Tackling generic limits for the Neotropical Philonthina with a phylogenetic approach
Chani-Posse, Mariana; Solodovnikov, Alexey

Published in:
arthropod systematics & phylogeny

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
Unspecified

Citation for published version (APA):
Tackling generic limits for the Neotropical Philonthina with a phylogenetic approach: revision of the genera *Linoderus* Sharp and *Odontolinus* Sharp (Coleoptera: Staphylinidae)

MARIANA CHANI-POSSE *,1,2* & **ALEXEY SOLODOVNIKOV** *

1 Laboratorio de Entomología, Instituto Argentino de Investigaciones de las Zonas Aridas (IADIZA, CCT CONICET, Mendoza), Casilla de Correo 507, 5500 Mendoza, Argentina; Mariana Chani-Posse * [mchani@mendoza-conicet.gob.ar] — 2 Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, Copenhagen 2100, Denmark — * Corresponding author

Accepted 22.xi.2016. Published online at www.senckenberg.de/arthropod-systematics on 5.iv.2017.

Editor in charge: Joseph McHugh

Abstract

A systematic revision and a phylogenetic analysis of the Neotropical genera *Linoderus* Sharp, 1885 and *Odontolinus* Sharp, 1885 (Staphylininae: Staphylinini: Philonthina) including a broad selection of outgroup taxa is presented. Two valid species are recognized for *Linoderus*: *L. gracilipes* Sharp and one new species, *L. alajuelensis* sp.n. *Linoderus navarretei* López-García & Méndez-Rojas, 2014 is excluded from the genus *Linoderus* and synonymized with *Belonuchus albovariegatus* Bernhauer, 1916. Two valid species are recognized for *Odontolinus*: *O. fasciatus* Sharp and a new species, *O. campanensis* sp.n. Lectotypes are designated for *Linoderus gracilipes* Sharp, *Odontolinus fasciatus* Sharp and *Belonuchus albovariegatus* Bernhauer. The phylogenetic analysis shows both *Odontolinus* and *Linoderus* as monophyletic genera that form together with other Central and South American Philonthina a well-supported clade within the Neotropical lineage of this subtribe. The systematic utility of sexually dimorphic characters within the Neotropical lineage is discussed.

Key words

Staphylininae, Philonthina, systematics, Neotropical, Central America, *Linoderus*, *Odontolinus*.

1. **Introduction**

Philonthina is the largest and most globally distributed subtribe within the mega-diverse rove beetle tribe Staphylinini, and includes 30 genera with over 520 described species currently known to occur in the Neotropical Region (A.F. Newton, unpublished database). Among them, 17 genera and about 180 species are known exclusively from the Neotropics (Chani-Posse 2014a; A.F. Newton, unpublished database). The great majority of these Neotropical genera and species are poorly known taxa that have never been revised after their outdated original descriptions from late 19th or early 20th centuries (Chani-Posse 2014a). Recently Chani-Posse (2013, 2014a) provided a phylogenetic framework and a regional generic key for the Neotropical Philonthina. In particular, Chani-Posse (2013) discovered a species-rich Neotropical clade within the world Philonthina whose further exploration seems very promising for understanding the unique Neotropical biota. Still, species-rich genera like Philonthus, Belonuchus, or Paederominus are poorly defined and numerous more diagnosable but mainly monotypic genera are likely nested within the former large genera. Their generic limits and sister group relationships...
are mostly unknown and remain as big obstacles to the systematic resolution of the Neotropical Philonthina.

The genera *Linoderus* and *Odontolinus*, which are the subjects of this paper, belong to the recently discovered Neotropical philonthine clade and represent some of the mentioned monotypic genera requiring better understanding. Sharp (1885) had erected them for two species from Panama, *Linoderus gracilipes* and *Odontolinus fasciatus*, respectively. As it was assumed by Sharp (1885) and confirmed in recent analyses (Chani-Posse 2013, 2014b) both genera are closely related to each other and to the Neotropical genera *Pescolinus* and *Neopescolinus*. Phylogenetic relationships within this group of genera, however, appear controversial: *Linoderus* was sister to the clade *Odontolinus* + *Pescolinus* in Chani-Posse (2013), while in Chani-Posse (2014b) it was sister to *Pescolinus*, and both together comprised the sister to *Odontolinus*. That entire generic complex seems to be closely related to the species-rich genera *Paederominimus* Sharp and *Belonuchus* Nordmann, whose generic limits, in turn, represent an even bigger problem to solve (Chani-Posse 2013). There is broad consensus on the non-monophyly of *Belonuchus* (e.g., Li & Zhou 2011; Chani-Posse 2013; Chani-Posse et al. 2017) and at least some suspicion about *Paederominimus* (Chani-Posse 2014a). The blurred limits between the Neotropical philonthine genera combined with the lack of detailed descriptions and illustrations make it difficult or impossible to design badly needed broader phylogenetic work, or even to progress with taxonomic studies without making mistakes. For example, a new species of *Linoderus* was recently described from Colombia (Lopez-Garcia & Mendez-Rojas 2014) whose generic assignment appeared highly doubtful. That doubtful taxon, on the one hand, and new species presumably belonging to *Linoderus* and *Odontolinus* discovered in collections, triggered this paper.

Our objectives are to conduct a cladistic analysis defining the limits of both *Linoderus* and *Odontolinus* and to justify generic assignments of their previously described and new species. Also we aim to further assess their sister group relationships and provide a comprehensive taxonomic revision of all species involved.

2. Material and methods

2.1. Examination of material and terminology

The material studied was borrowed from the following collections: BMNH – The Natural History Museum, London, UK (Roger Booth); FMNH – Field Museum of Natural History, Chicago, USA (Alfred F. Newton, Margaret K. Thayer); INBio – Instituto Nacional de Biodiversidad, San José de Costa Rica (Angel Solís); SEMC – Snow Entomological Collection, Natural History Museum / Biodiversity Research Center, University of Kansas, Lawrence, USA (Zachary H. Falin); ZMHB – Museum für Naturkunde der Humboldt-Universität, Berlin, Germany (Johannes Frisch, Joachim Willers); ZMUC – University of Copenhagen, Zoological Museum, Copenhagen, Denmark (Alexey Solodovnikov, Sree Selvanthanar).

Beetle specimens were examined using a Leica MZ6 dissecting microscope. They were mostly examined as pinned dry specimens, but a few were first relaxed in warm soapy water, rinsed, disarticulated and examined as wet preparations in glycerin. Techniques for the preparation and examination of male and female genitalia follow Smetana (1982). Photographs were taken using a digital camera attached to the dissecting microscope. Line drawings were traced from digital photographs. Depositories of type material retain the copyright of the photographs. SEM pictures were obtained by using a JSM-6610 system. Measurements (given in millimeters) were made with an ocular micrometer. Overall body length was measured from the apex of the labrum to the apex of the abdomen. Other measurements were taken and abbreviated as follows: HW – head capsule maximum width (measured at widest point); HL – length of head capsule, from anterior margin of frongoclypeus to neck constriction (along midline); Lp2L, Lp3L – length of 2nd or 3rd labial palpomere; PW – pronotum maximum width; PL – pronotum length along midline; EL – eye length (seen from above); TL – temple length (from the posterior margin of the eye to the nuchal groove; seen from above); NW – neck width; S1 – length of 1st metatarsomere; S5 – length of 5th metatarsomere (last); EtL – elytron length at side (straight line from humerus to apex; seen from above); Etl – elytron length along suture.

Terminology follows authors and criteria as stated in Chani-Posse (2014b). Biogeographical provinces considered in the geographical distribution of the species follow the most recent regionalization of Morrone (2014). All records and the general distribution given for each species are based strictly on examined specimens. Handwriting on labels of type specimens was compared to the respective author’s handwriting as shown by Horn et al. (1990). All locality data were recorded from specimen labels, geo-referenced by Google Earth (Google Inc.) and plotted onto a relief map derived from a digital elevation model using Quantum GIS 2.18.0 (Quantum GIS Development Team 2016).

2.2. Phylogenetic analysis

2.2.1. Outgroup and ingroup taxa

The chosen outgroup taxa include 14 species. One species, *Xanthopygus chapareanus* Scheerpeltz, represents Xanthopygina, a subtribe presumably sister to Philonthina (Brunke et al. 2016; Chani-Posse 2013; Chatzimano-
and used here to root the tree. Other species come from eight genera of the subtribe Philonthina as follows: Philonthus Stephens, 1829 [P. splendens (Gravenhorst)], Belonuchus Nordmann, 1837 [B. haemorrhoidalis (Fabricius), B. rufipennis (Gravenhorst) and B. subaeus Bernhauer], Bisnius Stephens, 1829 [B. sordidus (Gravenhorst)], Choeraptomus Sharp [C. flagrans (Erichson)], Gabrusius Stephens, 1829 [G. picipennis (Mäklin)], Paederomimus Sharp, 1885, and Neopescolinus Chani-Posse, 2014 [N. nevermanni Chani-Posse].

Both species of Linoderus (the type and the new species), Belonuchus albovariegatus (previously classified as Linoderus navarretei in López-García & Méndez-Rojas 2014), and both species of Odontolimus (the type and the new species) form our ingroup.

2.2.2. Characters

Fifty-two morphological characters were coded and scored for the 19 terminal units, their selection and definition mainly following the character system developed by Brunke & Solodovnikov (2013) and Chani-Posse (2013, 2014a). Forty-two characters were derived from external morphology, nine from male genitalia, and one from female genitalia. Among these, eight characters (in parentheses) are uninformative with regard to phylogenetic relationships.

1. Antennal insertions (ai), position in relation to frontoclypeus and eye: [0] closer to frontoclypeus (Chani-Posse 2013: fig. 1A); [1] at equal distance or closer to eye (Chani-Posse 2014a: fig. 11D).

2. Antennal insertions, distance between left and right one relative to distance to eye (aa/ae), male: [0] <= 2.0; [1] 2.0 – 2.5; [2] > 2.5.

3. Antennae, antennomere 1, apical macroseta (aS), shape: [0] not spine-like; [1] spine-like (Fig. 10).

4. Antennae, antennomere 1, length relative to length of head (all/HL): [0] <= 0.5; [1] > 0.5 but < 1.0; [2] 1.0.

5. Antennae, length ratio of antennomeres 3 and 2 (a3/a2): [0] 1.2 – 1.5; [1] > 1.5.

6. Antennae, antennomere 6, apical long setae (see Chani-Posse 2014b): [0] absent (fig. 10); [1] present (fig. 11).

9. Head, dorsal surface punctuation: [0] not sexually dimorphic (i.e., both male and female with same punctuation); [1] sexually dimorphic (i.e., with dense punctuation in males, scarcely punctuated to almost glabrous in females) (Chani-Posse 2014b: fig. 12E) (Figs. 6, 7).

11. Head, ligula, size and shape (see Li & Zhou 2011): [0] large and more or less bilobed, with variously developed rounded lobes (fig. 7C); [1] small but distinct, entire (or at most slightly notched medially) (fig. 7A,B).

12. Labial palpus, palpomere 3 (apical), shape: [0] subacute, i.e., narrowed at base and evenly converging towards apex (Li & Zhou 2011: fig. 8B–D); [1] fusiform to apically expanded, i.e., narrowed at base but not converging towards apex (Li & Zhou 2011: fig. 8A,E,F); [2] subcylindrical “rod-like”, i.e., parallel-sided at most of its length, apex subtruncate (Chani-Posse 2013: fig. 1H).

14. Maxillary palpus, palpomere 4 (apical), shape: [0] subacute, i.e., narrowed at base and evenly converging towards apex (Li & Zhou 2011: fig. 6A,C); [1] fusiform to expanded apically, i.e., narrowed at base but not converging towards apex (Li & Zhou 2011: fig. 6A,E,F); [2] subcylindrical “rod-like”, i.e., parallel-sided at most of its length, apex subtruncate (Chani-Posse 2013: fig. 1A).

16. Gular sutures (gs), extent of median connection (see Chani-Posse 2013): [0] gs joined before neck (fig. 3A,D,E); [1] gs not joined before neck, extended close to each other at base of head capsule (fig. 3B,C,F).

17. Neck, transverse carina: [0] absent; [1] present (Chani-Posse 2013: fig. 1A) (Fig. 11).

18. Prothorax, hypomeron, degree of inflexion: [0] not inflexed (most of its surface visible in lateral view); [1] slightly inflexed (most of its surface hidden in lateral view); [2] strongly inflexed (not visible in lateral view).
19. Prothorax, anterior angles of pronotum (aap) relative to anterior margin of prosternum (amp) (see Chani-Posse 2013); [0] aap not strongly produced beyond amp (fig. 2C); [1] aap strongly produced beyond amp (fig. 1N).

20. Prothorax, large lateral setiferous puncture (lisp), position in relation to superior marginal line of pronotum (smpl) (see Chani-Posse 2014a): [0] lisp situated very close to smpl or at a distance no more than 3 × its diameter (fig. 4F); [1] lisp remote from smpl at a distance at least 3 × its diameter (fig. 4G – I) (Fig. 12).

21. Prothorax, basisternum (bs), length relative to length of furcasternum (fs) (bs/fs, measured laterally): [0] 1.1 – 1.5; [1] >> 1.5.

22. Prothorax, prosternum, transverse carina on basisternum (see Chani-Posse 2014a): [0] absent (fig. 2B); [1] present (figs. 2A, 4B).

23. Prothorax, prosternum, transverse carina on basisternum (tc), development (when present) (see Chani-Posse 2014a): [0] tc not distinct medi ally (if so, very shallow) (fig. 2A); [1] tc distinct medi ally (fig. 4B).

(24). Prothorax, hypomeron, inferior marginal line (ilm), development (see Smetana & Davies 2000): [0] ilm not continued as a separate entity beyond anterior pronotal angles (figs. 42 – 44); [1] ilm continued as a separate entity beyond anterior pronotal angles and curving around them (fig. 53); [2] ilm continued as a separate entity beyond anterior pronotal angles and continuous with them (fig. 49).

(25). Prothorax, postcoxal process (see Li & Zhou 2011): [0] absent (fig. 10A,D); [1] present (fig. 10B,C).

26. Prothorax, prosternum, basisternum, pair of macrosetae: [0] absent; [1] present (Smetana & Davies 2000: fig. 86) (Fig. 12).

27. Mesothorax, sternopleural (anapleural) suture (see Chani-Posse 2014a): [0] transverse, or nearly transverse (very slightly oblique) (fig. 8B); [1] distinctly oblique (medial end of suture anterior to its lateral end) (fig. 8C); [2] sinuate (fig. 8A).

28. Mesothorax, intercoxal process, apex: [0] rounded or broadly pointed, forming obtuse angle (Chani-Posse 2014a: fig. 2B); [1] narrowly pointed forming sharp (acute) angle (Li & Zhou 2011: fig. 12B – F).

29. Protibiae, shape (see Chani-Posse 2014a): [0] cylindrical to slightly broadened apically (fig. 6B – D); [1] subconical, moderately broadened apically (fig. 7F,G).

30. Protarsi, shape of tarsomeres 1 – 4 (see Chani-Posse 2014a): [0] more or less cylindrical, not transversely widened and not flattened dorso-ventrally (fig. 6C); [1] more or less flattened dorso-ventrally and widened (fig. 7F,G).

34. Metatarsomere 1, setal comb: [0] absent; [1] present.

35. Metatarsomere 1 (S1), length: [0] not sexually dimorphic (i.e., male and female with same S1 length); [1] sexually dimorphic (i.e., S1 in male distinctly longer than in female).

37. Pretarsal claws as “tarsal claws” in Chani-Posse 2014a), medial tooth (mt): [0] absent; [1] present (Fig. 13).

38. Abdomen, protergal glands, cuticular manifestation (see Li & Zhou 2011): [0] well-developed acetabula (i.e., distinct cavities without openings) (fig. 17C); [1] more or less invaginated capsules with smaller openings (fig. 17A,B).

39. Abdomen, sternum 3, basal transverse carina, medial area (see Li & Zhou 2011): [0] straight to arcuate (fig. 18C); [1] angulate (fig. 18B).

41. Female sternum 8, posterior margin, medial projection: [0] absent; [1] present (Chani-Posse 2014b: figs. 26, 35, 56) (Fig. 25).

42. Male sternum 9, relative length of basal (bp) and distal (dp) portions (bp/dp): [0] ≤ 1.0 (Figs. 29, 34); [1] ≥ 1.6 (Figs. 17, 22).

43. Male sternum 9, basal portion: [0] more or less symmetrical (i.e., both lateral ends similarly produced, not extending far from each other); [1] asymmetrical (i.e., one lateral end distinctly produced, extending far from the other).

45. Male sternum 9, distal portion, median emargination: [0] distinct (Figs. 17, 22, 29, 34); [1] not distinct.

46. Male sternum 9, distal portion, shape of median emargination (if distinct): [0] acute (Chani-Posse & Asenjo 2013: e.g., fig. 3B,F,L,R); [1] subangulate to concave (Chani-Posse 2014b: figs. 22, 31, 39, 48, 52, 60) (Figs. 17, 22, 29, 34).

47. Lateral tergal sclerites 9 (styli), shape: [0] dorsoventrally flattened (Chani-Posse 2014b: figs. 19, 20) (Figs. 8, 15); [1] not dorsoventrally or laterally flattened; [2] laterally flattened.

48. Lateral tergal sclerites 9 (styli) (if dorsoventrally flattened): [0] not sexually dimorphic (i.e., equally wide in both male and female); [1] sexually dimorphic (i.e., distinctly wider in males than in females) (Chani-Posse 2014b: figs. 19, 20).

49. Lateral tergal sclerites 9 (styli) (if dorsoventrally flattened), shape of apex, male: [0] rounded; [1] laterally emarginate (Fig. 8).

50. Male: aedeagus, paramere(s), sensory peg setae: [0] absent; [1] present.
51. Male: aedeagus, paramere(s), degree of attachment to median lobe: [0] fused to median lobe only at base, otherwise paramere(s) distinctly separated from median lobe along entire length; [1] fused to median lobe along its (their) entire length, paramere(s) and median lobe hardly distinguishable from each other.

52. Male: aedeagus, paramere(s), length relative to length of median lobe (Pr/ML): [0] >> 0.3 but ≤ 1.0; [1] ≤ 0.3 (Figs. 19–20, 23, 24, 31–37).

2.2.3. Procedure

The matrix (Table 1) was prepared using Mesquite version 3.01 (MADISON & MADISON 2015) and analyzed by exact search (Analyze/Implicit enumeration) in TNT (GOLOBOFF et al. 2008). Space for 99999 trees was set in the memory. Only unambiguously optimized synapomorphies were considered. Clade support was assessed by means of standard bootstrap analysis with frequency differences as implemented in TNT with 100 replications of heuristic searches with 100 interactions of random addition of taxa and holding 10 trees per interaction. The same parameters were used to perform a jackknife analysis. Bremer support values were calculated using the TNT Bremer function with suboptimal trees up to 10 steps longer. WinClada v. 1.00.08 (NIXON 1999) was used for character mapping.

3. Taxonomy

3.1. Genus *Linoderus* Sharp, 1885

(Figs. 1, 2–6–8, 16–27, 40, 41)

Linoderus Sharp, 1885: 452; *Bernhauer & Schubert* 1914: 367 (catalog); *Blackwelder* 1944: 136 (checklist); *Blackwelder* 1952: 221 (type species); *Herman* 2001: 2698 (catalog); *Newton* et al. 2005: 19 (checklist, as “probable”); *Chani-Posse* 2013: 8, 10, 14 (phylogenetic placement); *Chani-Posse* 2014a: 3, 7, 10, 13, 14, 16, 17, 20 (key); *Chani-Posse* 2014b: 239, 242, 250, 252, 254 (characters, phylogenetic affinities).

Type species. *Linoderus gracilipes* Sharp, fixed by monotypy.

Diagnosis. *Linoderus* differs from all other genera of Philonthina by the following combination of characters: head with microsculpture sexually dimorphic, densely punctuated in males and scarcely punctuated in females; antennal insertions at about equal distance to both the anterior margin of frontoclypeus and eyes, separated from each other by no more than 2.5 x the distance to eye, antennomeres 9th and 10th elongate, anterior angles of pronotum distinctly produced beyond the anterior margin of prosternum, mesoventrite with sternopleural suture distinctly oblique, profemora of cylindrical shape, protarsi with tarsomeres 1–4 more or less cylindrical, not flattened dorsoventrally and not sexually dimorphic. From the three closely related genera *Neopescolinus*, *Odontolimus* and *Pescolinus* it differs in having the protarsi with tarsomeres 1–4 more or less cylindrical with only regular, unmodified marginal setae on ventral surface.
Redescription. Length 7.0–10.0 mm. Colouration: Head and thorax reddish brown or metallic blue to greenish blue or green; elytra metallic blue or green; abdomen entirely reddish brown or first four abdominal segments reddish brown with apical segments distinctly darker, dark brown to black; antennae with both first and apical segments distinctly lighter than inner segments, palpi and legs reddish brown to dark brown or black.

Head of rounded-quadrangular shape with distinctly rounded hind angles (Figs. 6, 7), at one third from posterior end slightly narrower than in anterior third in both sexes; about as long as wide, slightly to moderately wider than pronotum at widest point. Punctuation sexually dimorphic, dense in males, scarce in females. Eyes moderately convex, moderately to distinctly shorter than temples seen from above (Figs. 6, 7). Antennae inserted at about equal distance to both the anterior margin of frontoclypeus and eyes, separated from each other by no more than 2.5 \times the distance to eye, 1st antennomere not longer than half of head length, 3rd moderately longer than 2nd, 1st–5th with distinct long setae. Labrum subdimorphic (Figs. 1, 2); 1st metatarsomere sexually dimorphic; protarsi with first four segments more or less cylindrical, not flattened dorsoventrally and not sexually dimorphic (Fig. 1, 2); 1st metatarsomere sexually dimorphic in length, distinctly longer in males (S1/S5 = 1.8) than in females (S1/S5 = 1.3). Elytra at suture distinctly shorter than pronotum at midline (Figs. 1, 2); punctuation fine and sparse.

Abdomen: Abdominal terga 3–5 with posterior basal transverse carina complete and straight. Hind margin of tergum 8 (sixth visible) arcuate in both sexes. Male sexual characters: Sternum 8 with a medially produced projection (Figs. 16, 21). Genital segment with lateral tergal sclerites 9 (styli) dorsoventrally flattened and distinctly dilated, with a latero-apical emargination (Fig. 8); tergum 10 subtruncate at apex with two apical setae and two subapical setae (Fig. 18); sternum 9 with basal portion distinctly asymmetrical, 1.8–2.0 \times as long as distal portion and deeply emarginate apically, with three to four apical setae at each side of emargination (Fig. 17, 22). Aedeagus with parameres fused to one short sclerite, completely fused to median lobe and without sensory peg setae; median lobe elongate, with apical part narrowed into rather acute apex (Figs. 19–20, 23–24). Female sexual characters: Sternum 8 with hind margin projected medially (Fig. 25). Genital segment with lateral tergal sclerites 9 (styli) dorsoventrally flattened and slightly dilated, without a latero-apical emargination; tergum 10 subangulate to subacute apically; second gonocoxites each with a long macroseta distally, with minute stylus (Fig. 27) bearing one long apical macroseta.

Comparison and recognition. While the recognition of males of Linoderus is straightforward due to the dorsal surface of head being distinctly punctuated, females of Linoderus may superficially resemble those of Chroaptomus Sharp or Neopescolinus given the situation of the antennal insertions which are rather distant from the frontoclypeus. Females of Linoderus differ from those of Chroaptomus by their elongate habitus (antennomeres 9 and 10 elongate, anterior angles of pronotum distinctly produced beyond the anterior margin of prosternum, mesoventrite with sternopleural suture distinctly oblique) as opposed to that of Chroaptomus Sharp (antennomeres 9 and 10 slightly transverse, anterior angles of pronotum slightly produced beyond the anterior margin of prosternum, mesoventrite with sternopleural suture nearly transverse). Females of Linoderus and Neopescolinus can be distinguished by the shape of their protarsomeres 1–4: more or less cylindrical, not widened in the former and more or less flattened dorsoventrally and widened in the latter.

Immature stages. Unknown.

Bionomics. Specimens have been collected from “moss and fungi on trees” (SHARP 1885), rotting palm trunks and with flight intercept traps.

Distribution and remarks. With its two species known at present Linoderus is distributed in the Western Panamanian Isthmus province of the Neotropical region (MORRONE 2014) at elevations of 800–1660 m as indicated by trapping data (Fig. 41).

3.1.1. Linoderus gracilipes Sharp, 1885
(Figs. 1, 6, 7, 21–27, 40, 41)

Linoderus gracilipes Sharp, 1885: 452; BERNHAUER & SCHUBERT 1914: 367 (catalog); HERMAN 2001: 2698 (catalog); CHANI-POTSE 2013: 8, 10, 14 (phylogenetic placement); CHANI-POTSE 2014a: 3, 7, 10, 13, 14, 16, 17, 20 (key); CHANI-POTSE 2014b: 239, 242, 250, 252, 254 (characters, phylogenetic affinities).

Diagnosis. Linoderus gracilipes differs from Linoderus alasajuenlis in the distinct colour pattern: head and elytra metallic blue, thorax and abdomen with first four visible abdominal segments reddish brown and apical abdominal segments dark brown to black; antennae, palpi and legs mostly light brown, with antennomeres 4–9, apex of femora and styli and entire tibia dark brown to black.

Redescription. Body length 7.0–8.5 mm. Colouration: as in diagnosis. Head about as wide as long (HW/HL =
1.0), slightly to moderately wider than pronotum (HW/PW = 1.1–1.2). Eyes moderately to distinctly shorter than temples (EL/TL = 0.7–0.8) seen from above. Antennae with 1st antennomere distinctly shorter than 2nd and 3rd combined, 3rd about 1.5 × as long as 2nd. Labial palpus with 2nd palpomere about twice as long as 1st. Maxillary palpus with 4th palpomere (apical) 1.5 × as long as 3rd. Neck about 0.4 × as wide as head at widest point. Pronotum slightly to moderately longer than wide (PW/PL = 0.8–0.9), dorsal rows of punctures each

Figs. 1–5. Type specimens of Linoderus, Odontolinus and Belonuchus albovariegatus. (1) L. gracilipes, lectotype [BMNH ©]. (2) L. alajuelensis, paratype [SEMC ©]. (3) Belonuchus albovariegatus, lectotype [FMNH ©]. (4) O. fasciatus, lectotype [BMNH ©]. (5) O. campanensis, holotype [SEMC ©]. (Scale bar = 1.0 mm)
with 4 to 5 punctures. Prosternum without distinct mid-longitudinal carina. *Elytra* at sides about 1.5 × as long as elytra along suture (EtL/Etl = 1.5 – 1.7).

Male sexual characters: Sternum 8 with mediadly produced and sub-angulately emarginate projection (Fig. 21). Aedeagus with median lobe gradually narrowed from apical third and with acute apex; apex of paramere slightly notched at middle (Figs. 23, 24).

Female sexual characters: As described for genus.

Geographical distribution. *Linoderus gracilipes* has been recorded from Panama and Costa Rica (new record) within 1510 – 1660 m range of elevation (Fig. 41).

Bionomics. It was collected from “moss and fungi on trees” (Sharp 1885).

3.1.2. *Linoderus alajuelensis* sp.n. (Figs. 2, 8, 16 – 20, 40, 41)

Diagnosis. *Linoderus alajuelensis* differs from *L. gracilipes* in the distinct colour pattern: head, thorax and abdominal reddish brown; elytra metallic blue; antennae, palpi and legs mostly reddish brown with antennomeres 1 – 6, apex of femora and styli, entire tibia and the first two tarsomeres dark brown to black.

Description. Body length 8.5 – 9.5 mm. *Colouration:* as in diagnosis. **Head** about as wide as to slightly wider than long (HW/HL = 1.0 – 1.1), slightly to moderately wider than pronotum (HW/PW = 1.1 – 1.2). Eyes moderately to distinctly shorter than temples (EL/TL = 0.7 – 0.8) seen from above. Antennae with 1st antennomere distinctly shorter than 2nd and 3rd combined, 3rd about 1.5 × as long as 2nd. Maxillary palpus with 4th palpomere (apical) 1.8 × as long as 3rd. Neck about 0.5 × as wide as head at widest point. **Protonotum** slightly to moderately longer than wide (PW/PL = 0.8 – 0.9), dorsal rows of punctures each with 5 punctures. Prosternum with mid-longitudinal carina developed only along furcasternum. *Elytra* at sides about 1.5 × as long as elytra along suture (EtL/Etl = 1.5 – 1.7).

Male sexual characters: Sternum 8 with mediadly produced and sub-angulately emarginate projection (Fig. 16). Aedeagus with median lobe gradually narrowed from apical fourth, apex distinctly lanceolate; paramere entire at middle (Figs. 19, 20).

Female sexual characters: As described for genus.

Geographical distribution. *Linoderus alajuelensis* has only been recorded from Costa Rica (Alajuela) within the 800 – 950 m range of elevation (Fig. 41).

Bionomics. Unknown.

Etymology. The specific name refers to Alajuela, Costa Rica, where this species was found.

Type material (all examined), Holotype, ♀ with labels ‘*Costa Rica: Alajuela, R. San Lorencito, | R. San Ramon, 5 km de Colonia | 13-jun-93 1 Curso Scarabaeidae | 900 m L-N-244500, 470700’, ‘Holotype *Linoderus* | alajuelensis | Chani Posse & Solodovnikov, 2017’ (INBio). Two paratypes: 1 ♀, with labels: ‘*Costa Rica: Alajuela, E. B. San Ramon, | R. B. San Ramon 7km | N&Kkn, | W San Ramon, 10°13′30″N, 84°35′30″W | 850 – 950 m, 29-Vi-6-Vi-1999’ | R. Anderson, in rotting palm trunk CR1A99-108C´ (SEMC); 1 ♂, with labels ‘*Costa Rica | Turrialba 800 m | ex coll. A. Heyne´ (yellow label), female symbol (white label), ‘Paederonimus | bio- color n. sp. | Wendeler det.’ (white label), HOLOTYPE (red label), ‘bicolar Wdlr´ (handwritten green label) (ZMHB). Paratypes with additional label ‘Paratype *Linoderus* | alajuelensis | Chani Posse & Solodovnikov, 2017’.

3.1.3. **Species excluded from *Linoderus***

Although we were not able to see the type material of *Linoderus navarreti*, comparison of its original description (LÓPEZ-GARCÍA & MENDEZ-ROJAS 2014: 85) with the type material of *Belonuchus albovariagatus* Bernhauer, 1916 leaves no doubt that *Linoderus navarreti* is a new junior synonym of the former species. Results of the phylogenetic analysis here indicate that *Belonuchus albovariagatus* does not fit inside or near the genus *Linoderus*. Naturally, it does not match the diagnosis provided for *Linoderus* (see above) in the following characters: head with punctuation sexually dimorphic and antennal insertions at about equal distance to both the anterior margin of frontoclypeus and eyes. *Belonuchus albovariagatus* does not form a monophyletic group with either *B. hae- morrhoidalis* (type species of the genus) or any other *Belonuchus* species sampled for this analysis, and there is no robust evidence for it being included in *Odontolinus* (see section 4.) either. Until we have a better systematic understanding of what should form the genus *Belonuchus* and other related Neotropical lineages, we prefer to maintain *Belonuchus albovariagatus* in this genus.

Type material of *Belonuchus albovariagatus* (all examined). Lectotype (Fig. 3, here designated), ♀, with labels ‘*Columbia Occ |
3.2. **Genus *Odontolinus* Sharp, 1885**

(Figs. 4, 5, 9–15, 28–39, 40, 41)

Odontolinus Sharp, 1885: 454; **Bernhauer & Schubert** 1914: 372 (catalog); **Blackwelder** 1944: 138 (checklist); **Blackwelder** 1952: 269 (type species); **Herman** 2001: 2721 (catalog); **Newton** et al. 2005: 19 (checklist, as “probable”); **Chani-Posse** 2013: 4, 8, 10, 14 (phylogenetic placement); **Chani-Posse** 2014a: 7, 10, 11, 15–18, 21 (key); **Chani-Posse** 2014b: 239, 242, 250, 252, 254 (characters, phylogenetic affinities).
Type species. Odontolinus fasciatus Sharp, fixed by monotypy.

Diagnosis. Odontolinus differs from all other genera of Philonthina by the following combination of characters: 1st antennomere distinctly longer than half of head length, with a modified, spine-like seta apically; 2nd antennomere about as long as the following segment; neck with transverse carina; sternum 8 straight to slightly emarginate medioapically, not sexually dimorphic; genital segment with lateral tergal sclerites 9 (styli) dorsoventrally flattened, distinctly dilated in both sexes and not sexually dimorphic. From Neopescolinus and Pescolinus it differs in having a rather elongate first antennomere (i.e., longer than half of its head length) (Chani-Posse 2014a,b).

Redescription. Length 8.0–10.0 mm. Colouration: Head reddish brown to dark brown; thorax reddish brown; elytra bicolorous, reddish brown in basal half and dark brown to black in distal half; abdomen with first three abdominal segments reddish brown, 4th and 5th dark brown to black and 6th light brown to yellow; antennae entirely reddish brown to light brown or with both 1st and last antennomeres slightly to distinctly lighter than others; palpi and legs reddish brown to light brown.

Head of quadrangular shape with distinctly obtuse hind angles (Figs. 4, 5), at one third from posterior end about as wide as in anterior third in both sexes; slightly to distinctly wider than long, slightly to distinctly wider than pronotum at widest point; dorsal and ventral surface of head with rather rudimentary wave-like microsculpture. Eyes moderately convex, about as long as to moderately longer than temples seen from above. Antennae inserted closer to anterior margin of fronsotyopeus than to eyes, separated from each other by distinctly less than 2.0 × the distance to eye, 1st antennomere distinctly longer than half of head length and antennomeres 2nd and 3rd combined, with a modified, spine-like seta apically (Fig. 10), antennomeres 3rd distinctly longer than 2nd, segments 1st–3rd with rather scarce long setae (Fig. 9). Maxillary palpus with 4th palpomere 1.5 × as long as 3rd. Labrum to eyes, separated from each other by distinctly less than inserted closer to anterior margin of frontoclypeus than ture. Eyes moderately convex, about as long as to mod­

Abdomen: Abdominal terga 3–5 with posterior basal transverse carina complete and straight, punctuated or not (Fig. 14). Hind margin of tergum 8 (sixth visible) subtruncate in both sexes (Fig. 15). Male sexual characters: Sternum 8 straight to slightly emarginate medioapically (Fig. 34). Genital segment with lateral tergal sclerites 9 (styli) dorsoventrally flattened and distinctly di­

Immature stages. Unknown.

Bionomics. The species of Odontolinus have been reported as consistently associated with flower bracts of the genus Heliconia (Zingiberales: Heliconiaceae), where they prey upon dipteran larvae (Frank & Barrera 2010).

Distribution and remarks. With its two species known at present, Odontolinus is distributed in the biogeographical provinces of Eastern Central America, Western Panamanian Isthmus and Western Ecuador (Morrone 2014) from elevations of 10–1450 m as indicated by trapping data (Fig. 41). Odontolinus was previously known only from Costa Rica and Panama; thus Ecuador, Honduras and Nicaragua are new country records.

3.2.1. Odontolinus fasciatus Sharp, 1885
(Figs. 4, 34–39, 40, 41)

Odontolinus fasciatus Sharp, 1885: 454; Bernhauer & Schubert 1914: 372 (catalog); Herman 2001: 2721 (catalog); Chani-Pos­

Diagnosis. Odontolinus fasciatus differs from O. cam­panensis in the pretarsal claws toothed and the abdomi­nal terga 3–5 with the posterior basal transverse carina not punctuated.
Redescription. Body length 8.0 – 10.0 mm. **Colouration:** Head reddish brown to dark brown; thorax reddish brown; elytra bicolourous, reddish brown in basal half and dark brown to black in distal half; abdomen with first three abdominal segments reddish brown, 4th and 5th dark brown to black and 6th light brown to yellow; antennae entirely reddish brown to light brown or with both first and apical segments slightly lighter than inner segments, palpi and legs reddish brown to light brown. **Head** slightly to moderately wider than long (HW/HL = 1.1 – 1.2),
slightly to distinctly wider than pronotum (HW/PW = 1.1–1.3). Eyes about as long as to moderately longer than temples (EL/TL = 1.0–1.2) seen from above. Pro-
notum slightly to moderately longer than wide (PW/PL = 0.8–0.9). Elytra at sides more than 1.5 × as long as elytra along suture (EtL/Etl = 1.6–1.9). Male sexual charac-
ters: Sternum 8 straight mediopetally. Tergum 10 sub-
truncate at apex with two apical long setae (Fig. 35). Ae-
deus with median lobe gradually narrowed from apical
fifth (Figs. 36, 37). Female sexual characters: Sternum 8 similar to that of male. Tergum 10 arcuate apically (Fig. 38); second gonocoxites each as for genus (Figs. 33).

Geographical distribution. Odontolinus fasciatus
has been recorded from Costa Rica and Panama (HERMAN
2001; Newton, unpublished database), Ecuador, HONDu-
ras and Nicaragua (new records) between 10 – 1450 m of
altitude (Fig. 41).

Bionomics. Adults of Odontolinus fasciatus were con-
sistently found in association with Heliciona bracts,
where they have been reported as being able to immerge
completely in water to capture larvae and/or pupae of
mosquitoes (Culicidae) (FRAHNK & BARRERA 2010).

Type material examined. Lectotype (here designated, Fig. 4), ♂, glued to white card with labels: ‘Bugaba, 800 – 1,500
[white label], ‘SYNTYPE’ [round white label with light blue mar-
gin]. Lectotype Odontolinus fasciatus Sharpe, 1885 | des. Chani
Posse 2011´, (BMNH). Two parallectotypes, 1 ♂ and 1 ♀ glued to
white card in one pin and Sharp’s handwriting ‘Bugaba, 800 – 1,500
ft. Champion’, other labels same as lectotype (BMNH). Another 6
parallectotypes, 4 ♂ and 2 ♀, with labels, ‘Bugaba, Panama.
[white label], ‘SYNTYPE’ [round white label with light blue margin]; from those 1 ♂ and 1 ♀ glued to white card in one pin and Sharp’s hand-
writing ‘Bugaba, 800 – 1,500 ft. Champion’, and additional label,
‘TYPE’ [round white label with red margin], another pin, 1 ♂, with
additional label ‘Sp. figured’ [white label] (BMNH). Two additional
parallectotypes, 2 ♂ and 2 ♀, each specimen glued to a white card
following Sharp’s handwriting: ‘Bugaba Champion, Odontolinus fasciatus D.S. male’ and three additional white labels, ‘Bugaba,
for genus)´, (BMNH). Other material examined. Costa Rica: Alajuela: 5mi SE Por-
tina, 21-jul-66, J. B. Karren, taken on Heliconia sp., 1 ♀ (SEMC); Upala, PN Volcán Tenorio, 17 Abr 2001, A. López 700 m, Alb.
Heliconia S. Heliconias, Manual LN 422600 299100 # 62012, 1
undet. (INBio). Carta: Monumento Nacional Guayabo, Oct 1994,
G. Fonseca, 1100 m, L N 217400, 570000 #3286, 1 undet. (INBio).
Hereida: La Selva, 2mi E Puerto Viejo on Rio PV , 07-mar-65,
G. Fonseca, 1100 m, L.N 217400, 570000 #3286, 1 undet. (INBio).
Chami-Posse & Solodovnikov: Revision of Linoderus and Odontolinus

Geographical distribution. Odontolinus fasciatus is
the pretarsal claws simple, not toothed, and the abdom-
teralga 3 – 5 with the posterior basal transverse

Diagnosis. Odontolinus campanensis differs from O. fasciatus in the pretarsal claws simple, not toothed, and the abdom-

dedaeus with median lobe gradually narrowed from apical third (Fig. 31). Female sexual characters: Sternum 8 straight mediopetally. Tergum 10 subangulate apically (Fig. 38). Second gonocoxites each as for genus (Figs. 33).

Geographical distribution. Odontolinus campanensis is
at present only known from one collecting site in Costa Rica (Cerro Campana).

Bionomics. It was found in association with Heliciona

flowers.
Etymology. The specific name refers to Cerro Campana, Panama, where this species was found.

Type material. Holotype (Fig. 5), ♂, with labels: ‘Panamá: Cerro Campana, (Capira) | 8°44′N, 79°57′W, 790 m | 1 June 1995, J. Ashe, R. Brooks | ex.Heliconia flowers #096’, ‘Holotype Odontolinus | campanensis | Chani Posse & Solodovnikov, 2017’, (SEMC). Paratype ♀ same label as holotype and ‘Paratype Odontolinus | campanensis | Chani Posse & Solodovnikov, 2017’, (SEMC).

4. Phylogeny

The analysis of the data matrix (Table 1) produced four cladograms with 99 steps, a consistency index (CI) of 0.56 and a retention index (RI) of 0.71. The strict consensus from the most parsimonious trees (MPT) places both Linoderus and Odontolinus within a well-supported monophyletic group together with Pescolinus, Neopescolinus, the sampled representatives of the genus Paederomimus and two of a few sampled representatives of the genus Belonuchus (B. albovariegatus and B. subaeneus) (Fig. 40). The monophyly of Linoderus appears well supported and defined by two exclusive synapomorphies: head with punctuation on dorsal surface sexually dimorphic (9.1) and male with apex of lateral tergal sclerites 9 (styli) laterally emarginate (49.1). The monophyly of Odontolinus also shows high support measures in addition to three exclusive synapomorphies: antennomere 1 with apical macroseta spine-like, labial palpus with palpomere 3 (apical) subcylindrical (12.2) and male metatrochanter with dorsal spines (32.1). Revealed firm monophyly of both these lineages confirmed our generic assignments of both new species, respectively. Sister-group relationships of Linoderus are not resolved, and those of Odontolinus remain uncertain in terms of support values. Odontolinus forms the sister group to B. albovariegatus, and together they are sister to the rest of taxa which form a clade where only Linoderus and Pescolinus appear as well-supported and distinct genera while relationships among the Paederomimus representatives are unresolved. This grouping is supported by only one exclusive synapomorphy (21.1: basisternum more than 1.5 × as long as furcasternum) which has shown to be a homoplastic feature within Staphylinini (Chani-Posse et al. 2017). Each of the two exclusive synapomorphies supporting the subclade Odontolinus + B. albovariegatus is also recognized in the Neotropical genus Ophionthus.
Bernhauer (4.1: antennomere 1 distinctly longer than half of head length) (Chani-Posse 2013) and the extra-Neo-tropical genera Actinus Fauvel and Leucitus Fauvel (5.1: antennomere 3 distinctly more than 1.5 × as long as anten-nomere 2) (Chani-Posse et al. 2017). While the first character should be included in future studies exploring internal relationships within the Neotropical lineage of Philonthina, the second one should be considered as homoplastic within Philonthina.

5. Discussion

Former phylogenetic hypotheses supported Odonto-linus, Linoderus and Pescolinus as a monophyletic group (Chani-Posse 2013), its sister-group relationship to Ne-opescolinus and the monophyly of Pescolinus (Chani-Posse 2014b) as well as that of Paederomimus (Chani-Posse 2013). Although in our current study these five genera and/or their representatives also appear gathered in one well-supported group, there is no agreement with previous studies (Chani-Posse 2013, 2014b) regarding the phylogenetic relationships among those genera. Within the context of our analysis, the currently species-rich, loosely defined genera Belonomus and Paeder-o-mimus do not appear as monophyletic. Our phylogeny not only confirms the suspected non-monophyly of Bel-lonomus (Chani-Posse 2014a; Chani-Posse et al. 2017) but also shows unresolved relationships among some of its species and some representatives of Paederomimus. When comparing this to previous results it is clear that sister-group relationships among less speciose but quite distinct genera such as Linoderus, Neopescolinus, Od-onotolinus and Pescolinus will not be elucidated until the most speciose and likely non-monophyletic genera such as Belonomus and Paederomimus are better sampled in an analysis. The placement of B. albovariegatus is a clear example of this situation, showing no supporting evidence for a sister-group relationship to either Odon-to-linus or any Belonomus representative. Characters sup-porting the monophyly of Odontolinus are not shared by B. albovariegatus, so the inclusion of B. albovariegatus in Odontolinus would only lead to blurred generic limits for an otherwise very distinct genus. While we acknowledge the fact that taxonomically ill-defined genera as Belonomus do not provide a solid basis for classification, we advocate for keeping the current affiliation of its species until their phylogenetic position is rigorously assessed.

The systematics of the Neotropical endemic genera of Philonthina need to be assessed along a wider range of characters than those traditionally used for the Holarctic fauna. Among them, sexual dimorphism offers a source of phylogenetic and additional diagnostic characters at both generic and specific level as long as both sexes are available for study (Chani-Posse 2014a). A male-biased sexual dimorphism among the Neotropical philonthines was noticed as early as Sharp (1885). Sexually dimorphic characters have shown to be of phylogenetic importance in the present study. Some of them are exclusive synapomorphies defining distinct genera (Linoderus, Odonto-linus), while others are homoplastic features (i.e., male with spinose metafemora, first metatarsomere distinctly longer in males than in females). We conclude that sexually dimorphic characters should not be avoided but instead studied in all their variety in order to elucidate their role in the radiation of the Neotropical Philonthina. Their systematic utility, though, should be properly tested in the course of a phylogenetic analysis.

6. Acknowledgements

We gratefully acknowledge the help received from curators listed in Material and Methods when loaning the specimens. Alfred Newton (Chicago) is sincerely acknowledged for sharing his taxonomic database. The first author is also indebted to Silvina Lassa (MEBYM – CONICET), Ana María Scollo and Fernando Aballay for their assistance with the use of the SEM and the preparation of the habitus photographs. This study was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET) under the grants Becas Externa para Jóvenes Investigadores and PIP 112-201101-00087; and the Museum of Comparative Zoology at Harvard University, USA (MCZ) under the Ernst Mayr Travel Grant.
7. References

Zoobank registrations

at http://zoobank.org

Present article: http://zoobank.org/urn:lsid:zoobank.org:pub:39664334-5C84-4B87-AFC4-6C7F584333CA

