(S)Pinning down protein interactions by NMR

Kaare Teilum,* Micha Ben Achim Kunze, Simon Erlendsson, and Birthe B. Kragelund*

Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark

Received 27 November 2016; Accepted 14 December 2016
DOI: 10.1002/pro.3105
Published online 26 December 2016 proteinscience.org

Abstract: Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions. These types of analyses determine the amounts and proportions of individual constituents that participate in a reaction as well as their rates of reactions and their thermodynamics. Although many different methods are available, there is currently no single method able to quantitatively capture and describe all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates, and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background and illustrate simple protein–ligand interactions as well as typical strategies for measuring binding constants using NMR spectroscopy. Finally, this review provides examples of caveats of the method as well as the options to improve the outcome of an NMR analysis of a protein interaction reaction.

Keywords: affinity; dissociation constant; spectroscopy; ligand; chemical shift; binding; exchange

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

M.B.A. Kunze and S. Erlendsson contributed equally to this work

*Correspondence to: Birthe B Kragelund; Structural Biology and NMR Lab, Department of Biology, Copenhagen University, Ole Maaløesvej 5, Copenhagen N, DK-2200, Denmark. E-mail: bbk@bio.ku.dk or Kaare Teilum; Structural Biology and NMR Lab, Department of Biology, Copenhagen University, Ole Maaløesvej 5, Copenhagen N, DK-2200, Denmark. E-mail:kaare.teilum@bio.ku.dk
Glossary

Aligned encounter complex: Within the encounter complex intermediate, the two molecules may not be properly aligned to proceed to form the endpoint complex; only when the two molecules are properly aligned according to the binding sites, the complex is termed an aligned encounter complex.

Angular frequency: This is a measure for how fast an object is rotating and is measured in radians per second.

Chemical shift: The magnitude of the shift in signal frequency of a nucleus as a result of the motions of the surrounding electrons. Their motions change the effective magnetic field sensed by the nucleus. The chemical shifts are given in ppm (or Hz) and are relative to a standard molecule such as DSS or TMS, whose chemical shift is defined to be 0 ppm. The chemical shift of a nucleus is read on the axes of the NMR spectrum.

Chemical (conformational) exchange: This is when a system has reached macroscopic equilibrium, but where individual atoms, and hence nuclei, on the microscopic level are changing their environment, for example by existing in two (or more) states during the time of recording the NMR spectrum.

Conformer selection: In the ensemble view of protein structures it is anticipated that a very small number of molecules are populating the bound conformation in the absence of a binding partner. During binding the bound conformation can be selected for complex formation, which makes the population of the unbound state shift and form more bound conformations in the absence of ligand.

Correlation time: Brownian rotation diffusion of a particle in solution has a time constant termed the rotational correlation time (τ_ρ). It is the time taken by the particle to rotate by one radian and it thus depends on the particle size. For globular proteins, the rotational correlation time is in the ns time range.

CPMG relaxation dispersion: A method to quantify exchange processes on the micro- to millisecond timescale.

Encounter complex: When a protein and a ligand diffuse and bump into each other, an intermediate is formed at the end-point of diffusional association, which is termed an encounter complex. Its structure cannot be isolated and studied experimentally.

Euclidian distance: The straight-line distance between two points in the Euclidian space.

Fast exchange: The regime where the exchange rate is much faster than the observed difference in resonance frequency ($k_{ex} \gg |\Delta \omega|$).

HSQC (hetero-nuclear single quantum coherence) spectrum: This is a two-dimensional spectrum that correlates a proton with a hetero nucleus, usually 13C and 15N, and it shows one NMR peak per unique proton attached to the particular hetero-nucleus.

Induced fit: As a consequence of interactions formed between the protein and the ligand they mutually adapt to each other by small or large conformational changes.

Intermediate exchange: the regime where the exchange rate is similar to the observed difference in resonance frequency ($k_{ex} \approx |\Delta \omega|$).

Magnetic saturation: By definition magnetic saturation is when the population difference between the two nuclear spin energy levels is zero. The population difference is proportional to the signal intensity, which is also zero when the transition frequency is completely saturated.

NOE effect: The NOE effect is the change in magnetization of one proton (or other nucleus) when another nucleus close in space is saturated by decoupling or by a selective 180°-pulse. The effect is the result of a dipole interaction that allows translation of NOEs to distance constraints in protein structure determination.

PRE (paramagnetic relaxation enhancement): Paramagnetic ions (the spin labels) introduced into proteins by, for example, cyssteine chemistry, cause enhanced relaxations of nuclei (PRE) in the spatial proximity of it. It can provide distance information for structure determination typically 12–24 Å, and can be used to identify atoms involved in ligand binding when the ligand or the protein is labelled.

Radiofrequency pulse: a short, temporary burst of electromagnetic radiation in the radiofrequency range that acts to perturb the spin distribution of the nuclei and is the basic element in any NMR experiment.

Slow exchange: the regime where the exchange rate is much slower than the observed difference in resonance frequency ($k_{ex} \ll |\Delta \omega|$).

STD (Saturation transfer difference) NMR: A process where saturation is transferred from the protein to ligand only when this is bound to the protein. Requires fast exchange and excess ligand concentration.

TROSY: Transverse Relaxation-Optimized SpectroscopY is an optimization that can be added to an experiment to increase the sensitivity of heteronuclear 1H-X correlation spectra of large (>35kDa) molecules and works by selecting the slowest relaxing component of the transitions.

Water-LOGSY: widely applied 1D ligand-observation technique for the detection of protein–ligand interactions through exploitation of the NOE effect to water.

ZZ-exchange: A NMR method to probe very slow processes, that is $0.1 \text{ s}^{-1} < k_{ex} < 10 \text{ s}^{-1}$.
INTRODUCTION

Proteins are intricate molecules and the many, diverse critical biological functions they have are intimately linked to their ability to bind and respond to various types of other molecules collectively here named ligands. Such ligands are miscellaneous and can be as small as a photon, an electron, or a hydrogen atom or they can be even larger than the protein itself in the form of another protein, DNA, RNA, or even a large, mixed complex. The response elicited by binding occurs through conformational changes of various amplitudes and can affect other ligand binding sites distant to the first through an allosteric process. Thus, the malleability of a protein scaffold can affect the responsiveness to ligands positively or negatively in such a way that the protein may tightly control and regulate important cellular responses.

The strength by which a protein interacts with a ligand varies over many orders of magnitudes. However, the strength of an interaction, and hence the affinity between the two molecules is not proportional to the biological importance of a complex or to the specificity of the interaction, which is defined as the ratio of interaction energies. Thus, specificity towards a single ligand even exists for low affinity interactions and the formation of rather weak complexes can have important and critical biological consequences. Similarly, high-affinity complexes may be of lower specificity in the way that one protein may bind several different ligands with equally high affinity. Such promiscuous binding is prevalent for intrinsically disordered proteins. Regardless of these considerations, nonspecific interactions are often of very low affinity.

Since affinity is defined as the concentration of free ligand where half the protein population exists in a complex with the ligand (see Box 1), it becomes methodologically challenging to quantitatively describe a protein–ligand reaction when this is either ultra-strong (\(K_d < \text{nM}\)) because quantification at low concentration set demands on method sensitivity, or when this is ultra-weak (\(K_d > \mu\text{M}\)), since quantification at high concentration set demands on solubility, availability, and sensitivity. The challenge emerges because the dynamic ranges of most optical and biophysical methods are in the \(\mu\text{M}–\text{nM}\) concentration interval, resulting in a decrease of sensitivity at lower concentrations and signal saturation at higher concentrations. Compared to most other methods, Nuclear Magnetic Resonance (NMR) spectroscopy stands out as the more versatile, since it is capable of providing quantitative information for protein–ligand interaction with affinities lower than \(\mu\text{M}\), even when these are ultra-weak. Since NMR exploits the magnetic properties of the nuclei and thus measures properties of individual nuclei in a molecule, the method is also capable of separating signals from individual populations of molecules. Moreover, and importantly, the many diverse methods encountered by NMR spectroscopy makes it highly suitable for quantification of protein–ligand interactions, even at high concentrations.

In this review, we focus on how solution state NMR spectroscopy can be used to quantitatively and qualitatively describe simple protein–ligand interactions and we highlight where only qualitative information can be gained. We emphasize how the properties of a binding reaction such as the binding kinetics, the affinity of the complex, and the concentrations of the reactants, influence how the resulting NMR spectra appear, and we devise solutions to how these properties may be exploited best to improve the outcome of the analyses. The aim of the review is to provide the non-NMR specialist with insights into the analyses and with tools to evaluate a protein–ligand interaction that has been studied by NMR. We do not intend to go into the more extended NMR theory underlying the study of protein complexes, or how NMR is used for drug discovery, and we will not discuss solid-state NMR spectroscopy. Instead we refer to the many excellent reviews available on these topics.

The complex landscape of protein interactions

The reaction of a protein with a ligand cannot only be described by a simple equilibrium between the free protein, the free ligand and the complex. Rather the reaction is much more complicated and multidimensional energy landscapes are needed to describe

Box 1

Binding equilibrium

The simplest case of a protein binding to a ligand occurs when there is only one binding site for the ligand in the protein. Consider therefore a protein \(P\) that binds a ligand \(L\):

\[
P + L \rightleftharpoons PL
\]

At equilibrium when there are no net changes in the concentrations of the reactants and the product, the ratio between the concentrations of the molecules in the free state \([P]\) and \([L]\) and the concentration of the complex, \([PL]\), is given by the equilibrium constant, \(K_{eq}\). For the reaction above, the equilibrium constant is called the association constant, \(K_a\). The unit of \(K_a\) is \(M^{-1}\) and often the equilibrium constant for the dissociation reaction is reported instead. This is the dissociation constant, \(K_d = 1/K_a\), and \(K_d\) is simply the free ligand concentration at which 50% the protein population is bound to the ligand.

\[
K_d = \frac{[P][L]}{[PL]}
\]
the events from the unbound states of the molecules to the final complex. Via diffusion, the protein and the ligand will occasionally encounter each other and depending on the precise orientations of the two molecules in this so-called encounter complex, the complex will either be productive and proceed along the reaction coordinate or nonproductive leading to the subsequent dissociation of the complex. Subsequent to the formation of a high-energy, productive encounter complex, that is the aligned encounter complex, the two molecules will need to change conformation to adapt their surfaces either through a conformer selection process or through induced fit or both to optimize the final complementarity of the interacting molecules. However, most of these steps are not observable at equilibrium or in simple kinetic experiments, as the populations of the intermediates are extremely low and their lifetimes short. Thus, in most quantitative descriptions of protein–ligand reactions the approximation to the more simple is suitable.

We will initially describe why and how NMR is suitable for ligand binding investigations, explain the simple situations, which to a first approximation may account for most cases, and illustrate how and when different types of NMR experiments are applicable and list which type of information that can be extracted from each of these (Fig. 1). We will then demonstrate how knowledge of the reaction kinetics and the affinity of the interaction can be used to
optimize the information that can be obtained from an NMR analysis of primarily isotopically labelled proteins. At the end, we will exemplify a number of complexes studied by NMR to illustrate how a seemingly simple reaction can have different and variable NMR spectral properties.

Why use NMR to study protein–ligand interactions?

Most biophysical and structural techniques to study protein–ligand interactions fall in two groups: (1) techniques that measure the thermodynamics and/or kinetics of the interaction or (2) techniques that elucidate the structure of the interaction. The first set includes techniques such as isothermal titration calorimetry (ITC)\(^{28}\) and surface plasmon resonance (SPR)\(^{29,30}\) to study binding thermodynamics and kinetics of protein–ligand interactions in bulk. This set also includes techniques such as dynamic light scattering (DLS),\(^{31}\) which is capable of measuring dissociation constants in bulk while also measuring the hydrodynamic radius, that is delivering very low-resolution structural data. Lastly, analytical ultra-centrifugation is also widely used to measure dissociation constants.\(^{32}\) A prime example of the second set of techniques is X-ray crystallography. In many cases it can provide a static three-dimensional picture of a protein and of protein–ligand complexes. Other techniques include electron paramagnetic resonance (EPR),\(^{33,34}\) small-angle X-ray scattering (SAXS)\(^{35}\) or cryo-EM,\(^{36,37}\) and Förster resonance energy transfer (FRET),\(^{38}\) which in combination with suitable labels can deliver information (e.g. distance information) and thereby detect binding and deliver medium to low resolution structural data. Of course, fluorescent labels can also be used to acquire quantitative information about binding kinetics. While the above mentioned methods are not at all a comprehensive list of tools to investigate protein–ligand interactions it exemplifies that most techniques are specialized or can only deliver information for one or the other aspect, namely kinetics or structure.

NMR spectroscopy falls equally well in both groups since it can deliver structural details [Fig. 1(B.2)] at atomic resolution as well as quantitative kinetic measurements [Fig. 1(B.2–4)]. Although NMR spectroscopy may not be as straightforward to apply or to interpret as some of the other methods mentioned above one can use NMR to study complexes that exhibit ultra-weak (mM) up to ultra-strong (pM) binding. Since the outcome of the analyses depends strongly on the concentrations of protein and ligand, the kinetics and the differences in chemical shifts (see below), there are limitations to the type of information one may extract. Thus, some considerations should be taken into account before entering into either conducting or analysing a protein–ligand interaction by NMR spectroscopy. However, if nothing is known about the reaction prior to such endeavour, a trial-and-error analysis is often needed. In Figure 1(B) we have collected some of the most important points to consider before you conduct an NMR experiment including the general experimental parameters such as protein stability, protein concentration, buffer conditions, pH, and temperature [Fig. 1(B.1)]. The figure also highlights which kind of information that can be extracted from each type of NMR experiment, what obstacles are present, and which demands there may be at play.

Using NMR to describe protein–ligand interactions

In NMR, a process in which a molecule of interest is exposed to a changing environment that originates from it populating two or more states is commonly referred to as chemical exchange. In the simplest case, an NMR experiment that investigates a chemical exchange in a sample containing a mixture of a protein and a ligand will display information about three different species, the free protein \(P\), the free ligand \(L\), and the complex \(PL\). The three species are related by a simple two-state reaction, where \(k_{on}\) and \(k_{off}\) are rate constants for the forward and reverse reactions, respectively [Fig. 1(A), Box 1].
An NMR spectrum can in principle provide three different kinds of information on all three species (Fig. 2). Each NMR signal, termed a peak, is thus characterized by: (I) its position in the spectrum. This is reported either as the angular resonance frequency \(\omega \) or the chemical shifts \(\delta \) of the nuclei giving rise to the signal. Its position depends on the local, chemical environment, and any shift in the position of the peak can be used directly as a measure of changes in the chemical environment of the nucleus (e.g. when a ligand binds or the protein changes its conformation). (II) The intensity of the peak, which reports on the relative concentration and thus the population size of the nucleus resonating at that given frequency. (III) The line width \(\lambda \) of the NMR peak, which depends on the relaxation properties of the nucleus. \(\lambda \) is inversely correlated to the transverse relaxation time, \(T_2 \), which again
depends on the overall correlation (tumbling) time of the molecule and on possible exchange between different states. 39

Methods for measuring binding when the ligand is small. For protein–ligand interactions, where the ligand is a small molecule or a peptide (<10 aa), binding can be monitored using either signals from the ligand, the protein or both and can bring information about which nuclei in the ligand are involved in binding and can determine binding affinities. Furthermore, observing the ligand circumvents the necessity of isotopic labelling (see below), which can be an advantage. Conversely, observing the ligand does not provide any structural information on the binding site on the protein. For estimating dissociation constants and to map interaction sites on the ligand, ligand-detected NMR experiments such as saturation transfer difference (STD)NMR40 or Water-Ligand Observed via Gradient SpectroscopY (water-LOGSY) 41,42 may be useful [Fig. 1(B.3)]. For these experiments the protein must be much larger than the ligand, and the ligand must be in very large excess (typically 100:1). Before we delve into the general descriptions of protein–ligand interactions, we will briefly describe these two experiments.

During a binding event, protons on the ligand will come into proximity (<5 Å) with the protein. Thus, if the protein is selectively saturated by an NMR radio frequency pulse, that is when we only aim for measuring the protein (see glossary), the protons of the ligand that are in contact with the protein will also become saturated and the intensity of their NMR peaks will be lowered, which is the basic principle of STD-NMR. If the ligand at the same time is exchanging with many other ligands during the course of the experiment, which is often the case for small ligands, many ligand molecules will be affected during the saturation period. By subtracting an NMR spectrum containing information about saturation transfer from protein to ligand has been achieved from a spectrum without protein present, only those protons engaged in binding to the protein will show a signal in the resulting STD-NMR spectrum. In this way, the binding epitope of the ligand is mapped. STD-NMR has been widely applied for detecting binding of sugars, drugs, or synthetic molecules because their resonance frequencies are generally not overlapping with protein resonance frequencies. 43,44 However, epitope mapping of peptides has also been reported. 45

In the Water-LOGSY experiment, similar selective saturation is applied but involving bulk water protons and exploiting the NOE effect, 46,47 involving dipole–dipole interactions. Here bulk water is saturated and either via bound water in the interface or exchange of labile protons in the binding interface with water, or water molecule in the protein–ligand surface, the signals from the ligand in contact with the protein is mapped. In this case, this results in positive signals for interacting protons, and negative signals for noninteracting protons. Several excellent reviews discuss these ligand observing techniques in much more detail.12,48,49

Protein observed methods for measuring binding events. In contrast to the ligand observed methods, labelling the protein with stable isotopes, typically 15N, 13C, or both, can provide residue-specific, structural information about the binding interface, and give a reasonable estimate of binding constants in both fast and slow exchange regimes (see below) [Fig. 1(B.4)]. Moreover, isotopic labelling also allows for the possibility to select NMR signal from the binding partner that gives the best observables in terms of peak resolution in the NMR spectra. Chemical shifts as observed for the various species are powerful probes of binding interactions. However, the appearances of the individual peaks, in terms of the intensities and line widths, can vary and quantification of the actual binding event depends on several properties, as will be described below.

A protein in a simple two-state reaction [Fig. 1(A)] will give rise to two species with different resonance frequencies, \(\omega_p\) and \(\omega_{pL}\), and a resonance frequency difference of \(\Delta\omega = \omega_p - \omega_{pL}\). However, and importantly, the appearance of the different species of the protein in the NMR spectra varies and depends strongly on the concentrations of the species, the dissociation constant, \(K_d\), and the exchange rate of the reaction, \(k_{ex}\):

\[
k_{ex} = k_{on}[L] + k_{off}
\]

(5)

The rate constants also determine the populations of the free protein, P, and bound protein, PL, which at equilibrium is given by

\[
p_p = \frac{k_{off}}{k_{on}[L] + k_{off}}, \quad p_{PL} = \frac{k_{on}[L]}{k_{on}[L] + k_{off}}
\]

(6)

Chemical exchange is typically divided into three categories (slow, intermediate, and fast exchange) based on the magnitude of \(k_{ex}\) (Box 2) relative to the size of the difference in resonance frequency (or chemical shift) of a given nucleus in P and PL (Fig. 3). Moreover \(k_{ex}\) must be compared to the resonance frequencies measured in angular frequency, \(\Delta\omega\). We will now in more detail describe the three different exchange regimes.

When the exchange rate is much slower than the observed difference in resonance frequency (\(k_{ex} \ll |\Delta\omega|\)), the exchange is said to be slow on the
BOX 2

What is the “NMR time scale” and how does it relate to the exchange rate?
The ‘NMR time scale’ term is typically subject to some confusion because it is used in a variety of contexts. When probing a protein–ligand interaction using standard one-dimensional 1H spectra or two-dimensional 1H-15N HSQC spectra, the lifetimes of the unbound and bound states, τ, determine how accurately one can determine the resonance frequencies, ω and ω_{PL}, respectively. The uncertainty in determining the resonance frequencies will be directly related to the lifetime τ by the following equation:

$$\Delta\omega = \frac{\hbar}{\tau}$$

(3)

Here $\Delta\omega$ is the difference in resonance frequencies between the sampled states (in rad/s), and \hbar is Planck’s constant. Assuming only two states, then $\Delta\omega$ is directly proportional to the energy difference ($\Delta E = \Delta\omega \cdot \hbar$) and the uncertainty principle now tells us that as long as τ is very long $\Delta\omega$ can be measured accurately, i.e. both states give a signal each. However, if the lifetimes of the states are very short, the difference in frequency cannot be measured resulting in a collapse of measured signals, which is often called coalescence. More precisely, this happens when:

$$k_{ex} \text{ (s}^{-1}\text{)} = \frac{1}{\tau} = \Delta\omega \text{ (rad/s)}$$

(4)

This results in three different regimes that shape the appearances of the NMR spectra (FIGURE 3A):

- **Fast exchange regime** where $k_{ex} \gg |\Delta\omega|$
- **Intermediate exchange regime** where $k_{ex} \sim |\Delta\omega|$
- **Slow exchange regime** where $k_{ex} \ll |\Delta\omega|$

For protons $\Delta\omega$ typically ranges from 10 to 10,000 s$^{-1}$.

NMR time scale (Box 2), and each state and the corresponding resonance frequencies can be individually observed [Fig. 3(A), left]. For a set of resonances in slow exchange the peaks do not move in the spectrum when their relative population changes. Consequently, the peak positions will not provide a quantitative measure of the binding event, as illustrated in Figure 3(B), left. However, the relative population sizes of the states can be determined from the peak intensities, and the titration of a protein–ligand binding process in slow exchange can be followed directly by the changes in intensities of the bound state [Fig. 3(C), left].

At the intermediate time scale ($k_{ex} \sim |\Delta\omega|$), also referred to as coalescence, only a single peak, which is severely broadened by the exchange process, is observed. The intensities and positions of peaks from nuclei in intermediate exchange are highly uncertain and the quantitative interpretation of this situation is fairly complicated [Fig. 3(A,B), middle], and often not feasible. Importantly, it is not possible to assign a given ligand binding process to one of the three exchange regimes without knowing all details of the experimental setup. This includes the operation frequency of the NMR spectrometer, the temperature, the concentration of the free ligand, and the on- and off-rates all influence the appearance of the NMR spectra. This will be elaborated on below.

Finally, when the exchange rate is fast on the NMR time scale ($k_{ex} \gg |\Delta\omega|$), only a single peak will be observable at the population-weighted average position of their respective resonance frequencies given by $\omega_{obs} = p_{P}\omega_P + p_{PL}\omega_{PL}$ where p_P and p_{PL} are the populations of the free and bound protein, respectively. In this case, a binding event can be observed from plotting the peak position as a function of the concentration of added ligand, which will provide a sigmoidal log-transition from the free to the bound state [Fig. 3(B), right]. In contrast, plotting the intensities of the peak will not correctly provide a quantitative measure of the binding as illustrated in Figure 3(C), right.

As demonstrated in Figure 3 it appears less straightforward to quantify binding constants (K_d values) using the position given by the chemical shift or intensity of an NMR signal, when outside the fast exchange regime. Even for a binding event involving only two components without any intermediates (two-state binding) the choice of method depends largely on the system at hand where the labelling strategy, the relative concentration and/or the desirable observable must be changed from system to system. For this reason, it is often an advantage to have an idea of the binding strength of the interaction, as well as the general stability of the individual components. However, with such knowledge one may be able to tune the concentrations and condition to extract the needed information.

Quantification of binding using multidimensional NMR

Modern biomolecular NMR relies largely on multidimensional spectra where magnetization is transferred between two or more nuclei. This allows for observation of residue specific chemical shifts in even very large proteins.50–54 The most widely used heteronuclear experiment in solution state NMR is the 1H-15N HSQC spectrum that serves as a protein fingerprint where correlations of the amide proton and amide nitrogen are measured [Fig. 3(A), bottom]. In the 1H-15N HSQC spectrum the magnetization starts on the amide protons, and is then transferred to the amide nitrogen where it develops and finally transferred back for acquisition on the
protons. In this way, each peak in a 1H-15N HSQC spectrum is labelled with the chemical shifts of the amide proton (direct dimension) and the covalently attached nitrogen (indirect dimension).

In the fast exchange regime, the chemical shift in either of the two dimensions, or the combined shifts, $\Delta \delta_{\text{comb}}$ (the weighted Euclidian distances) can be used for visualizing and fitting of a binding curve.55–58 As an example, a binding event causes chemical shift changes of 0.7 and 1.2 ppm in the proton and the nitrogen dimensions, respectively, in a 1H-15N HSQC. A weighting factor balances the chemical shifts in the proton and nitrogen dimensions and is often set to $|\gamma_N|/|\gamma_H|=27.1/267.5 \sim 0.1$, where γ is a constant existing for each type of nuclei termed the gyromagnetic ratio. Therefore:

$$\Delta \delta_{\text{comb}} = \sqrt{\left(\Delta \delta_H\right)^2 + \left(0.1 \cdot \Delta \delta_N\right)^2} = \sqrt{(0.7)^2 + (0.1 \cdot 1.2)^2} = 0.710 \text{ ppm} \quad (7)$$

When residing in the slow exchange regime, the intensities measured in the direct dimension can also be used for monitoring the binding event. However, as the intensities are also susceptible to changes in dynamics of the bound versus unbound states as well as line broadening when approaching the intermediate exchange regime [Fig. 3(B), second column], one must be careful when using intensities for quantifying binding events. This also holds true for quantification of dynamics based on the line shapes. These depend also on the evolution of magnetization throughout the pulse sequence used, for example variable relaxation delays, effects from multiple coherence transfers during evolution or different relaxation properties of the free/bound state,59,60 and thus are not easily interpretable.

There are other, more sophisticated NMR techniques that can be used to characterize and quantify binding processes in the intermediate to slow exchange regime, including Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion61,62 and ZZ-exchange.63 In brief, CPMG uses a train of equidistant 180° degree pulses to refocus transverse magnetization at a corresponding frequency during a fixed relaxation delay. By observing the NMR signal intensity changes when varying ν_{CPMG} one can quantify exchange contributions to the relaxation rates that originate from processes on the micro- to millisecond timescale. This technique can be very effectively used to probe the k_{ex} and the population of interconverting conformational states of proteins (>0.5% populated minor state), where the minor state is often called the excited state or the invisible (dark) state.64 CPMG can also be used to probe complex formation and kinetics, when the population of the complex is low and therefore not visible in a normal HSQC type experiment. In favorable cases even the kinetics of an encounter complex formation can be followed using CPMG.65

ZZ-exchange experiments can be used to probe even slower processes where k_{ex} range between 0.1 and 10 s-1. In these experiments longitudinal magnetization is created, for example on isotopically labelled amide nitrogen atoms and allowed to transfer from one state (typically the major/unbound state) to the other state (typically the minor state/bound state) during a mixing time. In many cases, the population and k_{ex} of the states can be determined from the volume of the cross-peaks at different mixing times. While this technique can be used to study slow conformational exchange65 it has also been used to study slow binding processes of protein and DNA.66

Reliable fitting of NMR observed binding events

As a good rule of thumb, a suitable estimate of the K_d can be obtained when the total concentration of protein, P_0, is in the same range as (or less than) the K_d, and the total ligand concentration, L_0 is titrated between 1/10 and 10 times the $K_{d,12}$. Importantly, accurate determination of the K_d relies on reaching complete saturation. For a simple two-state binding in fast exchange the K_d can be fitted by the function:

$$\Delta \delta_{\text{obs}} = \Delta \delta_{\text{max}} \left(\frac{|P_0|+|L_0|+K_d}{2|P_0|} - \sqrt{|P_0|+|L_0|+K_d^2-4|P_0||L_0|}\right)$$

where $\Delta \delta_{\text{obs}}$ and $\Delta \delta_{\text{max}}$ are the observed/combined and maximum chemical shift changes, respectively.

As can be seen from Figure 3, fitting of intensities is not always a reliable route to quantitative data. Although the decay of the intensities follows a hyperbolic curve reminiscent of a binding curve, caution should be taken, as the relaxation properties of both states will affect the NMR peak intensities. This is demonstrated in Figure 3(C), where the decay of the free state and the build-up of the bound state do not cross at 50% bound. The reason for this behavior is that the correlation time for the free protein, and hence the peak width is influenced by the tumbling in the bound state, which differs from the free protein if the size of the protein–ligand complex is significantly larger to that of the protein. Thus, fitting leads to an overestimation of K_d, and binding appears stronger than it is. Instead, fitting the intensities of the bound state, where the line width stays constant, will result in a reliable K_d determination.

In the cases where the exchange rate is in the intermediate exchange regime, analysis purely based on chemical shifts or intensities will unfortunately
not provide a reliable quantification of the binding strength of the complex, as the peaks are broadened and thus not reflecting the true populations. The same holds true if more than one transition/reaction occurs, which can result in complicated chemical shift or intensity changes, or if the dynamics of the complex is considerably altered as a result of the binding event. Of important value, methods for analyzing line shapes of one- and multidimensional spectra have for these cases recently been presented in excellent work59–61,67 and will be useful for the extraction of quantitative measures of the binding reaction.

The NMR timescale and relations to the binding kinetics

As noted above, it is necessary to have an estimate of the kinetic parameters, the ligand concentration and differences in chemical shifts between the resonances from a protein in its free and ligand bound states before its behavior in NMR can be predicted and the type of NMR experiment most suitable selected. Conveniently, the NMR spectral appearance can be simulated and the influence of the different parameters thereby easily illustrated.

Here, we have simulated how the spectral appearance depends on K_d, k_{on}, k_{off} and [L], which provides an overview of when access to useful NMR data is possible.

One effect that may occur during a titration is that a given binding reaction changes from slow exchange at low ligand concentrations to fast exchange at high ligand concentrations. The situation is illustrated in Figure 4 for a process with $k_{on} = 5 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$ and $k_{off} = 5 \text{ s}^{-1}$ (corresponding to the black triangles in the contour plots). It is seen that the binding process changes from being in slow exchange at the low ligand concentration to being in fast exchange at the high ligand concentration. Two additional simulated NMR spectra are shown below the central contour plot for [L] = 100 μM. These spectra illustrate binding reactions with the same K_d as for the reaction simulated above the plots, but with rates 10-fold lower (white circle; $k_{on} = 5 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$ and $k_{off} = 0.5 \text{ s}^{-1}$) and rates 10-fold higher (white square; $k_{on} = 5 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$ and $k_{off} = 50 \text{ s}^{-1}$).

Figure 4. The relationship between binding kinetics and ligand concentration. The figure shows how the kinetics for a protein–ligand binding reaction changes with the concentration of the free ligand, which varies from 1 μM (leftmost plot) to 10 mM (rightmost plot). The contour plots in the middle of the figure are coloured according to k_{ex} where k_{on} and k_{off} are varied in intervals typical for protein–ligand interactions. Blue regions are in slow exchange while orange/red regions are in fast exchange. The diagonal lines are isoaffinity lines showing regions in the plots with the same K_d. The bold solid lines are where K_d is equal to [L], the light solid lines are where K_d is 10-fold higher or lower than [L], and the dashed lines are where K_d is 100-fold higher or lower than [L]. A simulated NMR spectrum is shown above each plot for a binding reaction with $k_{on} = 5 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$ and $k_{off} = 5 \text{ s}^{-1}$ (corresponding to the black triangles in the contour plots). It is seen that the binding process changes from being in slow exchange at the low ligand concentration to being in fast exchange at the high ligand concentration. Two additional simulated NMR spectra are shown below the central contour plot for [L] = 100 μM. These spectra illustrate binding reactions with the same K_d as for the reaction simulated above the plots, but with rates 10-fold lower (white circle; $k_{on} = 5 \times 10^4 \text{ M}^{-1}\text{s}^{-1}$ and $k_{off} = 0.5 \text{ s}^{-1}$) and rates 10-fold higher (white square; $k_{on} = 5 \times 10^6 \text{ M}^{-1}\text{s}^{-1}$ and $k_{off} = 50 \text{ s}^{-1}$).
dissociation constant, K_d, on the other hand says nothing about whether a binding reaction will appear in slow, intermediate, or fast exchange. This is illustrated in the contour plots in Figure 4 where the K_d isoaffinity lines (the black lines, along which K_d is constant) all go through areas of slow (blue) and fast (red) exchange. The different behaviors possible for binding reactions with K_d of 10^{-5} M at a free ligand concentration of 100 μM are illustrated by the three spectra above and below the middle.

Figure 5.
contour plot where k_{on} and k_{off} changes in steps of a factor of 10. Still there is a tendency for strong binding reactions to be in slow exchange and weak binding reactions to be in fast exchange. The underlying reason for this is that a small K_d inevitably will result in low free ligand concentrations until the protein become saturated. Consequently, k_{on} will be much lower for strong interactions than for very weak interactions ($K_d > nM$) where very high concentrations of free ligand are needed to populate the protein–ligand complex (the plots to the left in Figure 4 are more blue than those to the right).

Conclusively, one may alter the appearance of the NMR spectra by changing the concentration of the protein or the ligand, and this change can influence the possibility of extracting useful and quantitative information from the NMR data. Careful planning and knowledge on why the NMR spectra change, is thus important.

Realistic protein–ligand interactions—it is (not) so simple!

Experimentally, we know now from Figures 3 and 4 that a binding experiment followed by NMR depends on many more parameters than just the affinity (K_d). In the following we will present a selected set of quantitative as well as qualitative NMR analyses of protein–ligand interactions where the ligand is a peptide, a small protein or a large protein. Together these data cover examples in the three exchange regimes, they represent complexes with affinities spanning from nM to mM, and they can be evaluated in structural contexts, as the structures of the complexes are known. Furthermore, details of their study have been published and can thus be further explored.

For protein–ligand complexes with K_d in the nM range, NMR can be used to characterize the structure of the complex and map the binding sites, but not to determine the value of K_d. A proper titration would require that samples with varying free ligand concentrations in the nM range could be prepared. However, with the sensitivity of NMR this is not feasible. As a first example, a double-domain, CR56, from the lipoprotein receptor-like protein (LRP) was titrated with the first domain of receptor-associated protein (RAP), an ER-resident chaperone. The complex is in slow exchange on the NMR timescale giving rise to peaks from the free state disappearing and peaks from the bound state appearing [Fig. 5(A)]. As can be appreciated, there is no change in line widths, and hence the change in peak intensity at the different positions could in principle be used to extract K_d. However, as the concentrations in the NMR experiment were well above K_d, the titration was instead used to determine the stoichiometry, and K_d was measured to be 0.6 μM by SPR. Also, the changes in chemical shifts were crucial for defining which residues were involved in binding; information that was used as input for modeling the complex.

Intermediate exchange is also possible in the nM range [Fig. 5(B)]. This is illustrated by the binding of the extracellular domain of the prolactin receptor measured by SPR [70] (left) and by 1H,15N-HSQC NMR spectra [69] (right) (PDB 1RW5, 3NPZ). The spectra show the free prolactin (1:0) and with increasing molar amount of the extracellular domain of the prolactin receptor. Figures are reproduced from reference (68), left and reference (69, right) with permission. Copyright (2007), The American Society for Biochemistry and Molecular Biology, and copyright (2009) Oxford University Press, respectively. C) Formation of the MDA complex between the 20S proteasome and the 11S activation domain which is in slow exchange and has μM affinity. Peaks from both the free and the bound states of 13C-methyl labelled 20S proteasome are observed in the methyl TROSY spectra. Reprinted by permission from Macmillan Publishers: Nature (reference 54), copyright (2007). D) Interaction between the intrinsically disordered C-terminal tail of NHE1 with ERK2 where the binding process is in the intermediate exchange regime and with μM affinity. Extract from the HSQC NMR spectra (left) where peaks disappear and mapping of change in peak intensities in these spectra as a function of residues shown as the ratio between the free and bound states.71 Grey shaded areas indicate the three interaction sites. The three lines a) show the position of the transient helices in the disordered regions, and in red the possible kinase docking sites. Stars indicate potential ERK2 phosphorylation sites. Reproduced with permission from (71, copyright (2016) Springer Nature. E) Binding in the fast exchange regime with μM affinity between the SH3 domain of CD2 associated protein (CD2-AP) with ubiquitin.72 To the left is shown the combined chemical shift changes pr. residue, the middle show the individual spectra of the titration and c) the determination of K_d from fits to the change in chemical shifts. Figure is reproduced from (72), copyright (2013) PLOS. F) Slow and weak binding of a GGA motif in the stem of an RNA hairpin to the protein RsmE from P. fluorescens. Peaks from both RNA (1D 'H-spectra) and protein (2D 'H,15N-HSQC spectra) in the free and bound state are observable.74 Figure reproduced from (74) with permission. Copyright (2014), Oxford University Press. G) Interaction with glutathione with glutaredoxin is weak and the process is in fast exchange. The changes in chemical shifts in the 'H,15N-HSQC NMR spectra can adequately be fitted to determine a dissociation constant75. Middle and right reproduced, with permission, from reference (25, copyright (2011) American Chemical Society.

Figure 5. Examples of protein–ligand interactions studied by NMR spectroscopy. Seven different examples are shown with difference in exchange rates and binding affinities. A) Binding of CR56 to 15N-RAP (PDB 2FYL) where the affinity is in the nM range and the process in slow exchange. The NMR spectra are extracts from 15N,1H-HSQC spectra and the peak from the free state of Glu40 is disappearing and the peak from the bound state is appearing. Figure modified and reprinted from reference (68), copyright (2006), with permission from Elsevier. B) Binding of prolactin to the extracellular domain of the prolactin receptor measured by SPR [70] (left) and by 15N,1H-HSQC NMR spectra [69] (right) (PDB 1RW5, 3NPZ). The spectra show the free prolactin (1:0) and with increasing molar amount of the extracellular domain of the prolactin receptor. Figures are reproduced from reference (70, left) and reference (69, right) with permission. Copyright (2007), The American Society for Biochemistry and Molecular Biology, and copyright (2009) Oxford University Press, respectively. C) Formation of the MDa complex between the 20S proteasome and the 11S activation domain which is in slow exchange and has μM affinity. Peaks from both the free and the bound states of 13C-methyl labelled 20S proteasome are observed in the methyl TROSY spectra. Reprinted by permission from Macmillan Publishers: Nature (reference 54), copyright (2007). D) Interaction between the intrinsically disordered C-terminal tail of NHE1 with ERK2 where the binding process is in the intermediate exchange regime and with μM affinity. Extract from the HSQC NMR spectra (left) where peaks disappear and mapping of change in peak intensities in these spectra as a function of residues shown as the ratio between the free and bound states. Grey shaded areas indicate the three interaction sites. The three lines a) show the position of the transient helices in the disordered regions, and in red the possible kinase docking sites. Stars indicate potential ERK2 phosphorylation sites. Reproduced with permission from (71, copyright (2016) Springer Nature. E) Binding in the fast exchange regime with μM affinity between the SH3 domain of CD2 associated protein (CD2-AP) with ubiquitin. To the left is shown the combined chemical shift changes pr. residue, the middle show the individual spectra of the titration and c) the determination of K_d from fits to the change in chemical shifts. Figure is reproduced from (72), copyright (2013) PLOS. F) Slow and weak binding of a GGA motif in the stem of an RNA hairpin to the protein RsmE from P. fluorescens. Peaks from both RNA (1D 'H-spectra) and protein (2D 'H,15N-HSQC spectra) in the free and bound state are observable. Figure reproduced from (74) with permission. Copyright (2014), Oxford University Press. G) Interaction with glutathione with glutaredoxin is weak and the process is in fast exchange. The changes in chemical shifts in the 'H,15N-HSQC NMR spectra can adequately be fitted to determine a dissociation constant. Middle and right reproduced, with permission, from reference (25, copyright (2011) American Chemical Society.
receptor to 15N-labeled prolactin, first in a 1:1 molar ratio, which resulted in the disappearance of many signals. K_d for this site is 6 nM and k_{on} is 10^4 s$^{-1}$ as determined by SPR (left).69,70 Since prolactin binds two copies of the extracellular domain, and K_d for the second site is 33 μM,70 further addition of the extracellular domain worsened the spectral outcome, and almost all signals from prolactin disappear because of exchange broadening [Fig. 5(B)].

For medium binding affinity where K_d is in the μM range, NMR can monitor examples of the three exchange regions as illustrated amply in the literature. Here, we present three studies. In the first example, NMR spectroscopy was used to characterize binding of the 11S activation domain to the 20S proteasome.54 This work by Sprangers and Kay beautifully illustrates how even very large systems (up to 1 MDa), can be studied by NMR. Specific isotope labelling of side chain methyl groups combined with TROSY allowed quantification of the binding process on a sample of only 9 μM! The binding of the activation domain is in slow exchange and fitting of the intensity changes on either the free 20S proteasome or the complex gave $K_d = 12$ μM [Fig. 5(C)]. Another example of a complex with μM affinity is the interaction between the intrinsically disordered tail of the sodium proton exchanger 1 (NHE1cdt) and the extracellular signal-regulated kinase 2 (ERK2)71 [Fig. 5(D)]. In this complex, where $K_d \approx 30$ μM, NHE1cdt is in intermediate exchange between the free and the ligand bound states. In the spectrum it is clear that the peaks from Leu684 and Val686, which are part of a D-domain in NHE1cdt, completely disappear. In this case, changes in intensities were used to guide mutagenesis, which pinpointed three contact sites in NHE1cdt for ERK2.

The last example is the interaction between the SH3 domain of CD2 associated protein (CD2-AP) with ubiquitin, which is in fast-exchange, has μM affinity range, and where the peaks move as a population averaged chemical shift.72 The changes in chemical shift can be plotted as function of the ligand concentration to determine K_d. Moreover, the data can be used to map the binding site on the SH3 domain (left) [Fig. 5(E)].

For weak protein–ligand complexes that bind with mM affinities, NMR spectroscopy is one of very few techniques that allow quantification of K_d. As the ligand has to be present in mM concentrations to populate the protein–ligand complex the reaction most often is in either fast or intermediate exchange. However, there are for example RNA complexes with mM affinity where the kinetics gives rise to slow exchange. This behavior is observed for the binding of the drug theophylline to an RNA aptamer.73 In this rather peculiar case $K_d = 7$ mM, while $k_{on} = 600$ s$^{-1}$ M$^{-1}$ and $k_{off} = 1.5$ s$^{-1}$. The RNA binding protein RsmE from Pseudomonas fluorescens binds several different RNA hairpins with affinities ranging from nM to mM.74 For the two weakest binding hairpins, where the binding motifs are part of the stable secondary structure in the stems of the hairpins, the binding processes are in clear slow exchange as peaks from RNA and protein in both the free and bound states are observed in the NMR spectra [Fig. 5(F)]. Still, K_d for the interactions were only 0.3 and 2.7 mM, respectively.74

A weak binding reaction in fast exchange is seen in the enzyme glutaredoxin that catalyses the (de-)glutathionylation of Cys-residues. Glutaredoxin becomes product inhibited by glutathione at mM concentration and quantification of this process was essential to interpret kinetic data on the enzyme catalysis [Fig. 5(G)]. By following the chemical shift changes K_d was determined to 15 mM.25 This situation is similar to the binding processes in fast exchange with higher affinity described above.

Collectively, the above experiments show that the appearance of the NMR spectra is not directly related to the affinity of the complex. Rather, it reflects the concentrations of the individual components, the kinetics of the interactions and hence the exchange rate. Although the NMR analyses in some cases did not provide any meaningful quantitative data, it still provided useful insight into the protein complex in terms of the structure of the complex and in mapping of the binding site. Thus, NMR spectroscopy applied to protein–ligand interactions is close to being a true win-win approach to understanding protein function.

Final remarks

Via simulated and real experiments, this review intends to explain and visualize how (1) a protein–ligand interaction can be quantitatively addressed by solution state NMR spectroscopy and (2) to what extent various parameters, such as the concentration of the interacting species, the kinetics of the interaction as well as affinity of the complex influence the appearance of the NMR spectra and the analyses. From the short overview of the practical considerations (Fig. 1), the examples and the brief theoretical explanation provided in the boxes, the reader should now be equipped with the possibility to suggest, analyze, and evaluate quantitative NMR analyses on protein–ligand interactions.

Acknowledgments

The authors are grateful to the many students who have struggled in the lab to delineate many individual protein–ligand interactions and for the many fruitful discussions along the way, in particular we thank Christian Parsbæk, Johan G. Olsen, Kathrine Kemplen, Lasse Staby, and Louise C. Hamborg Nielsen for critical reading of the manuscript. Ruth
Hendus-Altenburger is thanked for providing the HSQC spectra of the NHE1 interaction with ERK2. We thank the VELUX FOUNDATIONS for their generous support for NMR equipment and the Lundbeck Foundation (MBAK and SE) and the Novo Nordic Foundation (BBK) for grants. This is a contribution from the Linderstrøm-Lang Centre for Protein Science.

References