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Abstract
We present a quantitative characterization of an electrically tunable Josephson junction defined in an
InAs nanowire proximitized by an epitaxially-grown superconducting Al shell. The gate-dependence
of the number of conduction channels and of the set of transmission coefficients are extracted from
the highly nonlinear current–voltage characteristics. Although the transmissions evolve non-
monotonically, the number of independent channels can be tuned, and configurations with a single
quasi-ballistic channel achieved.

Superconductor–semiconductor–superconductor weak links are interesting hybrid structures in which the
Josephson coupling energy, and therefore the supercurrent, can be modulated by an electric field [1, 2]. It is even
possible to lower the carrier density enough in the weak link to achieve the conceptually simple situation of a
quantum point contact (QPC), in which only a small number of conduction channels contribute to transport.
Although these kind of hybrid microstructures have been explored for many years [3], inducing strong
superconducting correlations into the semiconductor in a reliable way has been achieved only recently. A well-
defined (‘hard’) superconducting gap has been clearly demonstrated both in InAs nanowires [4] and in In-
GaAs/InAs two-dimensional electron gases [5] by using in situ epitaxially grown Al contacts. Many experiments
[6–10] are presently using these hybrid structures because they are promising candidates to implement
topological superconductivity and Majorana bound states [11, 12]. A good understanding of their basic
microscopic transport features is therefore necessary. Here we track the evolution of the conduction channels of
a QPC based on an InAs-Al (core–shell) nanowire [13], as gate voltages gradually deplete the weak link region.

Nanowires were dispersed onto a Si substrate covered with 500 nm of silicon oxide. After an Ar ion milling
step (energy 500 eV, 90 s, nominal Al O2 3 etch rate ∼4 nm min−1), the Al shell was contacted by e-beam-
evaporated 100 nm-thick micrometer-scale Al leads. The QPC was then defined by completely removing the Al
shell over 150 nm by a selective wet etching step in Transene D. The etching region was defined by e-beam
lithography using a PMMA (poly(methyl methacrylate)) layer deposited on a few-nm-thick optical resist that
turns the Al-resist interface hydrophobic, hence preventing the peeling of the whole wire while etching [14]. In a
subsequent lithography step, Au gates were fabricated on both sides of the exposed InAs core to allow tuning of
the local carrier density. A micrograph of the device and the schematics of the measurement setup is depicted in
figure 1. Symmetric biasing of the junction was achieved with a bridge of four resistances placed on the printed
circuit board to which the sample is wire-bonded. The voltage V across the wire is measured with another pair of
leads connected to the bias pads, whereas the current I is deduced from the voltage drop across resistance R. Two
independent voltage sources Vg1 and Vg2 connected to the side-gates control the depletion of the QPC.

Measurements were carried out in a He3 refrigerator at a base temperature of 250 mK. Figure 2(a) shows I–V
characteristics taken in the superconducting state at various values of the gate voltages, in the common mode Vg1

= ºV Vg2 g. The overall current decreases as Vg is lowered. This correlates with the reduction of the differential
conductance dI/dV in the normal state, as shown in figure 2(b) with data at the same values of Vg taken above the
superconducting transition temperature of Al. This figure also shows that dI/dV varies with V. The complete
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