Remote sensing of vegetation dynamics in drylands

Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel

Tian, Feng; Brandt, Martin Stefan; Liu, Yi Y.; Verger, Aleixandre; Tagesson, Håkan Torbern; Diouf, Abdoul A.; Rasmussen, Kjeld; Mbow, Cheikh; Wang, Yunjia; Fensholt, Rasmus

Published in:
Remote Sensing of Environment

DOI:
10.1016/j.rse.2016.02.056

Publication date:
2016

Document version
Peer reviewed version

Citation for published version (APA):

Download date: 04. nov., 2020
Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel

Feng Tian a,b, Martin Brandt a, Yi Y. Liu c, Torbern Tagesson a, Aleixandre Verger d, Kjeld Rasmussen a, Abdoul A. Diouf e, Cheikh Mbow f, Yunjia Wang b, Rasmus Fensholt a

a Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
b School of Environment Science and Spatial Informatics, China University of Mining and Technology, 221116 Xuzhou, China
c ARC Centre of Excellence for Climate Systems Science & Climate Change Research Centre, University of New South Wales, Sydney, 2052 New South Wales, Australia
d CREA F, Cerdanyola del Vallés, 08193 Catalonia, Spain
e Centre de Suivi Ecologique (CSE), BP 15532 Dakar-Fann, Senegal
f Science Domain 6, ICRAF (World Agroforestry Center), 00100 Nairobi, Kenya
Abstract

Monitoring long-term biomass dynamics in drylands is of great importance for many environmental applications including land degradation and global carbon cycle modeling. Biomass has extensively been estimated based on the normalized difference vegetation index (NDVI) as a measure of the vegetation greenness. The vegetation optical depth (VOD) derived from satellite passive microwave observations is sensitive to the water content in total aboveground vegetation layer and minimally affected by atmospheric conditions. VOD therefore provides a complementary data source to NDVI for monitoring biomass dynamics in drylands, yet further evaluations based on ground measurements are needed for an improved understanding of the potential advantages. In this study, we assess the capability of a long-term VOD dataset (1992–2011) to capture the temporal and spatial variability of in situ measured green biomass (woody foliage and herbaceous masses) in the semi-arid Senegalese Sahel. Results show that the magnitude and peaking time of VOD are highly correlated with woody foliage mass whereas NDVI seasonality is primarily governed by the green herbaceous vegetation layer in the study area. Moreover, VOD is found to be robust against typical NDVI drawbacks of saturation effect as well as dependence on plant structure (woody and herbaceous vegetation compositions) and species compositions when used as a proxy for vegetation productivity. Finally, both VOD and NDVI well reflect the spatial and inter-annual dynamics of the in situ green biomass data; however, the seasonal metrics leading to the best correlations differ between them. While the observations in October (period of in situ data collection) perform best for VOD ($r^2 = 0.88$), the small growing season integral (sensitive to recurrent vegetation) have the highest correlations for NDVI ($r^2 = 0.90$). Overall, in spite of the coarse resolution, the study shows that VOD is an efficient proxy for estimating green biomass of the entire vegetation stratum in the semi-arid Sahel and likely also in other dryland areas.

Keywords: Biomass, VOD, satellite passive microwave, woody cover, plant structure, vegetation species compositions, saturation effect, semi-arid Sahel
1. Introduction

Improved understanding of changes in dryland biomass is relevant to the understanding of the global carbon balance given that approximately 41% of the Earth’s terrestrial surface is covered by drylands (Adeel et al. 2005). Recent studies showed that dryland biomass is a more dominant driver for global carbon cycle interannual variability as compared to the tropical rainforests (Ahlstrom et al. 2015; Poulter et al. 2014). The understanding of the spatial distribution and temporal trends in vegetation cover, biomass and productivity in drylands is central to many research disciplines.

Optical remote sensing provides a unique way of achieving full coverage of global drylands and have facilitated monitoring of biomass dynamics since the early 1980s, using the normalized difference vegetation index (NDVI), derived from the red and near-infrared reflectance bands of the NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) sensors. As a measurement of chlorophyll abundance and energy absorption (Myneni and Hall 1995; Tucker and Sellers 1986), NDVI has been widely used as a proxy for vegetation productivity (e.g. Myneni et al. (1997) and Nemani et al. (2003)). However, several well-known limitations of NDVI for robust estimation of biomass in drylands exist. NDVI is sensitive to the green components and insensitive to woody components where the majority of carbon stores (Tucker 1979). Also, above ground vegetation production is not always linked to greenness in a uniform way and the plant structure (woody and herbaceous vegetation compositions) and vegetation species compositions have been shown to impact the biomass-NDVI relationship (Goetz et al. 1999; Mbow et al. 2013; Prince and Goward 1995; Wessels et al. 2006). Moreover, atmospheric effects (e.g. water vapor, clouds and aerosols) contaminate images retrieved from the red and near-infrared bands in general and from the spectrally wide AVHRR bands in particular (Holben 1986). This is not only inherent to tropical moist regions but also a problem in semi-arid areas like the African Sahel characterized by a distinctive growing season, where prevailing cloud cover is often obscuring regular monitoring of vegetation resources (Fensholt et al. 2011; Fensholt et al. 2007). Also, optical remote sensing during the dry season can be strongly influenced by atmospheric dust (e.g. the cold-dry and dusty trade wind known as the Harmattan) causing a noisy NDVI signal (Achard and Blasco 1990; Ahearn and de Rooy 1996). Finally, a well-known factor reducing the capability of
NDVI to estimate biomass is the saturation effect due to the strong absorption in the red wavelength (Sellers 1985). With an increasing amount of green vegetation, the sensitivity of NDVI is reduced and BOA (bottom of atmosphere) reaches a saturation point (Gitelson et al. 1996) at approximately 0.8 units (dependent on the specific response function of the satellite sensor). Despite the lower amount of biomass present in dryland areas, NDVI saturation effects have also been reported to impact vegetation monitoring (Fensholt 2004; Milich and Weiss 2000; Olsson et al. 2005).

Several previous studies have investigated vegetation dynamics based on satellite passive microwave observations (Becker and Choudhury 1988; Choudhury and Tucker 1987; Choudhury et al. 1987; Jones et al. 2014; Jones et al. 2011; Min and Lin 2006; Njoku and Chan 2006; Owe et al. 2001; Qian et al. 2015; Shi et al. 2008). Unlike the optical remote sensing based VI (sensitive to greenness), the vegetation information retrieved from satellite passive microwave observations (here referred as vegetation optical depth, VOD) is sensitive to the water content in the total aboveground vegetation, including both green (e.g. woody foliage and herbaceous) and non-green components (e.g. tree stems and branches) (Shi et al. 2008). For a given area of canopy cover, woody and herbaceous vegetation may show similar greenness levels whereas hold different levels of water content due to the different plant structures. Also, the seasonal variation of water content in woody and herbaceous vegetation would be distinct from each other dependent on the specific vegetation species. Hence, VOD may be a more robust proxy for the total vegetation biomass as compared to NDVI (Jones et al. 2013).

Furthermore, due to the longer wavelength and stronger penetration capacity of microwave, VOD is insensitive to atmosphere and cloud contamination effects and can therefore provide valid global observations at almost daily frequency, of benefit to land surface phenology monitoring (Jones et al. 2012). Moreover, VOD has less saturation effect than NDVI (Jones et al. 2011). These features all together make VOD a promising proxy for biomass at regional to global scales, despite the coarse spatial resolution of historical data (> 10 km) as a result of the low energy of the natural microwave emissions from the Earth’s surface.

Recently, a long-term VOD dataset covering more than 20 years was generated by combining observations from a series of passive microwave instruments (Liu et al. 2011a; Liu et al. 2015). This unique dataset provides new opportunities to gain insights of global vegetation changes from the microwave region of the spectrum over
a period almost comparable with AVHRR sensors. Based on this VOD dataset, long-term changes in global drylands have been investigated and, as expected, it is found that the inter-annual variations of VOD are mainly driven by precipitation (Andela et al. 2013; Liu et al. 2013a; Liu et al. 2013b). However, to the authors’ best knowledge no analysis including in situ biomass measurements has been conducted to examine the spatial and temporal dynamics of VOD data in relation to different compositions of woody and herbaceous vegetation. Moreover, the annual sum/maximum and the growing season integral of NDVI have a proven record of showing realistic estimations for biomass accumulation in drylands (Diouf et al. 2015; Meroni et al. 2014; Prince 1991; Tucker et al. 1983; Wessels et al. 2006). However, whether these seasonal metrics apply in the same way for VOD data has not been assessed yet.

In this study, our overall objective is to gain an improved understanding of the performance of VOD data for monitoring long-term vegetation dynamics in dryland areas, by comparing with the well-known NDVI based approach and in situ measurements of green biomass (woody foliage and herbaceous masses) in the semi-arid Senegalese Sahel during the period 1992–2011. Firstly, we explore the VOD responses to different woody and herbaceous vegetation compositions in the study area characterized by a pronounced north-south gradient in woody cover and green biomass. Then, we assess the performance of different VOD metrics for their capability to reflect green biomass dynamics in both spatial and temporal domains.

2. Data

2.1. Study area

All in situ sites are located in the semi-arid Sahel zone of Senegal (Fig. 1). The Sahel can be separated into three zones, following a rainfall gradient from the northern Sahel (150–300 mm annual rainfall), over the central Sahel (300–500 mm) to the southern Sahel (500–700 mm). Driven by the rainfall, the vegetation density also shows a clear north–south increasing gradient with mean annual green biomass varying from approximately 1000 kg DM (dry matter) ha\(^{-1}\) at the northern sites to >4500 kg DM ha\(^{-1}\) at the southern sites (calculated from data described in section 2.4.2). The entire region is characterized by savannas consisting of herbaceous and
woody trees and shrubs. The herbaceous layer is dominated by annual plants growing from late June to early October, however strongly dependent on annual rainfall distribution (de Ridder et al. 1982; Rietkerk et al. 1996). The phenological behavior of woody plants is mainly evergreen, semi-evergreen or deciduous (Le Houérou 1980), showing distinct different phenological cycles as compared to the herbaceous layer present only during the rainy season. The mean woody cover map during 2000–2013 produced by Brandt et al. (2016) at 1 km spatial resolution was used to indicate the spatial variation of plant structure in the study area, with a woody cover increases from < 3% in the north to > 40% in the south. Whereas herbaceous dominates the green biomass in the north, the woody foliage produces higher biomass than the herbaceous in the south (Diouf et al. 2015).
Fig. 1. Location of in situ observation sites in Senegal with a background showing mean woody cover during 2000–2013 (Brandt et al. 2016). The areas indicated by the dashed black boxes are further analyzed in Fig. 4A. The Sahel region and the Senegalese study area are highlighted in the map of Africa (top right).

2.2. VOD data

The VOD dataset used is derived from observations of a series of passive microwave instruments onboard different satellites, including the Special Sensor Microwave Imager (SSM/I) of the Defense Meteorological Satellite Program, the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) onboard the Aqua satellite, and the radiometer of the WindSat (Liu et al. 2015). Briefly, the satellite based passive microwave observations (brightness temperature, \(T_b \)) consist of three components: 1) the radiation from the soil layer attenuated by the overlaying vegetation, 2) the upward radiation from the vegetation, and 3) the downward radiation from the vegetation, reflected upward by the soil layer and again attenuated by the vegetation (Mo et al. 1982) as shown in the equation 1.

\[
T_b^P = T_s^P \Gamma^P + (1 - \omega^P)T_c^P(1 - \Gamma^P) + (1 - e_r^P)(1 - \omega^P)T_c^P(1 - \Gamma^P)\Gamma^P
\]

where \(P \) is the polarization (horizontal and vertical); \(T_s \) and \(T_c \) are the thermometric temperatures of the soil and the canopy, respectively; \(e_r \) is the soil emissivity determined by soil moisture, temperature and roughness; \(\omega \) is the single scattering albedo; \(\Gamma \) is the vegetation transmissivity determined by VOD (\(\tau \), dimensionless) and observing incidence angle (\(\mu \)) in the equation 2.

\[
\Gamma = \exp(-\tau / \cos \mu)
\]

The VOD is a function of the vegetation dielectric properties, responding primarily to the water content in total aboveground biomass including green and non-green components, varying with the vegetation geometric structure and the sensor wavelength and viewing angle (Jackson and Schmugge 1991).

The Land Parameter Retrieval Model (LPRM) retrieval algorithm (Meesters et al. 2005; Owe et al. 2008; Owe et al. 2001), developed from the above radiative transfer model, can derive soil moisture and VOD
simultaneously by assuming that VOD was polarization independent especially for randomly distributed crops and natural vegetation at satellite scales and that temperatures of the soil surface and canopy were equal during night-time. LPRM can be applied to observations from different satellites with varying microwave wavelengths and viewing angles. Accordingly, VOD datasets were derived from observations from SSM/I, AMSR-E and WindSat (Liu et al. 2015). Due to the dependence of sensor characteristics, VOD values vary between these three instruments. However, these three sensors have reasonably long overlapping periods, and their temporal dynamics are highly correlated for most of the Earth’s land surface and in drylands in particular. The cumulative distribution function (CDF) matching approach was therefore conducted to merge these three VOD datasets into one long term time series over 1992-2011 (Liu et al. 2011a; Liu et al. 2011b).

In the merged VOD dataset, SSM/I observation is used from January 1992 through June 2002 before the AMSR-E started operating, while AMSR-E is used from July 2002 through September 2011. WindSat observation is used after AMSR-E stopped collecting data in early October 2011. The temporal consistency of this merged dataset was examined using both global and humidity zone averaged VOD anomaly series (similar to the method applied by Tian et al. (2015)) and found no artifacts in the time series to coincide with sensor shifts (see supplementary materials Fig. S1). The VOD value ranges from 0 to roughly 1.3 in the merged VOD dataset, and it is aggregated to 0.25 degree (~25 km) spatial resolution and monthly intervals.

2.3. GIMMS3g AVHRR NDVI

Although the GIMMS (Global Inventory Modeling and Mapping Studies) NDVI product is not free from problems (Horion et al. 2014; Tian et al. 2015), it has been reported to be the most suitable for long-term vegetation analysis amongst several available long-term AVHRR NDVI datasets (Beck et al. 2011; Tian et al. 2015) and trend analysis of the GIMMS NDVI products have been shown to be in agreement with trends from MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI products particularly in drylands (Fensholt and Proud 2012; Fensholt et al. 2009). The latest version of the GIMMS AVHRR NDVI data (GIMMS3g) was therefore used in this study and includes the following overall pre-processing steps (for a detailed description refer to Pinzon and Tucker (2014)): The AVHRR channel 1 (visible band) and channel 2 (near-infrared band) are calibrated by applying time-varying vicarious calibrations methods (Cao et al. 2008; Los 1998; Vermote and
Kaufman 1995; Wu et al. 2010). The varying solar zenith angle effects on NDVI values (caused by orbital drift) are reduced using an adaptive empirical mode decomposition/reconstruction procedure (Pinzon et al. 2005). The AVHRR/2 and AVHRR/3 NDVI probability density functions were calibrated by applying a Bayesian analysis using the SeaWiFS (Sea-Viewing Wide Field-of-view Sensor) NDVI data as prior information (Pinzon and Tucker 2014). Maximum value compositing over 15 days was applied to reduce the atmospheric effects. Furthermore, stratospheric aerosol correction was applied during the El Chichon (April 1982–December 1984) and Mt Pinatubo (June 1991–December 1993) volcanic stratospheric aerosol periods (Tucker et al. 2005). The GIMMS3g NDVI dataset provides two images per month with a spatial resolution of 1/12°. We averaged the two NDVI values in each month during 1992–2011 for consistency with the VOD dataset whereas the original spatial resolution of data was kept.

2.4. In situ measurements

Annual biomass data was collected by the Centre de Suivi Ecologique (CSE) in Senegal from 1992 to 2011 (except for 2004). The measurements were conducted at the end of the growing season (October) and the data has shown to be consistent with satellite time series (Brandt et al. 2015b). Biomass of herbaceous and woody foliage layers were measured separately and summed to obtain the total biomass in kg DM ha⁻¹.

- The herbaceous collection followed the original method proposed by the International Livestock Centre for Africa (ILCA) (Diouf et al. 1998) based on stratification of the herbaceous layer into four strata (bare soil patches and low, medium and high herbaceous bulk density). At each field site, a 1 km transect was selected, along which 35–100 plots of one square meter were randomly placed, considering the vegetation stratification. For each of the strata, all fresh vegetation collected was weighed and three 200 g samples of each stratum were dried in an oven to obtain the dry matter to wet weight ratio. The dry matter weight of each stratum is obtained by multiplying the mean wet weight by the dry matter ratio. Then, the site herbaceous mass is calculated by weighting the mean mass of each stratum by the relative frequency of the stratum along the transect.

- Foliage biomass measurements of trees and shrubs were performed for each site in two steps: 1) every two years, all species were sampled within four circular plots (of 1/16 to 1 ha) placed every 200 m along the
selected transect. Along with other parameters, the circumferences of alive trunks were measured for calculation of the potential woody foliage biomass using the allometric relationships established for Sahelian tree and shrub species (Cissé 1980; Diallo et al. 1991; Diouf and Lambin 2001; Hiernaux 1980). 2) These potential values were then adjusted to each particular year and site conditions with leaf samples of 10 branchlets from each of the most representative species. Then, the total woody foliage biomass of each site was obtained by summing up all the investigated woody species.

A detailed description of the method is given in Diouf et al. (2015). We examined the VOD pixels covering each site with Google Earth and excluded 5 highly heterogeneous plots that are located either close to rivers or mixed cropping and forest areas (whereas the measurements were taken in the forest area only), leaving 27 relatively homogeneous sites (shown in Fig. 1) with 516 measurements for further analysis (not all sites were surveyed by CSE each year).

2.5. Rainfall data

The ARC2 (African Rainfall Climatology version 2) daily rainfall data (0.1° spatial resolution) (Novella and Thiaw 2013) were used in the study. For consistency with the VOD dataset, we summed the daily rainfall values in each month during 1992–2011 whereas the original spatial resolution of data was kept.

3. Methods

3.1. Comparing VOD and NDVI responses to woody and herbaceous vegetation compositions

To understand the VOD responses to woody and herbaceous vegetation compositions, we compared its spatial patterns and seasonal variations to NDVI over the study area characterized by a clear north-south vegetation gradient. The pixel-wise monthly VOD, NDVI and ARC2 rainfall means across the entire period (1992–2011) were calculated for the study area, respectively. In order to better illustrate the differences between VOD and NDVI, we further examined the seasonal patterns of three sub regions (Fig. 1) along the north-south gradient (with mean woody cover of 3%, 15% and 34%, respectively). The phenological behavior (i.e. the
temporal distribution of green biomass) of herbaceous and dominant woody species in the study area (evergreen, semi-evergreen and deciduous), produced by Mougin et al. (1995), Mougin et al. (2014) and (Brandt et al. 2016), were used to assist interpretation of the VOD seasonal variations. Moreover, we compared the relationships between annual maximum VOD/NDVI (calculated from the long-term monthly mean during 1992–2011) and woody cover over the study area. In this context, the woody cover data was averaged to the VOD spatial resolution while the median of NDVI pixels overlapping the VOD pixel was used.

3.2. Evaluating VOD and NDVI metrics for reflecting green biomass dynamics

3.2.1. Seasonal metrics

The annual maximum, annual sum, growing season large integral (integration of NDVI values during the growing season) and small integral (integration of NDVI amplitudes during the growing season) (Fig. 2) have been widely used to estimate biomass productivity/accumulation with NDVI time series observations based on linear regression (de Jong et al. 2011; Fensholt et al. 2015; Tian et al. 2013). Here, we tested the performance of these metrics for VOD data against the annual in situ green biomass data at 27 sites over 20 years using ordinary least square linear regressions. As the in situ green biomass data were collected during month of October, we also examined the performance of October VOD observations. For comparison purposes, NDVI data was also analyzed against the in situ green biomass data. The growing season integrals were calculated using the TIMESAT software (Jonsson and Eklundh 2002, 2004). The start of season was set to 20% of the amplitude for both VOD and NDVI data. To be in line with the time of in situ data collection, the end of season was set to 80% of the amplitude for the VOD data and 50% for the NDVI data (different thresholds applied due to the later drop of VOD values as compared to NDVI as shown in Fig. 2).
Fig. 2. Illustration of the seasonal vegetation metrics used in this study: (a) annual minimum, (b) start of season, (c) annual maximum, (d) end of season, (e) amplitude, (f) small integral, and (f)+(g) large integral. The VOD and NDVI curves are the mean of the entire study area (as shown in Fig. 1) during 1992–2011.

3.2.2. Data comparison

The comparisons between VOD/NDVI metrics and in situ green biomass data were performed in two steps. In the first step, we assessed the performance of VOD and NDVI metrics for reflecting green biomass dynamics at pixel level across a gradient of increasing biomass from north to south of the study area. For each year during 1992–2011, we calculated all the VOD and NDVI seasonal metrics for each pixel overlapping the in situ sites. Then, each of the seasonal metrics was regressed against the corresponding biomass data for the sites located in the northern, central, southern and entire study area, respectively. In the second step, we focused on the capabilities of VOD and NDVI metrics for reflecting green biomass inter-annual dynamics over all in situ sites. Due to differences in the spatial resolution (VOD 25 km, NDVI 8 km, and biomass data 1 km), the heterogeneity effect inevitably introduces bias between in situ measurements and remote sensing observations, impeding a successful evaluation of the temporal dynamics of the VOD and NDVI data. To reduce this bias and to highlight the aspects of temporal dynamics, we therefore averaged all the available in situ data over the entire study area for each year and the corresponding pixel-scale VOD/NDVI metrics calculated in the first step, respectively. This averaging method has been widely applied for evaluating satellite observations using in situ measurements.
(Dardel et al. 2014; Jackson et al. 2010; Tagesson et al. 2013; Zeng et al. 2015). The coefficient of determination (r^2) of Pearson product-moment correlation and root mean square error (RMSE) were calculated for each pair of comparison in both steps.
Fig. 3. Spatial patterns of monthly mean VOD (A), NDVI (B) and annual rainfall (mm) (C) during 1992–2011 from June to November.

4. Results

4.1. VOD responses to woody and herbaceous vegetation compositions

The spatial patterns of VOD, NDVI and rainfall in the study area are shown for the months covering the rainy season (June-November) (Fig. 3). Despite the coarse spatial resolution of the VOD data, a clear north-south gradient is observed in a similar way to the spatial patterns of NDVI. The seasonal patterns over the course of the year of the selected sub regions (dashed black boxes in Fig. 1) are shown in Fig. 4A. VOD starts to increase simultaneously with NDVI for all sub regions in the study area, in line with the onset of the rainfall. During the growth phase, NDVI shows identical temporal development from north to south, reaching the second highest value in August, peaking in September and then decreasing in October to a lower level followed by a further drop in November. VOD data however, show high values in both September and October from north to south, with peaking time changing from September in the north to October in the south. The delay in VOD peak time from north to south corresponds to the longitudinal gradient of woody cover (Fig. 1) with average values of 3%, 15% and 34% for the northern, central and southern sub regions, respectively. This positive shift in the date of the peak in VOD can be partly explained by the higher contribution of woody foliage (see the woody foliage and herbaceous biomass of each sub region in Fig. 4A) which are characterized by longer growing seasons and later seasonal peaking than the herbaceous layer (Fig. 4B). The higher sensitivity of VOD than NDVI to woody vegetation is also indicated by their relationships with woody cover (Fig. 4C). With increasing woody cover, VOD increases linearly while NDVI saturated around 20% of woody cover. Another noticeable point is that in areas with a woody cover less than ~8% the VOD values shows less variation (standard deviation equals 0.04) than NDVI values (standard deviation equals 0.06).
Fig. 4. (A) Seasonal patterns of mean VOD, NDVI and rainfall during 1992–2011 in the sub regions of northern, central and southern parts of the study area (average of all pixels in each of the dashed black boxes in Fig. 1). The biomass of herbaceous and woody foliage is given by averaging the *in situ* sites within each selected area. (B) Phenology of typical Sahelian woody and herbaceous vegetation (expressed as fraction of maximum green mass, extracted from Mougin et al. (1995), Mougin et al. (2014) and Brandt et al. (2016)). Although variations can be observed from north to south, the general behavior follows these curves. (C) Spatial relationships of woody cover and the annual maximum VOD/NDVI calculated.
from the monthly mean during 1992–2011 over the study area. The pixels with woody cover less than 8% are high lighten in a grey background.
Fig. 5. Scatter plots between *in situ* green biomass data collected at the end of growing season (October) and seasonal metrics ((A) VOD and (B) NDVI) of October, annual max, annual sum, large integral and small integral.

Table 1. \(r^2\) values between different VOD/NDVI metrics and *in situ* green biomass measurements of the sites located in the northern, central, southern and entire study area (corresponding with the scatter plots in Fig. 5). The number of observations is given as “N”. Note that “^” and “*” mean the linear correlation is significant at 0.01 and 0.05 levels, respectively.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>VOD</th>
<th>NDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North N=91</td>
<td>Centre N=192</td>
</tr>
<tr>
<td>October r(^2)</td>
<td>0.38^</td>
<td>0.30^</td>
</tr>
<tr>
<td>RMSE r(^2)</td>
<td>588</td>
<td>0.30^</td>
</tr>
<tr>
<td>Annual max r(^2)</td>
<td>0.42^</td>
<td>0.30^</td>
</tr>
<tr>
<td>RMSE r(^2)</td>
<td>568</td>
<td>0.30^</td>
</tr>
<tr>
<td>Annual sum r(^2)</td>
<td>0.27^</td>
<td>0.35^</td>
</tr>
<tr>
<td>RMSE r(^2)</td>
<td>641</td>
<td>0.35^</td>
</tr>
<tr>
<td>Large integral r(^2)</td>
<td>0.37^</td>
<td>0.32^</td>
</tr>
<tr>
<td>RMSE r(^2)</td>
<td>594</td>
<td>0.32^</td>
</tr>
<tr>
<td>Small integral r(^2)</td>
<td>0.33^</td>
<td>0.21^</td>
</tr>
<tr>
<td>RMSE r(^2)</td>
<td>614</td>
<td>0.21^</td>
</tr>
</tbody>
</table>

4.2. Performance of VOD and NDVI metrics for reflecting green biomass dynamics

The scatter plots between pixel-scale VOD/NDVI metrics and plot-scale *in situ* green biomass data are shown in Fig. 5 and the \(r^2\) and RMSE values are summarized in Table 1. The statistical results for the averaged VOD/NDVI metrics and *in situ* green biomass data are summarized in Table 2 and Fig. 6 shows the best and poorest metrics for VOD and NDVI, respectively, in relation to the temporal changes of *in situ* data. These results are interpreted from two aspects: 1) the performance of VOD and NDVI metrics across a gradient of increasing biomass, and 2) the performance of VOD and NDVI metrics for reflecting inter-annual green biomass dynamics over all the *in situ* sites.

1) In line with the rainfall and woody cover, the green biomass is also characterized by an increasing gradient from north to south of the study area. Like the relationship with woody cover in Fig. 4C, the NDVI maximum shows clear saturation effect in the southern part while VOD maximum does not (Fig. 5). Taking all sites into account, all of the seasonal metrics show significant (\(p < 0.01\)) correlations with the green biomass data and the \(r^2\) values (0.59 – 0.66 for VOD and 0.52 – 0.61 for NDVI) are higher as
compared to those for individual parts of the study area (Table 1). With a large amount of observations in the central part (N = 192), significant correlations (p < 0.01) are obtained between biomass data and all seasonal metrics (r^2 equals 0.21 – 0.35 for VOD and 0.19 – 0.28 for NDVI). In the northern part (N = 91), the seasonal metrics (except for NDVI large integral with p < 0.05 and $r^2 = 0.07$) also show significant correlations (p < 0.01) with the biomass data and the r^2 values (0.27 – 0.42 for VOD and 0.20 – 0.33 for NDVI) are comparable to those in the central part. The seasonal metrics show poorer performance (lower r^2 values, 0.06 – 0.12 for VOD and 0.05 – 0.21 for NDVI) in the southern part (N = 52) than in the northern and central parts, with many of them showing insignificant correlations (p > 0.05 for VOD annual sum, small and large integrals and NDVI annual max and small integral) with the biomass data. The VOD metrics outperform the NDVI counterparts in the northern, central and entire parts of the study area (except for the small integral in the central part). Whereas in the southern part, NDVI metrics of October, annual sum and large integral show better results than the VOD counterparts although both performs poorly in this part.

2) By averaging all the sites to reduce the bias caused by scale difference, all the VOD/NDVI metrics show improved correlation with the in situ green biomass data (Table 2) as compared to the pixel versus plot scale comparisons (Table 1). The metrics derived from both VOD and NDVI are able to reproduce the averaged in situ green biomass inter-annual dynamics at a similar level (Table 2 and Fig. 6). However, the metrics leading to the best correlations differ between the two indexes. The October VOD shows the best performance ($r^2 = 0.88$) among all of the VOD metrics, closely followed by the annual sum ($r^2 = 0.87$), annual max ($r^2 = 0.86$) and then the large integral ($r^2 = 0.83$) whereas the VOD small integral shows poorest performance ($r^2 = 0.64$) amongst all VOD and NDVI metrics. On the contrary, the NDVI small integral shows the best performance ($r^2 = 0.90$) while October NDVI shows the poorest ($r^2 = 0.68$). The NDVI large integral ($r^2 = 0.82$) shows a better performance than the NDVI annual sum ($r^2 = 0.72$) and annual max ($r^2 = 0.70$).
Table 2. Performance of different VOD and NDVI metrics for reflecting *in situ* green biomass inter-annual dynamics (1992–2011). All the available sites over the study area for each year were averaged to reduce the bias caused by scale difference. All of the r^2 obtained are significant at the 0.01 level.

<table>
<thead>
<tr>
<th>Metrics</th>
<th>VOD</th>
<th>NDVI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r^2</td>
<td>RMSE</td>
</tr>
<tr>
<td>October</td>
<td>0.88</td>
<td>175</td>
</tr>
<tr>
<td>Annual max</td>
<td>0.86</td>
<td>186</td>
</tr>
<tr>
<td>Annual sum</td>
<td>0.87</td>
<td>178</td>
</tr>
<tr>
<td>Large integral</td>
<td>0.83</td>
<td>204</td>
</tr>
<tr>
<td>Small integral</td>
<td>0.64</td>
<td>300</td>
</tr>
</tbody>
</table>

Fig. 6. Comparisons of the inter-annual dynamics between mean of all the *in situ* green biomass data collected at the end of growing season (October) and the corresponding (A) VOD and (B) NDVI metrics characterized by the highest and lowest r^2. The ranges of y axis at both sides are adjusted to match the years with minimum and maximum *in situ* green biomass (1997 and 2010, respectively) in each sub plot for improved visualization.

5. Discussion
NDVI is only sensitive to the greenness of the vegetation layer (woody foliage and herbaceous) whereas VOD is sensitive to water content from both the green and non-green (wood) parts. The \textit{in situ} data collected at Dahra field site (supplementary material Fig. S2) shows that greenness and water content of the herbaceous layer are highly linked with each other particularly during the browning stage of the growing season, which is likely the same for woody foliage. Therefore, by comparing the seasonal patterns of VOD and NDVI (Fig. 4A) with the intra-annual dynamics of green biomass productivity (Fig. 4B), we can infer that the later peaking time of woody foliage (and likely the wood) as compared to herbaceous (expressed as the fraction of maximum green mass) result in the longer period of high VOD values (September and October) as compared to NDVI (peak in September). Consequently, VOD reflects the temporal development of woody vegetation more than NDVI, which was also shown by Jones et al. (2011) and Jones et al. (2013). Additionally, with less saturation effect, VOD also shows better performance than NDVI on quantifying the spatial variation of woody cover (Fig. 4C). Therefore, estimation of woody cover in global drylands is likely to benefit from this unique feature of VOD data. Specifically, there is a long-standing debate on the development of the woody cover of the Sahel. Available studies are limited to local scales, covering different periods and thus providing contradictory results that are not directly comparable: While some studies have reported decreases in woody cover (and thus presumably also in biomass) (Gonzalez et al. 2012) others have provided evidence for increases in woody cover (or related variables) (Brandt et al. 2015b; Hiernaux et al. 2009; Spiekermann et al. 2015). By calibration with existing woody cover maps (e.g. Brandt et al. (2016)), this VOD dataset could provide a spatially continuous estimation of woody cover changes since early 1990s.

Estimation of green biomass using the NDVI metrics has been reported to be influenced by varying woody and herbaceous vegetation compositions (Diouf et al. 2015; Wessels et al. 2006) as well as herbaceous species compositions (Mbow et al. 2013; Olsen et al. 2015), which is caused by the inconsistent relationship between greenness and biomass. Being uniformly responding to the water content in woody foliage and herbaceous (Fig. 4), VOD may be a more robust proxy for the green biomass. This is supported by the generally higher correlations between VOD metrics and \textit{in situ} green biomass data as compared to NDVI metrics (Fig. 5 and Table 1), even though VOD pixels have larger spatial resolution. Particularly, in the north part where herbaceous
dominates the vegetation layer, the higher correlation between VOD and *in situ* green biomass data indicates that VOD is more robust to herbaceous species compositions, which is also supported by the less variation of the scatter plots (the shade part of Fig. 4C) between VOD and woody cover. The water content in wood forms part of the VOD base level and act as a bias for green biomass estimation that gradually increase from < 0.1 in the north to < 0.3 in the south (Fig. 4A). The variation of this bias (water content in wood) should be limit in areas with low woody cover. Yet, the influence of variation of this bias would make a difference in areas with high woody cover, which should be one possible reason for the poor performance of VOD metrics on reflecting green biomass dynamics in the south part (Fig. 5 and Table 1). Therefore, VOD is a potential proxy for the total biomass yet the proportionality for water content with green and woody biomass needs to be corrected for.

Averaging the VOD/NDVI metrics and *in situ* biomass data over all the sites minimized the biases caused by scale difference, hence we can draw implications from the performance of different season metrics (Table 2) on the way to use VOD and NDVI for biomass estimation. For VOD, the good performance of October observations corresponding to the period of maximum accumulation of biomass (when ground measurements were collected) indicates that the water content in the total vegetation layer is highly correlated to the green biomass. The reason why the annual sum performs better than the large integral may be that the sum includes information of water content in wood during the dry season which may contribute to the foliage production in October. The poorer performance of the VOD small integral may be caused by the missing information of water content in wood that responsible for the base level of the VOD curve and plays an important role in the photosynthetic process for producing biomass. For NDVI, the good performance of the small integral in capturing biomass temporal dynamics were also documented for the Sahel by Fensholt et al. (2013) and Olsen et al. (2015). A possible reason would be that the recurrent part of the vegetation layer forms the dominant part of the net primary production (NPP) and that information from the green part of perennial vegetation (included in annual sum and large integral) is influenced by varying atmospheric conditions and soil background during the period of the dry season (approximately 9 months). The artifacts of GIMMS3g NDVI product in the dry season during 2004–2011 (Horion et al. 2014) also have greater impacts on the performance of the annual sum and large integral than the small integral. The NDVI annual max has been used as a proxy for the maximum vegetation
productivity (Evans and Geerken 2004; Fuller 1998; Jeyaseelan et al. 2007). However, in a study by Olsson et al. (2005) a much more widespread greening of the Sahel was found when calculated from seasonal NDVI integrals as compared to trend estimates calculated from the seasonal NDVI amplitude. This was explained by the possible saturation of the NDVI signal, thereby rendering the NDVI seasonal amplitude less sensitive to detection of changes in dryland areas. This is supported by the results presented here (Fig. 4C and Fig. 5) showing that the saturation effect has an impact on biomass estimation for the greener parts of the Sahelian drylands.

Vegetation long-term trend analysis based on different AHVRR NDVI products have been performed from regional to global scales to assist discussions on land degradation trends in drylands in general and in the Sahel in particular (Fensholt et al. 2012; Herrmann et al. 2014; Mbow et al. 2015; Olsson et al. 2005). However, the quality of these NDVI products due to a series of sensor issues and the resulting greening/browning trends have been questioned (Beck et al. 2011; de Beurs and Henebry 2004; Tian et al. 2015). The long-term VOD dataset derived from passive microwave observations provides an important independent source to the NDVI based approaches for land degradation assessment. The results shown in this study would benefit the future usage of VOD data on vegetation trend analysis. The coarse spatial resolution of VOD impedes its applicability at the local scale, but is of less concern for studies at regional, continental or global scales.

6. Conclusion

An improved understanding of the characteristics and responses of the satellite passive microwave observation based VOD to vegetation variations is achieved by comparison with the well-studied GIMMS3g NDVI and in situ measurements in the semi-arid Senegalese Sahel covering a gradient of mixtures of woody and herbaceous vegetation lifeforms in drylands. VOD has proven to be an efficient proxy for green biomass of the entire vegetation stratum (both woody foliage and herbaceous) and is a potential proxy for the total biomass as it also sensitive to the water content in the standing wood mass. VOD shows an increased sensitivity to information on the woody layer and is found to be less affected by saturation effect as compared to NDVI in the greener parts of dryland areas. VOD also appears to be less sensitive to vegetation species composition in
monitoring dryland biomass production as compared to greenness measures derived from visible/near-infrared parts of the spectrum. It is concluded that the different sensitivity of VOD and NDVI to total water content and chlorophyll abundance respectively causes different seasonal metrics to be optimal for biomass monitoring amongst the two sensor systems. The integration of the greenness seasonality is most closely related to \textit{in situ} measured biomass, while the VOD works equally well as a proxy for biomass when used as a “snapshot” in time (October, when the \textit{in situ green} biomass was measured). Also the annual sum of VOD was found to perform well due to possible linkage between water content in the persistent part of the woody vegetation during dry season and foliage production at the end of growing season. Our results suggest that a complementary use of VOD and NDVI would allow for more complete monitoring of dryland vegetation resources. With the higher sensitivity of VOD to woody vegetation water content, the long-term VOD dataset would help to improve our understanding of woody cover/biomass variations in drylands which is currently a challenge for regional/large scale optical remote sensing. On the other hand seasonal metrics of NDVI is still well suited for monitoring of the herbaceous stratum and obviously the capabilities of doing so with high spatial resolution is of importance for many applications.

\textbf{Acknowledgments}

This research is partly funded by the China Scholarship Council (CSC, number 201306420005), the Danish Council for Independent Research (DFF) Sapere Aude programme under the project entitled "Earth Observation based Vegetation productivity and Land Degradation Trends in Global Drylands", and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Martin Brandt is the recipient of the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement (No. 656564). Yi Y. Liu is the recipient of an Australian Research Council Discovery Early Career Researcher Award (DECRA) Fellowship (No. DE140100200). Aleixandre Verger is the recipient of a Juan de la Cierva postdoctoral fellowship from the Spanish Ministry of Science and Innovation.
References

Fig. S1. Evaluation of temporal consistency for (A) GIMMS3g NDVI and (B) VOD by examining global and humidity zone averaged anomaly series. The ranges of y-axis are set in line with Fig. 4 in Tian et al. (2015) and the values on the right-hand of y-axis are mean of each original NDVI/VOD series. Results of GIMMS3g are shown for the time period used in this study (1992–2011).
Fig. S2. The water content and in situ NDVI collected during 2008-2011 at Dahra field site in Senegal. Please refer to (Tagesson et al. 2015) and (Mbow et al. 2013) for detailed information.