Corrigendum to “The effect of solvent and counterion variation on inverse micelle CMCs in hydrocarbon solvents” [Colloids Surf. A]

Smith, Gregory Neil; Brown, Paul; James, Craig; Rogers, Sarah E.; Eastoe, Julian

Published in:
Colloids and Surfaces A: Physicochemical and Engineering Aspects

DOI:
10.1016/j.colsurfa.2016.12.044

Publication date:
2016

Document Version
Peer reviewed version

Citation for published version (APA):
Correction to “The Effect of Solvent and Counterion Variation on Inverse Micelle CMCs in Hydrocarbon Solvents”

Gregory N. Smitha,1, Paul Browna,2, Craig Jamesa,3, Sarah E. Rogersb, Julian Eastoea

aSchool of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
bISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX, United Kingdom

In the original version of our article, “The Effect of Solvent and Counterion Variation on Inverse Micelle CMCs in Hydrocarbon Solvents” \cite{1}, the secondary \(y \)-axis on Figure 4 was not presented correctly. This \(y \)-axis should be linear in volume (\(v \)) rather than in radius (\(r \)). The values of \(n_{agg} \) are correct in the original version.

A new version of Figure 4 is now presented with a corrected secondary \(y \)-axis showing the inverse micelle volume.

Figure 4: The inverse micelle CMC for AOT in different organic solvents in mmol kg\(^{-1}\). Both \(n_{agg} \) and the inverse micelle radius volume (\(v \)) are shown as \(n_{agg} \) is a function solely of \(v \), calculated from the radius (\(r \)) determined from SANS, when the surfactant molecular volumes are equal. The CMCs are essentially identical, despite the solvents being chemically different.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{The inverse micelle CMC for AOT in different organic solvents in mmol kg\(^{-1}\). Both \(n_{agg} \) and the inverse micelle radius volume (\(v \)) are shown as \(n_{agg} \) is a function solely of \(v \), calculated from the radius (\(r \)) determined from SANS, when the surfactant molecular volumes are equal. The CMCs are essentially identical, despite the solvents being chemically different.}
\end{figure}

Email address: julian.eastoe@bristol.ac.uk (Julian Eastoe)

1Current address: Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, United Kingdom
2Current address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
3Current address: Department of Chemistry and CSGI, University of Florence, 50019 Sesto Fiorentino, Firenze, Italy

Preprint submitted to Elsevier

December 15, 2016
References