Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik; Tomsho, Lynn P.; Schuster, Stephan C.; Bryant, Donald A.

Published in:
Genome Announcements

DOI:
10.1128/genomeA.00529-17

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

Download date: 08. aug., 2019
Complete Genome Sequence of the Photoautotrophic and Bacteriochlorophyll e-Synthesizing Green Sulfur Bacterium *Chlorobaculum limnaeum* DSM 1677T

Marcus Tank,a Zhenfeng Liu,a Niels-Ulrik Frigaard,b Lynn P. Tomsho,a Stephan C. Schuster,a Donald A. Bryanta,c

Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, USAa; Department of Biology, University of Copenhagen, Helsingør, Denmarkb; Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USAc

ABSTRACT *Chlorobaculum limnaeum* DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll *e* and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism, and bacteriochlorophyll biosynthesis. We report here the complete genome sequence.

Chlorobaculum limnaeum DSM 1677T is a brown-colored, chlorophototrophic green sulfur bacterium (GSB) that belongs to the family *Chlorobiaceae* within the phylum *Chlorobi* (1, 2). It was originally isolated from Lake Kinneret, a monomictic, freshwater lake in Israel (https://www.dsmz.de/catalogues/details/culture/DSM-1677.html). Like all other members of the *Chlorobiaceae, C. limnaeum* is an anaerobic, anoxygenic chlorophototroph, and all known required genes for this capability were detected in the genome (3). Light energy is harvested by chlorosomes, which are also found in the phototrophic *Chloroflexaceae* (4), the recently discovered *Chloracidobacterium thermophilum* (5), and “*Candidatus Thermochlorobacter aerophilum*” (2). Sulfide is the preferred electron donor, and CO2 fixation occurs through the reverse tricarboxylic acid cycle (3). GSB that are green in color synthesize chlorosomes containing bacteriochlorophyll *c* or/and *d* and the carotenoid chlorobactene, but brown-colored GSB produce chlorosomes containing *b* and, usually, the carotenoid isorenieratene (3).

In contrast to the thermophilic, *Bchl* *c*-containing, and naturally transformable *Chlorobaculum tepidum* TLS, *C. limnaeum* only recently became a model organism for studies on the evolution of photosynthesis, sulfur metabolism, and biosynthesis of BCHls and carotenoids in brown-colored GSB. For example, the genomic data for *C. limnaeum* helped produce a mutant with chlorosomes containing only *Bchl f* by inactivation of the *bchU* gene (6). *Bchl f* is C-20 demethyl *Bchl e* and is analogous to the C-20 demethyl *Bchl c*, namely, *Bchl d*, which is found in green-colored GSB (6). Another recent study demonstrated that BciD of *C. limnaeum* is a radical *S*-adenosyl-L-methionine enzyme that converts the C-7 methyl group of bacteriochlorophyllide *e* or *f*, respectively (7).

The closed genome of *C. limnaeum* DSM 1677T consists of a single chromosome with 2,797,276 bp and a G+C content of 56.4 mol%; the genome is comparable in size to those of other GSB genomes (2.0 to 3.1 Mbp) (3). No plasmids were detected. Annotation using the NCBI Prokaryotic Genome Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/) predicted 2,452 protein-coding genes, 49 genes
encoding tRNAs, and 2 rRNA operons with identical 5S, 16S, and 23S nucleotide sequences.

C. limnaeum DSM 1677T was grown under anoxic conditions at ~25°C in CL medium (8) at ~50 μmol photons m−2 s−1. Purified genomic DNA was sequenced on a 454 pyrosequencer (GS FLX+) (Roche) to an average depth of >60×. Reads (1,281,523 reads; average length, 381 ± 123 bp) were assembled using the Newbler assembler (Roche) into 89 contigs of at least 500 bp. The contigs were compared to the genome of C. tepidum (9) using PGA (10) to predict the arrangement of and the connections between the contigs. PCR amplification and Sanger sequencing were used for gap closure. The final assembly was carried out using the phred/phrap/consed software package.

Accession number(s). The genome sequence has been deposited at DDBJ/EMBL/GenBank under the nucleotide sequence with accession number CP017305.

ACKNOWLEDGMENTS

This work was funded by grant DE-FG02-94ER20137 (to D.A.B.) from the Photosynthetic Systems Program, Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy.

We thank the staff of the Genomics Core Facility in the Huck Institutes of the Life Sciences at The Pennsylvania State University for sequencing of the PCR products generated during gap closure.

REFERENCES
