that used proxy SNPs, studies that used $\text{LCT-13910 rs4988235}$ in Hardy-Weinberg disequilibrium, or studies where $\text{LCT-13910 rs4988235}$ was not statistically significantly associated with higher dairy intake.

All meta-analyses were conducted at Harvard TH Chan School of Public Health using Stata version 11.2 (STATA Corp, College Station, TX).

Patient involvement
No patients were involved in setting the research question or the outcome measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked to advise on interpretation or writing up of results. There are no plans to disseminate the results of the research to study participants or the relevant patient community.

Results
We included 22 studies with 171,213 participants from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. Table 1 shows the baseline characteristics of the studies. Of the 22 studies, nine were conducted in the US, nine in countries in northern Europe, three in countries in southern Europe, and one in Australia. The frequency of CC alleles varied across studies. In most of the studies, participants were
white, and dairy intake was assessed prospectively before measuring systolic blood pressure.

By conducting a systematic review, we additionally identified 10 published cohort studies with 26,119 participants and eight randomized clinical trials with 735 participants. Figure 1 in the web appendix shows the flowchart of study selection. The clinical trials examined the effect of dairy intake on systolic blood pressure over one month to 12 months of interventions.22-29 In the cohort studies, seven assessed systolic blood pressure as the outcome5-10 30 31 32 and five used hypertension as the outcome.5 30-33 Tables 2 and 3 in the web appendix show the characteristics of the published trials and cohorts.

In observational analysis, each serving/day increase in dairy consumption was associated with lower systolic blood pressure ($\beta=-0.11$, 95% confidence interval -0.20 to -0.02 mm Hg; $P=0.02$) and was not associated with a lower relative risk of hypertension (odds ratio 0.98, 95% confidence interval 0.97 to 1.00; $P=0.11$) (figs 1 and 2). In the randomized clinical trials, however, dairy intake did not show a significant effect on changes in systolic blood pressure over one month to 12 months of interventions (comparing intervention with control group: $\beta=-0.21$, -0.98 to 0.57 mm Hg; $P=0.60$) (fig 3). No publication bias of included cohorts and clinical trials was found (systolic blood pressure in cohorts: Egger’s test $P=0.51$; hypertension in cohorts: $P=0.46$; randomized clinical trials: $P=0.33$) (fig 2 in the web appendix).

Compared with the CC genotype, the CT/TT genotype of LCT-13910 rs4988235 was associated with higher dairy consumption (0.23 (95% confidence interval 0.17 to 0.29) serving/day (about 55 g/day); $P<0.001$), and the Z statistic was 7.51, showing that the instrumental variable was strong and valid (fig 4). However, significant heterogeneity was found across studies ($I^2=80.0%$, $P<0.001$ for heterogeneity). Compared with the CC genotype, the CT/TT genotype of LCT-13910 rs4988235 was not associated with systolic blood pressure (0.31, -0.05 to 0.68 mm Hg; $P=0.09$) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; $P=0.27$) (figs 5 and 6). Using LCT-13910 rs4988235 as the instrumental variable, we estimated that genetically determined dairy consumption was not associated with systolic blood pressure ($\beta=1.35$, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24).

To explore sources of heterogeneity in the association of LCT-13910 rs4988235 with dairy intake, we conducted stratified analyses by region or country, frequency of the CC genotype, race, study design, and measurement of systolic blood pressure. We classified Denmark, the Netherlands, Sweden, and Finland as northern European countries and Italy, Spain, and France as southern European countries. Among studies with a CC genotype frequency of 12% or less, or studies conducted in northern European countries, we found no heterogeneity of LCT-13910 rs4988235 with dairy intake, and the instrumental variable remained strong in both subgroups. Genetically determined dairy consumption was unrelated to systolic blood pressure and risk of hypertension within each stratum, which was consistent with the main finding.
RESEARCH

5

(table 2). No effect modification on causal estimates was found by CC frequency, region or country, race, study design, and systolic blood pressure measurement.

In sensitivity analyses, we applied the instrumental variable analysis within each study and combined the instrumental variable estimates using meta-analysis. The results were consistent with the main findings (fig 3 in the web appendix). We examined the associations of dairy consumption with systolic blood pressure and risk of hypertension by modeling the LCT-13910 genotype in recessive and additive inheritance manner (figs 4 and 5 in the web appendix). Genetically determined dairy consumption was not associated with systolic blood pressure or risk of hypertension using the recessive model, and it was weakly associated with higher systolic blood pressure using the additive model (table 4 in the web appendix).

In restriction analysis, the instrumental variable estimates were consistent with the main findings when excluding studies that used proxy SNPs, studies that used LCT-13910 rs4988235 in Hardy-Weinberg disequilibrium, or studies where LCT-13910 rs4988235 was not statistically significantly associated with higher dairy intake using dominant models.

Discussion

In this study, using Mendelian randomization analysis in 32 studies (22 observational studies, 10 previously published cohort studies) with 197,332 participants, we examined the potential causal effect of dairy consumption on systolic blood pressure and risk of hypertension.

Using the LCT-13910 gene variant affecting lactase persistence as the instrumental variable, our study showed that genetically determined dairy intake did not affect systolic blood pressure or risk of hypertension. Furthermore, a meta-analysis of the results from published randomized clinical trials showed that dairy consumption had no effect on changes of systolic blood pressure in response to interventions over one month to 12 months.

Strengths and weaknesses of this study

Our study has several strengths. First, we carried out a large instrumental variable analysis on the causality of dairy intake on systolic blood pressure and hypertension. The large sample size provided us with enough power to estimate the causal effect of dairy intake on systolic blood pressure. Second, the single nucleotide polymorphism (SNP) rs4988235 for lactase persistence is a well established variant associated with dairy intake, with a solid biological basis, and is therefore a highly valid instrumental variable. Third, we summarized published randomized clinical trials on dairy consumption with systolic blood pressure. Although clinical trials have shorter follow-up time than cohort studies, they still provided further supportive evidence to the instrumental variable results.

Our study has several limitations. First, given the variability of the CC allele across studies and the different prevalence of hypertension across countries, population stratification might exist. However, as most of the studies included were genetically homogeneous, we performed instrumental variable analysis within each study and

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Effect size (95% CI)</th>
<th>Weight (%)</th>
<th>Effect size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGPS</td>
<td>6.5</td>
<td>0.26 (0.22 to 0.29)</td>
<td></td>
</tr>
<tr>
<td>WHS</td>
<td>6.3</td>
<td>0.18 (0.12 to 0.24)</td>
<td></td>
</tr>
<tr>
<td>GESUS</td>
<td>5.5</td>
<td>0.27 (0.17 to 0.38)</td>
<td></td>
</tr>
<tr>
<td>NH</td>
<td>6.1</td>
<td>0.18 (0.10 to 0.25)</td>
<td></td>
</tr>
<tr>
<td>ARIC (white)</td>
<td>5.6</td>
<td>0.33 (0.23 to 0.43)</td>
<td></td>
</tr>
<tr>
<td>ARIC (African-American)</td>
<td>5.4</td>
<td>-0.05 (-0.16 to 0.07)</td>
<td></td>
</tr>
<tr>
<td>HPS</td>
<td>7.0</td>
<td>0.40 (0.30 to 0.49)</td>
<td></td>
</tr>
<tr>
<td>INTER99</td>
<td>5.3</td>
<td>0.34 (0.22 to 0.46)</td>
<td></td>
</tr>
<tr>
<td>DESIR</td>
<td>5.2</td>
<td>-0.06 (-0.19 to 0.06)</td>
<td></td>
</tr>
<tr>
<td>Rotterdam</td>
<td>2.7</td>
<td>0.32 (0.04 to 0.60)</td>
<td></td>
</tr>
<tr>
<td>MDCS</td>
<td>2.3</td>
<td>0.38 (0.06 to 0.70)</td>
<td></td>
</tr>
<tr>
<td>GLACIER</td>
<td>3.3</td>
<td>0.11 (-0.12 to 0.34)</td>
<td></td>
</tr>
<tr>
<td>MESA</td>
<td>4.2</td>
<td>0.24 (0.06 to 0.41)</td>
<td></td>
</tr>
<tr>
<td>FamHS</td>
<td>4.1</td>
<td>0.39 (0.21 to 0.57)</td>
<td></td>
</tr>
<tr>
<td>CHS</td>
<td>4.6</td>
<td>0.13 (-0.04 to 0.30)</td>
<td></td>
</tr>
<tr>
<td>Young Finns Study</td>
<td>1.9</td>
<td>0.69 (0.33 to 1.05)</td>
<td></td>
</tr>
<tr>
<td>Diet, Cancer and Health cohort</td>
<td>2.3</td>
<td>0.21 (-0.11 to 0.52)</td>
<td></td>
</tr>
<tr>
<td>DIDGENES (controls)</td>
<td>2.3</td>
<td>0.42 (0.10 to 0.73)</td>
<td></td>
</tr>
<tr>
<td>DIDGENES (weight gainers)</td>
<td>1.5</td>
<td>0.33 (-0.10 to 0.77)</td>
<td></td>
</tr>
<tr>
<td>PREDIMED-VALENCIA</td>
<td>4.8</td>
<td>0.12 (-0.03 to 0.26)</td>
<td></td>
</tr>
<tr>
<td>BPHS</td>
<td>3.8</td>
<td>0.37 (0.17 to 0.57)</td>
<td></td>
</tr>
<tr>
<td>GOLDN</td>
<td>1.7</td>
<td>0.51 (0.11 to 0.90)</td>
<td></td>
</tr>
<tr>
<td>Raine</td>
<td>4.1</td>
<td>0.25 (0.07 to 0.43)</td>
<td></td>
</tr>
<tr>
<td>InCHIANTI</td>
<td>5.1</td>
<td>-0.09 (-0.22 to 0.06)</td>
<td></td>
</tr>
<tr>
<td>Overall: P<0.001, I²=80%</td>
<td>100.0</td>
<td>0.23 (0.17 to 0.29)</td>
<td></td>
</tr>
</tbody>
</table>

Fig 4 | Association of SNP rs4988235 with dairy consumption using dominant model (CT/TT vs CC genotype). Linear regression adjusted for baseline age, sex, ethnicity, and region or country.

<table>
<thead>
<tr>
<th>Studies</th>
<th>Effect size (95% CI)</th>
<th>Weight (%)</th>
<th>Effect size (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGPS</td>
<td>32.0</td>
<td>0.34 (-0.31 to 0.98)</td>
<td></td>
</tr>
<tr>
<td>WHS</td>
<td>21.3</td>
<td>-0.21 (-1.00 to 0.58)</td>
<td></td>
</tr>
<tr>
<td>GESUS</td>
<td>6.5</td>
<td>0.93 (-0.50 to 2.36)</td>
<td></td>
</tr>
<tr>
<td>ARIC (white)</td>
<td>6.0</td>
<td>0.12 (-1.37 to 1.61)</td>
<td></td>
</tr>
<tr>
<td>ARIC (African-American)</td>
<td>2.3</td>
<td>-0.30 (-2.73 to 2.13)</td>
<td></td>
</tr>
<tr>
<td>INTER99</td>
<td>5.1</td>
<td>-0.49 (-2.10 to 1.12)</td>
<td></td>
</tr>
<tr>
<td>D.E.S.I.R. Study</td>
<td>6.0</td>
<td>1.41 (-0.08 to 2.90)</td>
<td></td>
</tr>
<tr>
<td>Rotterdam Study</td>
<td>1.8</td>
<td>0.46 (-2.25 to 3.16)</td>
<td></td>
</tr>
<tr>
<td>Malmo Diet and Cancer Study</td>
<td>1.3</td>
<td>0.36 (-2.80 to 3.51)</td>
<td></td>
</tr>
<tr>
<td>GLACIER</td>
<td>1.6</td>
<td>1.09 (-1.75 to 3.94)</td>
<td></td>
</tr>
<tr>
<td>MESA</td>
<td>2.4</td>
<td>0.75 (-1.61 to 3.10)</td>
<td></td>
</tr>
<tr>
<td>FamHS</td>
<td>1.8</td>
<td>2.73 (-0.01 to 5.47)</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular Health Study</td>
<td>0.5</td>
<td>2.44 (-2.93 to 7.80)</td>
<td></td>
</tr>
<tr>
<td>Young Finns Study</td>
<td>3.0</td>
<td>0.03 (-2.08 to 2.14)</td>
<td></td>
</tr>
<tr>
<td>Diet, Cancer and Health cohort</td>
<td>0.5</td>
<td>0.43 (-1.22 to 0.92)</td>
<td></td>
</tr>
<tr>
<td>DIDGENES (controls)</td>
<td>0.5</td>
<td>-0.10 (-5.10 to 4.88)</td>
<td></td>
</tr>
<tr>
<td>DIDGENES (weight gainers)</td>
<td>0.3</td>
<td>-0.01 (-6.47 to 6.45)</td>
<td></td>
</tr>
<tr>
<td>PREDIMED-VALENCIA study</td>
<td>0.2</td>
<td>-2.85 (-10.52 to 4.82)</td>
<td></td>
</tr>
<tr>
<td>BPHS</td>
<td>1.6</td>
<td>-1.69 (-4.62 to 1.24)</td>
<td></td>
</tr>
<tr>
<td>GOLDN</td>
<td>0.9</td>
<td>-0.26 (-4.10 to 3.58)</td>
<td></td>
</tr>
<tr>
<td>Raine</td>
<td>3.0</td>
<td>-0.32 (-2.44 to 5.80)</td>
<td></td>
</tr>
<tr>
<td>InCHIANTI</td>
<td>1.4</td>
<td>3.04 (-0.02 to 6.10)</td>
<td></td>
</tr>
<tr>
<td>Overall: P=0.67, I²=0%</td>
<td>100.0</td>
<td>0.31 (-0.05 to 0.68)</td>
<td></td>
</tr>
</tbody>
</table>

Fig 5 | Association of SNP rs4988235 with systolic blood pressure using dominant model (CT/TT vs CC genotype). Linear regression adjusted for baseline age, sex, ethnicity, and region or country.
combined the instrumental variable results through meta-analysis. The instrumental variable results were consistent with the main findings. Second, the pleiotropic effect of SNP rs4988235 is not known. However, SNP rs4988235 was located in the MCM6 gene upstream from LCT-13910, and neither gene has been found to have additional biological function besides lactase persistence. Third, dairy consumption was self-reported by questionnaire and might be affected by measurement errors. If measurement errors were random, the observed associations would be biased towards the null. However, the results for instrumental variable estimates would not be biased, although the confidence interval might be larger. Fourth, we included total dairy intake as the main exposure; however, lactase content differs between dairy products. For example, Swiss cheese and mozzarella contain trivial amounts of lactase. Similar to the measurement error of dairy intake, the variability in lactase content of dairy products might not bias the instrumental variable estimates but might widen the confidence intervals. Fifth, several studies examined dairy consumption and systolic blood pressure using a cross-sectional study design, and even if instrumental variable analysis was used this might result in reverse causation. However, no statistically significant effect modification by study design was found in stratified analysis, indicating that reverse causation caused by study design might be minimal.

Strengths and weaknesses in relation to other studies

In our study we observed an inverse association between dairy intake and systolic blood pressure. Consistently, cross-sectional studies showed an inverse association between dairy intake and systolic blood pressure. Previous cohort studies have been summarized in two meta-analyses. One meta-analysis involving approximately 45,000 participants showed that dairy products were associated with lower risks of raised systolic blood pressure. In line with this, another meta-analysis, which included nine cohort studies with a sample size of 57,256, found an inverse association between dairy foods and risk of hypertension. However, in both meta-analyses, the associations of high fat dairy products, including whole milk, cream, and cream cheese, and low fat dairy products, including skim milk and yogurt with systolic blood pressure were inconsistent. In the two published meta-analyses, the observed inverse association was mainly due to consumption of low fat dairy products. Furthermore, a meta-analysis summarizing 14 clinical trials found that probiotic fermented milk, including yogurt, resulted in a statistically significant reduction in systolic blood pressure. Clinical trials also showed that tripeptides and peptides derived from milk have hypotensive effects in prehypertensive and hypertensive participants.

Possible explanations and implications

Compared with the CC genotype, the CT/TT genotype was associated with 0.23 serving/day (about 55 g/day) higher dairy intake. In previous cohort studies, a 55 g/day increment in dairy intake was estimated to be statistically significantly associated with 0.03 mm Hg lower systolic blood pressure, and 1%, 2%, and 1% lower risks of hypertension, type 2 diabetes, and cardiovascular disease, respectively. However, in our study, the CT/TT genotype was associated with a 0.31 mm Hg higher systolic blood pressure, and genetically determined dairy consumption did not decrease systolic blood pressure or risk of hypertension using instrumental variable estimation. Moreover, the meta-analyzed results of clinical trials showed that dairy intake had no effect on changes in systolic blood pressure. There could be two reasons that the reported associations from observational studies were inconsistent with our instrumental variable results. First, even if yogurt and specific nutrients in dairy such as milk peptides have antihypertensive effects, specific dairy products such as yogurt only compose a small fraction of total dairy products and could not explain the general observational association between dairy intake and outcome. Second, higher low fat dairy intake was more likely to be associated with a healthy diet and lifestyle. Therefore, the observed inverse association of particularly low fat dairy intake with systolic blood pressure might be due to confounding of intake of other food items and a healthy lifestyle. However, as one fundamental assumption for the instrumental variable to be valid is that the instrumental variable is associated with the outcome only through the exposure under study.

Fig 6 | Association of SNP rs4988235 with relative risk of hypertension using dominant model (CT/TT v CC genotype). Logistic regression adjusted for baseline age, sex, ethnicity, and region or country.
we could not separate the effect of individual dairy products in our study to further explain the inconsistency between observational and instrumental results using the current instrumental variable. And it is difficult to find a specific instrumental variable for each dairy product.

To tackle the heterogeneity of the association between SNP rs4988235 and dairy intake across studies, we conducted stratified analysis by CC frequency and region or country. SNP rs4988235 was consistently associated with higher dairy intake across subgroups, showing the robustness of our instrumental variable. No heterogeneity was found among studies conducted in northern Europe or among studies with a CC frequency of 12% or less, perhaps because these populations consume a relatively high amount of dairy products, and SNP rs4988235 was found to be associated completely with lactase persistence in north Europeans. No associations of genetically determined dairy intake with systolic blood pressure and risk of hypertension were found in both subgroups, which were consistent with our main finding.

Conclusion

The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by our comprehensive instrumental variable analysis and systematic review of existing clinical trials.

Members of the Mendelian Randomization of Dairy Consumption Working Group

Ming Ding, research fellow,1 Tao Huang, assistant professor,1,2,4 Helle K M Bergholdt, research fellow,1,5,6,7 Alexis C Frazier-Wood, assistant professor,5,8 Stella Aslibekyan, assistant professor,9 Kari E North, professor,10,11 Trudy Voortman, research fellow,12,13 Manuela Graff, research assistant professor,10 Caren E Smith,13 Chao-Qiang Lai, research geneticist,14 Anette Varbo, doctoral student,15,16 Rozenn N Lemaire, research associate professor,17 Estor A L de Jonge, research fellow,18,19,20 Friedéic Fumerton, associate professor,16,17 Dolores Corella, professor,21,22 Carol A Wang, research associate,23,24 Anne Tjønneland, research leader,25 Kim Overvad, professor,25,26 Thorild IA Sørensen, professor,27,28 Mary F Feitosa, associate professor,29 Mary K Wojczynski, assistant professor,30,31 Mikael Hakonarson, assistant professor,32,33 Shahfkat Ahmad, research fellow,34 Frida Renstrom, research fellow,35 Bruce M Psaty, professor,36,37,38 David S Siscovick, professor,39 Inès Barroso, senior group leader,39,40,41 Ingemar Johansson, professor,42 Dena Hernandez, biologist,43 Luigi Ferrucci, scientific director,43 Stefania Bandinelli, geriatrician,44 Allan Linneberg, professor,45,46 Camilia Helene Sandholt, research fellow,47 Oluf Pedersen, professor,48,49 Torben Hansen, professor,48,49,50 Christina-Alexandra Schulz, doctoral student,49 Emily Sontedt, associate professor,51 Marju Orho-Melander, professor,15,52,53 Tsz-An Chen, senior statistician,54 Jerome I Rotter, professor,55,56 Mathew A Allison, professor,57,58 Stephen S Rich, professor,59,60 Jose V Sorli, professor,61,62 Oscar Cotelless, professor,63,64 Craig E Pennell, professor,65 Peter R Eastwood, professor,66 Albert Hofman, professor,67,68 Andre G Uitterlinden, professor,69 M Carola Zillikens, associate professor,69,70 Frank J A van Rooyen, research associate,71 Audrey Y Chu, research fellow,72,73 Lynda M Rose, associate professor,74 Paul M Ridker, professor,75,76 Jorma Viikari, professor,75,77 Olli Raitakari, project coordinator,75,76 Donna K Arnett, professor,77,78 Toshiko Tanaka, scientist,79,80 Michael A Province, professor,79,81 Ulla Toft, assistant professor,79 Erinulso, associate researcher,82 Oscar H Franco, professor,12 CHARGE consortium, Dariush Mozaffarian, professor,83 Frank B Hu, professor,84,85 Daniel I. Chan, associate professor,86,87 Daniel Sisco, professor,87 Matthias Stendal, staff scientist,88,89 "The Working Group consists of experts in genetic epidemiology, clinical research, and meta-analysis, working collaboratively to explore the role of genetic variation in determining blood pressure and its relationship with diet and other potential confounders. This study was not included in any genetic meta-analysis previously conducted in the UK."

The Working Group was led by David S Siscovick, professor, and Inès Barroso, senior group leader, and included researchers from around the world. The collaboration involved a systematic review of existing clinical trials, with the aim of understanding the relationship between dairy intake and blood pressure.

Table 2: Stratified analysis on causal estimates of dairy consumption (serving/day) with systolic blood pressure (mm Hg) and risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

<table>
<thead>
<tr>
<th>Variables</th>
<th>SNP rs4988235</th>
<th>Dairy intake with SNP rs4988235</th>
<th>Variables</th>
<th>SNP rs4988235</th>
<th>Dairy intake with SNP rs4988235</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP rs4988235</td>
<td></td>
<td></td>
<td>SNP rs4988235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC genotype frequency*</td>
<td></td>
<td></td>
<td>CC genotype frequency*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region or country†</td>
<td></td>
<td></td>
<td>Region or country†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.27 (0.23 to 0.31)</td>
<td>10</td>
<td></td>
<td>0.20 (0.13 to 0.28)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>>12%</td>
<td></td>
<td></td>
<td>0.21 (0.16 to 0.27)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>12%</td>
<td></td>
<td></td>
<td>0.26 (0.21 to 0.30)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11.64 (0.001)</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>6.46 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.16 (0.001)</td>
<td></td>
<td></td>
<td>0.16 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10 (0.001)</td>
<td></td>
<td></td>
<td>0.10 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08 (0.001)</td>
<td></td>
<td></td>
<td>0.08 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07 (0.001)</td>
<td></td>
<td></td>
<td>0.07 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06 (0.001)</td>
<td></td>
<td></td>
<td>0.06 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05 (0.001)</td>
<td></td>
<td></td>
<td>0.05 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04 (0.001)</td>
<td></td>
<td></td>
<td>0.04 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03 (0.001)</td>
<td></td>
<td></td>
<td>0.03 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02 (0.001)</td>
<td></td>
<td></td>
<td>0.02 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 (0.001)</td>
<td></td>
<td></td>
<td>0.01 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00 (0.001)</td>
<td></td>
<td></td>
<td>0.00 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
<td>0.09 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08 (0.001)</td>
<td></td>
<td></td>
<td>0.08 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07 (0.001)</td>
<td></td>
<td></td>
<td>0.07 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.06 (0.001)</td>
<td></td>
<td></td>
<td>0.06 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05 (0.001)</td>
<td></td>
<td></td>
<td>0.05 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.04 (0.001)</td>
<td></td>
<td></td>
<td>0.04 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03 (0.001)</td>
<td></td>
<td></td>
<td>0.03 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02 (0.001)</td>
<td></td>
<td></td>
<td>0.02 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01 (0.001)</td>
<td></td>
<td></td>
<td>0.01 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00 (0.001)</td>
<td></td>
<td></td>
<td>0.00 (0.001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Stratified analysis on causal estimates of dairy consumption (serving/day) with systolic blood pressure (mm Hg) and risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

*InCHIANTI was excluded owing to an extremely low CC frequency of 2%.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

**SNP rs4988235 was consistently associated with risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.
Department of Nutrition, Harvard School of Public Health, Boston, MA
Department of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
Department of Clinical Biochemistry, Naestved Hospital, Denmark
Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg Frederiksberg, Denmark
Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
NIHR Cambridge Biomedical Research Center, Baylor College of Medicine, Houston, TX, USA
Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
Carolina Center for Genome Sciences, University of North Carolina
Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, Netherlands
Institute of Preventive Medicine Bispebjerg and Women's Hospital and Harvard Medical School, Boston, MA, USA
Department of Clinical Biochemistry, Copenhagen University Hospital, Denmark
Department of Medicine, University of Washington, WA, USA
Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
INSERM UMR S007, Department of Nutritional Sciences, University of Massachusetts Lowell, USA
Center for Sleep Science, University of Western Australia
Diabetes Science & Policy, Tufts University, Boston, USA
Department of Clinical Biochemistry, Copenhagen University Hospital, Denmark
Department of Medicine, University of Melbourne, Australia
Institute of Preventive Medicine Bispebjerg and Women's Hospital and Harvard Medical School, Boston, MA, USA
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
Institute of Preventive Medicine Bispebjerg and Frederiksberg Hospitals, Copenhagen
Department of Genetics Washington University School of Medicine, Saint Louis, MO, USA
Department of Clinical Pharmacology, Tampere University Hospital, Finland
Department of Clinical Physiology, University of Tampere School of Medicine
Department of Clinical Sciences, Lund University, Malmo, Sweden
Department of Biobank Research, Umeå University, Sweden
Department of Epidemiology, University of Washington, WA, USA
Department of Health Sciences, University of Washington
New York Academy of Medicine, New York, USA
Wellcome Trust Sanger Institute, Cambridge, UK
NIHR Cambridge Biomedical Research Centre, Cambridge, UK
University of Cambridge, Metabolic Research Laboratories Institute of Metabolic Science, University of Cambridge, UK
Department of Biobank Research, Umeå University, Sweden
Laboratory of Neurogenetics National Institute on Aging, Bethesda, USA
Translational Gerontology Branch, Baltimore, USA
Geriatric Unit, Local Health Tuscany Centre, Florence, Italy
Research Centre for Prevention and Health, Copenhagen, Denmark
Department of Clinical Experimental Research, Rigshospitalet, Denmark
Faculty of Health Sciences, University of Aarhus, Denmark
Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
Department of Clinical Sciences in Malmö, Lund University, Sweden
Institute for Translational Genomics and Population Sciences, University of Colorado, Boulder, CO, USA
Division of Preventive Medicine, University of California San Diego, La Jolla, USA
Center for Public Health Genomics, University of Virginia, Charlottesville, USA
Department of Computer Languages and Systems, University Jaume I, Castellon, Spain
Centre for Sleep Science, University of Western Australia, Australia
Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
Division of Medicine, Tampere University Hospital, Finland
Division of Medicine, University of Turku, Finland
Division of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Finland
Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku
Department of Clinical Chemistry, Tampere University Hospital, Finland
Department of Clinical Chemistry, University of Turku, Finland
Department of Food and Environmental Sciences, University of Helsinki, Finland
Channing Division of Network Physiology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, USA
Department of Epidemiology and Population Genetics, Centro Nacional Investigación Cardiovasculares (CINIC), Madrid, Spain
Instituto Madrileño de Estudios Avanzados en Alimentación Madrid, Spain
Department of Public Health and Clinical Medicine Section for Medicine, Umeå University, Sweden
Friedman School of Nutrition Science & Policy, Tufts University, Boston, USA
Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
Broad Institute of MIT and Harvard, Cambridge, MA, USA
Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen, Denmark
Department of Production, Research and Innovation, Region Sjælland, Søren, Denmark
Department of Laboratory Medicine, Naestved Hospital, Denmark
The authors of the GLACIER Study acknowledge the funding agencies supporting the Northern Sweden Diet Database and the Vasterbotten Intervention Project, including the Swedish Research Council. The authors of the YFS gracefully acknowledge the expert technical assistance in the statistical analyses by Ville Aalto, Inna Lissinen, and Mika Helminen. The authors of the Raine study gratefully acknowledge the Raine participants and their families, and to the Raine research staff for cohort coordination and data collection. This work was supported by resources provided by the Pawsay Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. The authors also gratefully acknowledge the NH&MRC for their long term funding to the study over the past 25 years and also the following institutes for providing funding for core management of the Raine study: University of Western Australia (UWA); Curtin University; Raine Medical Research Foundation; UWA Faculty of Medicine, Dentistry, and Health Sciences, Telethon Kids Institute, Women’s and Infant’s Research Foundation (King Edward Memorial Hospital); and Edith Cowan University. We acknowledge the assistance of the Western Australian DNA Bank (National Health and Medical Research Council of Australia National Enabling Facility), the Raine study participants for their ongoing participation in the Raine study team for study coordination and data collection; the UWA Centre for Science for use of its facility; and the Sleep Study Technicians. The authors of the ARIC study thank the staff and participants for their important contributions. Dr Dolores Corelia acknowledges the collaboration of the Real Colegio Complutense at Harvard University, Cambridge, MA, USA.
Contributors: LQ obtained funding from the National Institutes of Health. MD, TH, HKB, CE, and LQ designed the study. MD and TH collected the data. MD, TH, and HKB provided statistical expertise. MD and TH prepared the data and wrote the first draft. All authors contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript. MD, TH, HKB, BGN, CE, and LQ are the guarantors of this investigation and contribute equally to this work.
Funding: Funding: LQ is recipient of the National Heart, Lung, and Blood Institute (U01HL108647), the National Heart, Lung, and Blood Institute (HL034594, HL135644, HL071668, CA87969, AA49449, RO1 HL034594, RO1 HL088521, UM1 CA167552, RO1 HL35644, HL071668, CA87969, CA49449, CA050575, HL34594, HL088521, U1HGO04399, DK080140, P30, U01CA175088, 8U01CA155626, DK58845, DK098311, U01HG000473, EY015473, CA134598, DK124657, USA9900 from the National Institutes of Health, with additional support for genotyping provided by Amgen. The first draft of the manuscript was written by LQ, MD, and TH, who were primarily responsible for the funding and research design. All authors contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript. MD, TH, HKB, BGN, CE, and LQ are the guarantors of this investigation and contribute equally to this work.

RESEARCH

HSN26820100011C, and HSN26820100012C, R01HL087641, R01HL59367 and R01HL086694, National Human Genome Research Institute contract U10HG004402, and National Institutes of Health contract HSN268200625226C. Infrastructure was partly supported by grant No UL1R0025005, a component of the National Institutes of Health and the Roadmap for medical research. The Inter99 study was funded by the Danish Research Councils, Health Foundation, Danish Centre for Evaluation and Health Technology Assessment, Copenhagen County, Danish Heart Foundation, Ministry of Health and Prevention, Association of Danish Pharmacies, Augustinus Foundation, Novo Nordisk, Velux Foundation, Becket Foundation, and b Henriksen's Foundation. The D.E.S.I.R. study has been supported by INSERM contracts with CNAMTS, Lilly, Novartis Pharma, and Sanofi-Aventis; by INSERM (Réseaux en Santé Publique, Interactions entre les déterminants de la santé, Cohortes Santé TgIR 2008), the Association Diabète Risque Vasculaire, the Fédération Française de Cardiologie, La Fondation de France, ALFEDAM, CNIÉL, ONIVINS, Société Francophone du Diabète, Arxid Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Merck Santé, Novo Nordisk, Pierre Fabre, Roche, Topcon. The funding sources had no role in the design or conduct of the study; collection, management, analysis, and interpretation of the data, or preparation, review, or approval of the manuscript. The D.E.S.I.R. Study Group: INSERM CESP U1018: B Balkau, P Ducimetière, E Eschwege; INSERM US675: F Alhéni-Gelas; CHU d’Angers: A Girault, Bichat Hospital: F Fumeron, M Marre, R Roussel, CHU de Rennes: F Bonnet, CNRS UMR8090, Lille: S Cauchi P Frugier, Centers d’Exams de Santé: Alençon, Angers, Blois, Caen, Chartres, Chateauroux, Cholet, Le Mans, Orléans, Tours, Institute de Recherche Médicale Générale: J Cognée; General practitioners of the region; Institute inter-Regional pour la Santé: C Born, E Caces, N Copin, JG Moreau, O Lanteri, F Falcoz, J Tichet, S Vol. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research (NWO) Investments (No 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project No 050-060-810. The MDCS was initiated and planned in collaboration with the International Agency for Research on Cancer, the Swedish Cancer Society, and Swedish Medical Research Council and the Faculty of Medicine Lund University, Sweden. The study is also funded by Region Skåne, City of Malmö, Påhlsson Foundation and the Swedish Heart and Lung Foundation. The GLACIER Study was funded by project grants from the Swedish Heart-Lung Foundation, the Swedish Diabetes Association, the Påhlsson’s Foundation, Region Skåne, the Swedish Research Council, the Umeå Medical Research Foundation, Novo Nordisk, The Heart Foundation of Northern Sweden (all to PWP), and Wellcome Trust WT099851. The MESA study was supported by contracts HHSN268201000031, N01-HC-95159,N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 from the National Heart, Lung, and Blood Institute, and by grants UL1TR000404 and UL1-TR001079 from NCRR. The FamHS was supported by grants DK089256 and HL101585. The GOLDN Study was supported by National Heart, Lung, and Blood Institute (NHLBI) grant No U01HL075252 (Genetic and Environmental Determinants of Triacylglycerol Levels) and U01HL095471 (Familial Lipid Response to Fenofibrate and Dietary Fat), NHLBI grant Nos HL54776 and HL078885; and by contracts 53-K06-5 and 58-1950-9 from the US Department of Agriculture, Agriculture Research Service. The Raine Study was supported by the National Health and Medical Research Council of Australia (grant Nos 403981 and 003209) and the Canadian Institutes of Healthcare (grant No MOP-82893). The 22 year Raine Study follow-up was funded by NHMRC project grants 1027469, 1044860 and 1021855. Funding was also provided by Safework Australia. The IrChIANTI study baseline (1998-2000) was supported as a "targeted project" (IC1110/RF717) by the Italian Ministry of Health and in part by the US National Institute on Aging (contracts: 263 MD 9164 and 263 MD 82136). The sponsors have no role in: the study design; the collection, analysis, or interpretation of data; the writing of the report, or in the decision to submit the article for publication.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/doi/disclosure.pdf and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and the Harvard TH Chan School of Public Health. The completion of the self administered questionnaire was considered to imply informed consent.

Data sharing: No additional data available.

Transparency: The lead authors (the manuscript’s guarantors) affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned has been explained.

The open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC-BY-NC 4.0) license, which permits unrestricted, non-commercial distribution, reproduction and adaptation, provided the work is non-commercial, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc-4.0/

the bmj | 2M12017356j1000 | doi: 10.1136/bmj.j1000
17 Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment
16 Ehret GB, Munroe PB, Rice KM, et al. International Consortium for
15 Vimaleswaran KS, Cavadino A, Berry DJ, et al. LifeLines Cohort Study
13 Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Järvelä I.
11 Ralston RA, Lee JH, Truby H, Palermo CE, Walker KZ. A systematic review
8 Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and
6 Zong G, Sun Q, Yu D, et al. Dairy consumption, type 2 diabetes, and
5 Wang H, Fox CS, Troy LM, Mckeown NM, Jacques PF. Longitudinal
1 Ehret GB, Munroe PB, Rice KM, et al. International Consortium for