PALB2, CHEK2 and ATM rare variants and cancer risk
data from COGS

Southey, Melissa C; Goldgar, David E; Winqvist, Robert; Pylkäs, Katri; Couch, Fergus; Tischkowitz, Marc; Foulkes, William D; Dennis, Joe; Michailidou, Kyriaki; van Rensburg, Elizabeth J; Heikkinen, Tuomas; Nevanlinna, Heli; Hopper, John L; Dörk, Thilo; Claes, Kathleen Bm; Reis-Filho, Jorge; Teo, Zhi Ling; Radice, Paolo; Catucci, Irene; Peterlongo, Paolo; Tsimiklis, Helen; Odefrey, Fabrice A; Dowty, James G; Schmidt, Marjanka K; Broeks, Annegien; Hogervorst, Frans B; Verhoef, Senno; Carpenter, Jane; Clarke, Christine; Scott, Rodney J; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Peto, Julian; Dos-Santos-Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Bolla, Manjeet K; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federik; Bojesen, Stig; Nordestgaard, Børge G; Kjaer, Susanne Krüger; Høgdall, Estrid; Høgdall, Claus K; Engelholm, Svend Aage; Australian Ovarian Cancer Study Group

Published in:
Journal of Medical Genetics

DOI:
10.1136/jmedgenet-2016-103839

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS

ABSTRACT

Background The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study.

Methods We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.1343T>G, c.349A>G, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42 671 cases and 42 164 controls), as well as prostate (22 301 cases and 22 320 controls) and ovarian (14 542 cases and 23 491 controls) cancer risk, for each variant.

Results For European women, strong evidence of association with breast cancer risk was observed for three variants in CHEK2, c.1592delT OR 3.44 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.1312G>T OR 2.21 (95% CI 1.06 to 4.63). For African women, strong evidence of association was observed for PALB2 c.1343T>G OR 11.0 (95% CI 2.46 to 15.7) and ATM c.3113G>A OR 4.21 (95% CI 1.53 to 6.03). Evidence for prostate cancer risk was observed for ATM c.1592delT OR 3.44 (95% CI 1.29 to 3.95), PALB2 c.1343T>G OR 2.46 (95% CI 1.53 to 3.95) and ATM c.7271T>G OR 10.0 (95% CI 1.42 to 85.7, p=0.0012). We also found evidence of association with breast cancer risk for three variants in CHEK2, c.1592delT OR 3.44 (95% CI 1.29 to 3.95), c.1036C>T OR 5.06 (95% CI 1.09 to 23.5) and c.1312G>T OR 2.21 (95% CI 1.06 to 4.63). For African men and CHEK2 c.1343T>G OR 3.03 (95% CI 1.29 to 3.95) and ATM c.7271T>G OR 10.0 (95% CI 1.42 to 85.7, p=0.0012).
men. No evidence of association with ovarian cancer was found for any of these variants.

Conclusions This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.

INTRODUCTION

The rapid introduction of massive parallel sequencing (MPS) into clinical genetics services is enabling the screening of multiple breast cancer susceptibility genes in one assay at reduced cost for women who are at increased risk of breast (and other) cancer. These gene panels now typically include the so-called ‘moderate-risk’ breast cancer susceptibility genes, including **PALB2**, **CHEK2** and **ATM**. However, mutations in these genes are individually extremely rare and limited data are available with which to accurately estimate the risk of cancer associated with them.

Estimation of the age-specific cumulative risk (penetrance) of breast cancer associated with specific mutations in these three genes has been limited to those that have been observed more frequently, such as **PALB2** c.1592delT (a Finnish founder mutation), **PALB2** c.3113G>A and **ATM** c.7271T>G. These mutations have been estimated to be associated with a 40% (95% CI 17% to 77%) and 91% (95% CI 44% to 100%) cumulative risk of breast cancer to the age of 70 years, respectively. These findings, based on segregation analyses in families of population-based case series, indicate that at least some mutations in these ‘moderate-risk’ genes are associated with a breast cancer risk comparable to that of the average pathogenic mutation in **BRCA2**: 45% (95% CI 31% to 56%). However, such estimates are imprecise and, moreover, may be confounded by modifying genetic variants or other familial risk factors.

Case-control studies provide an alternative approach to estimating cancer risks associated with specific variants. This design can estimate the relative risk directly, without making assumptions about the modifying effects of other risk factors. However, because these variants are rare, such studies need to be extremely large to provide precise estimates.

The clearest evidence for association, and the most precise breast cancer risk estimates, for rare variants in **PALB2**, **CHEK2** and **ATM** relate to protein truncating and splice-junction variants. However, studies based on mutation screening in case-control studies, combined with stratification of variants by their evolutionary likelihood suggest that at least some evolutionarily unlikely missense substitutions are associated with a similar risk to those conferred by truncating mutations. For example, Tartaglia et al. estimated an OR of 2.85 (95% CI 0.83 to 8.66) for evolutionarily unlikely missense substitutions in the 3’ third of **ATM**, which is comparable to that for truncating variants. Specifically, **ATM** c.7271C>G has been associated with a more substantial breast cancer risk in several studies. Le Calvez-Kelm et al. estimated that the ORs associated with rare mutations in **CHEK2** from similarly designed studies were 6.18 (95% CI 1.76 to 21.8) for rare protein-truncating and splice-junction variants and 8.75 (95% CI 1.06 to 72.2) for evolutionarily unlikely missense substitutions.

It is plausible that monoallelic mutations in **PALB2**, **CHEK2** and **ATM** could be associated with increased risk of cancers other than breast cancer, as has been observed for **BRCA1** and **BRCA2** and both ovarian and prostate cancers. However, with the exception of pancreatic cancer in **PALB2** carriers, there is little evidence to support or refute the existence of such associations, although a few individually striking pedigrees have been observed.

In this study we selected rare variant variants on the basis that they had been observed in breast cancer candidate gene case-control screening projects involving **PALB2**, **CHEK2** or **ATM**. These included three rare variants in **PALB2**: the protein truncating variants c.1592delT (p.Leu531Cysfs) and c.3113G>A (p.Trp1038*) and the missense variant c.2816T>G (p. Leu939Trp), six rare missense variants in **CHEK2**: c.349A>G (p.Arg117Gly) and c.1036C>T (p.Arg346Gly) predicted to be deleterious on the basis of evolutionary conservation, c.538C>T (p.Arg180Cys), c.715G>A (p.Glu239Lys), c.1312G>T (p.Asp437Tyr) and c.1343T>G (p.Ile448Ser) and **ATM** c.7271T>G (p.Val2424Gly). We assessed the association of these variants with breast, ovarian and prostate risk by case-control analyses in three large consortia participating in the Collaborative Oncological Gene-environment Study.

METHODS

Participants

Participants were drawn from studies participating in three consortia as follows:

- **The Breast Cancer Association Consortium (BCAC)**, involving a total of 48 studies: 37 of women from populations with predominantly European ancestry (42 671 cases and 42 164 controls), 9 of Asian women (5795 cases and 6624 controls) and 2 of African-American women (1046 cases and 932 controls). All cases had invasive breast cancer. The majority of studies were population-based or hospital-based case-control studies, but some studies of European women oversampled cases with a family history or with bilateral disease (see online supplementary table S1). Overall, 79% of BCAC cases with known Estrogen Receptor (ER) status (23% missing) are ER-positive. The proportion of cases selected by family history that are ER-positive is 78% (38% missing).

- **The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL)** involving a total of 26 studies: 25 included men with European ancestry (22 301 cases and 22 320 controls) and 3 included African-American men (623 cases and 569 controls). The majority of studies were population-based or hospital-based case-control studies (see online supplementary table S2).

- **The Ovarian Cancer Association Consortium (OCAC)**, involving a total of 46 studies. Some studies were case-only and their data were combined with case-control studies from the same geographical region (leaving 36 study groupings). Of these groupings, 33 included women from populations with predominantly European ancestry (16 287 cases (14 542 with invasive disease) and 23 491 controls), 25 included Asian women (813 cases (720 with invasive disease) and 1574 controls), 17 included African-American women (186 cases (150 with invasive disease) and 200 controls) and 29 included women of other ethnic origin (893 cases (709 with invasive disease) and 864 controls). The majority of studies were population-based or hospital-based case-control studies (see online supplementary table S3).

Details regarding sample quality control have been published previously. All study participants gave informed consent and all studies were approved by the corresponding local ethics committees (see online supplementary tables S1–S3).

Variant selection

We selected for genotyping 13 rare mutations that had been observed in population-based case-control mutation screening studies. These variants were **PALB2** (c.1592delT, p.

Genotyping

Three \textit{PALB2} variants c.2323C>T (p.Gln775*), c.3116delA (p.Asn1039Ilefs) and c.3549C>G (p.Tyr1183*) were unable to be designed for measurement on the custom Illumina \textit{iSelect} genotyping array and were not considered further (table 1). Genotyping was conducted using a custom Illumina \textit{Infinium} array (iCOGS) in four centres, as part of a multiconsortia collaboration as described previously.22 Genotypes were called using Illumina’s proprietary GenCall algorithm and then, for the data generated from the rare variant probes, manually confirmed with reference to the positive control sample. Two per cent of samples were provided in duplicate by all studies and 270 HapMap2 samples were genotyped in all four genotyping centres. Subjects with an overall call rate <95% were excluded. Plates with call rates <90% were excluded on a variant-by-variant basis. Cluster plots generated for all of the 10 rare variants were manually checked to confirm automated calls (see online supplementary figure S1).

Statistical methods

The association of each variant with breast, prostate and ovarian cancer risk was assessed using unconditional logistic regression to estimate ORs for carriers versus non-carriers, adjusting for study (categorical). \(p\) values were determined by the likelihood ratio test comparing models with and without carrier status as a covariate. We also applied conditional logistic regression, defining risk sets by study, and found that this made no difference to the OR estimates, CIs or \(p\) values to two significant figures; since model convergence was a problem for this latter regression analysis, all subsequent analyses were based on unconditional logistic regression. For the main analyses of breast cancer risk in European women, we also included as covariates the first six principal components, together with a seventh component specific to one study (Leuven Multidisciplinary Breast Centre (LMBC)) for which there was substantial inflation not accounted for by the components derived from the analysis of all studies. Addition of further principal components did not reduce inflation further. Data from all breast cancer studies were included to assess statistical significance. Data from cases selected for inclusion based on personal or family history of breast cancer were excluded in order to obtain unbiased OR estimates for the general population of white European women (leaving 37 039 cases and 38 260 controls from 32 studies). Multiple testing was adjusted for using the Benjamini-Hochberg procedure to control the false discovery rate, with a significance threshold of 0.05.23 Reported \(p\) values are unadjusted unless otherwise stated. Reported CIs are all nominal. We included two race-specific principal components in each of the main breast cancer analyses of Asian and African-American women. Similar analyses were conducted using the data from \textit{PRACTICAL} and \textit{OCAC}, consistent with those used previously.24 25 All analyses were carried out using Stata: Release V.10 (StataCorp, 2008).

RESULTS

PALB2

In BCAC, \textit{PALB2} c.1592delT (Leu531Cysfs) was only observed in 35 cases and 6 controls, all from four studies from Sweden and Finland (Helsinki Breast Cancer Study (HEBCS), Kuopio Breast Cancer Project (KBCP), Oulu Breast Cancer Study (OBCS) and Karolinska Mammography Project for Risk Prediction Breast Cancer (pKARMA); see online supplementary table 1).
Cancer genetics

Table 2 Summary results from Breast Cancer Association Consortium studies of white Europeans (42 671 invasive breast cancer cases and 42 164 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency* Controls</th>
<th>Frequency* Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
<th>OR† (95% CI)</th>
<th>LRT p Value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1592deIT (p.Leu531Cysfs)</td>
<td>0.00014</td>
<td>0.00082</td>
<td>4.52 (1.90 to 10.8)</td>
<td>7.1×10⁻⁸</td>
<td>3.44 (1.39 to 8.52)</td>
<td>0.003</td>
</tr>
<tr>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00342</td>
<td>0.00352</td>
<td>1.05 (0.83 to 1.32)</td>
<td>0.70</td>
<td>1.03 (0.80 to 1.32)</td>
<td>0.82</td>
</tr>
<tr>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00019</td>
<td>0.00101</td>
<td>5.93 (2.77 to 12.7)</td>
<td>6.9×10⁻⁸</td>
<td>4.21 (1.84 to 9.60)</td>
<td>1.2×10⁻⁴</td>
</tr>
<tr>
<td>CHEK2‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00043</td>
<td>0.00103</td>
<td>2.26 (1.29 to 3.95)</td>
<td>0.003</td>
<td>2.03 (1.10 to 3.73)</td>
<td>0.020</td>
</tr>
<tr>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00337</td>
<td>0.00370</td>
<td>1.33 (1.05 to 1.67)</td>
<td>0.016</td>
<td>1.34 (1.06 to 1.70)</td>
<td>0.015</td>
</tr>
<tr>
<td>c.715G>A (p.Glu239lys)</td>
<td>0.00021</td>
<td>0.00035</td>
<td>1.70 (0.73 to 3.93)</td>
<td>0.210</td>
<td>1.47 (0.60 to 3.64)</td>
<td>0.40</td>
</tr>
<tr>
<td>c.1306C>T (p.Asp345Gly)</td>
<td>0.00005</td>
<td>0.00021</td>
<td>5.06 (1.09 to 23.5)</td>
<td>0.017</td>
<td>3.39 (0.68 to 16.9)</td>
<td>0.11</td>
</tr>
<tr>
<td>c.1312G>T (p.Asp438Asn)</td>
<td>0.00078</td>
<td>0.00082</td>
<td>1.03 (0.62 to 1.71)</td>
<td>0.910</td>
<td>0.87 (0.49 to 1.52)</td>
<td>0.62</td>
</tr>
<tr>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0.00002</td>
<td>0 – –</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ATM†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.7271T>G (p.Val2424Gly)</td>
<td>0.00002</td>
<td>0.00028</td>
<td>11.6 (1.50 to 89.9)</td>
<td>0.0012</td>
<td>11.0 (1.42 to 85.7)</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

*Proportion of subjects carrying the variant.
†Excluding women from five studies that selected all cases based on family history or bilateral disease and the subset of selected cases from other studies (based on 34 488 unselected cases and 34 059 controls).
‡CHEK2 c.1343T>G (p.Ile448Ser) was only observed in one control and no cases of white European origin.
§PALB2 c.3113G>A (p.Trp1038*) only observed in Finland and Sweden.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

Table 3 Summary results from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome studies for white European men* (22 301 prostate cancer cases and 22 320 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency† Controls</th>
<th>Frequency† Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1592deIT (p.Leu531Cysfs)</td>
<td>0.00018</td>
<td>0.00031</td>
<td>2.06 (0.59 to 7.11)</td>
<td>0.24</td>
</tr>
<tr>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00354</td>
<td>0.00381</td>
<td>0.95 (0.69 to 1.29)</td>
<td>0.73</td>
</tr>
<tr>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00045</td>
<td>0.00027</td>
<td>0.49 (0.18 to 1.36)</td>
<td>0.16</td>
</tr>
<tr>
<td>CHEK2†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00063</td>
<td>0.00081</td>
<td>1.46 (0.71 to 3.02)</td>
<td>0.30</td>
</tr>
<tr>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00341</td>
<td>0.00296</td>
<td>1.02 (0.73 to 1.44)</td>
<td>0.90</td>
</tr>
<tr>
<td>c.715G>A (p.Glu239lys)</td>
<td>0.00018</td>
<td>0.00027</td>
<td>1.47 (0.41 to 5.35)</td>
<td>0.55</td>
</tr>
<tr>
<td>c.1306C>T (p.Asp345Gly)</td>
<td>0.00018</td>
<td>0.00022</td>
<td>1.07 (0.28 to 4.07)</td>
<td>0.93</td>
</tr>
<tr>
<td>c.1312G>T (p.Asp438Asn)</td>
<td>0.00049</td>
<td>0.00103</td>
<td>2.21 (1.06 to 4.63)</td>
<td>0.03</td>
</tr>
<tr>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0 0 0 0.00009 – –</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>c.1343T>G (Africans§)</td>
<td>0.019</td>
<td>0.057</td>
<td>3.03 (1.53 to 6.03)</td>
<td>0.001</td>
</tr>
<tr>
<td>ATM†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.7271T>G (p.Val2424Gly)</td>
<td>0.00004</td>
<td>0.00027</td>
<td>4.37 (0.52 to 36.4)</td>
<td>0.17</td>
</tr>
</tbody>
</table>

*For white European men, unless otherwise indicated.
†Proportion of subjects carrying the variant.
‡CHEK2 c.1343T>G (p.Ile448Ser) was the only CHEK2 variant observed in African men and was identified in two cases and no controls of white European origin.
§Based on data from 623 and 569 African-American cases and controls, respectively.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

Table S1), giving strong evidence of association with breast cancer risk (p=7.1×10⁻⁸); the OR estimate was 4.52 (95% CI 1.90 to 10.8) based on all studies and 3.44 (95% CI 1.39 to 8.52) based on unselected cases and controls (table 2). We also found evidence of heterogeneity by ER status (p=0.0023), the association being stronger for ER-negative disease (OR 6.49 (95% CI 2.17 to 19.4) versus 2.24 (95% CI 1.05 to 7.24) for ER-positive disease). PALB2 c.3113G>A (p.Trp1038*) was identified in 44 cases and 8 controls from nine BCAC studies. Only one carrier of the variant was of non-European origin. Strong evidence of association with breast cancer risk was observed (p=6.9×10⁻⁸), with an estimated OR of 5.93 (95% CI 2.77 to 12.7) based on all studies and 4.21 (95% CI 1.85 to 9.61) based on unselected cases and controls. There was no evidence of a differential association by ER status (p=0.15).

Based on unselected cases, the estimated OR associated with carrying either of these PALB2 variants (c.1592deIT or c.3113G>A) was 3.85 (95% CI 2.09 to 7.09).

PALB2 c.2816T>G (p.Leu939Trp) was identified in 150 cases and 145 controls and there was no evidence of association with risk of breast cancer. There was no evidence of association with risk of prostate or ovarian cancer for any of the three PALB2 variants (see tables 3 and 4).
Table 4 Summary results from the Ovarian Cancer Association Consortium studies for white European women (14 542 invasive ovarian cancer cases and 23 491 controls)

<table>
<thead>
<tr>
<th>Variant</th>
<th>Frequency* Controls</th>
<th>Frequency* Cases</th>
<th>OR (95% CI)</th>
<th>LRT p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.1592delT (p.Leu531Cysfs)</td>
<td>0.00004</td>
<td>0.00012</td>
<td>2.50 (0.21 to 29.1)</td>
<td>0.45</td>
</tr>
<tr>
<td>c.2816T>G (p.Leu939Trp)</td>
<td>0.00413</td>
<td>0.00399</td>
<td>0.96 (0.69 to 1.34)</td>
<td>0.81</td>
</tr>
<tr>
<td>c.3113G>A (p.Trp1038*)</td>
<td>0.00034</td>
<td>0.00031</td>
<td>1.34 (0.36 to 4.97)</td>
<td>0.66</td>
</tr>
<tr>
<td>CHEK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.349A>G (p.Arg117Gly)</td>
<td>0.00038</td>
<td>0.00031</td>
<td>1.07 (0.32 to 3.60)</td>
<td>0.92</td>
</tr>
<tr>
<td>c.538C>T (p.Arg180Cys)</td>
<td>0.00128</td>
<td>0.00160</td>
<td>1.49 (0.83 to 2.67)</td>
<td>0.18</td>
</tr>
<tr>
<td>c.715G>A (p.Glu239Lys)</td>
<td>0.00021</td>
<td>0.00037</td>
<td>1.47 (0.42 to 5.22)</td>
<td>0.54</td>
</tr>
<tr>
<td>c.1036C>T (p.Arg346Cys)†</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>c.1312G>T (p.Asp438Tyr)</td>
<td>0.00081</td>
<td>0.00074</td>
<td>0.92 (0.42 to 1.99)</td>
<td>0.83</td>
</tr>
<tr>
<td>c.1343T>G (p.Ile448Ser)</td>
<td>0.00009</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ATM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.7217T>G (p.Val2424Gly)</td>
<td>0</td>
<td>0.00012</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*Proportion of subjects carrying the variant.
†c.1036C>T (p.Arg346Cys) was not observed in any sample.
LRT, likelihood ratio test; OR, OR for carriers of the variant versus common-allele homozygotes, adjusted for study and seven principal components.

CHEK2

CHEK2 c.349A>G (p.Arg117Gly) was identified in 44 cases and 18 controls in studies participating in BCAC; all of these women were of European origin. We found evidence of association with breast cancer (p=0.003), with little change in the OR after excluding selected cases (OR 2.03 (95% CI 1.10 to 3.73)).

CHEK2 c.538C>T (p.Arg180Cys) was identified in 158 breast cancer cases and 142 controls in studies of white Europeans. Evidence of association with breast cancer risk (p=0.016) was observed, with an unbiased OR estimate of 1.34 (95% CI 1.06 to 1.70). A consistent OR estimate was observed for Asian women, based on 45 case and 45 control carriers (OR 1.16 (95% CI 0.75 to 1.76)).

CHEK2 c.715G>A (p.Glu239Lys) mutations were identified in 15 cases and 9 controls, all African women participating in BCAC and no evidence of association with risk of breast cancer was observed (p=0.21).

CHEK2 c.1036C>T (p.Arg346Cys) was identified in nine cases from seven studies and two controls from two different studies in BCAC (neither control carrier was from a study that had case carriers), all of European origin. We found evidence of association with breast cancer risk (p=0.017) with reduced OR estimate of 3.39 (95% CI 0.68 to 16.9) after excluding selected cases.

None of the above four CHEK2 variants (CHEK2 c.349A>G (p.Arg117Gly); c.538C>T (p.Arg180Cys); c.715G>A (p.Glu239Lys) and c.1036C>T (p.Arg346Cys)) were found to be associated with an increased risk of prostate or ovarian cancer (tables 3 and 4).

DISCUSSION

The present report adds to an accumulating body of evidence that at least some rare variants in so-called 'moderate-risk' genes are associated with an increased risk of breast cancer that is of clinical relevance.

These findings are presented at a time when detailed information about variants in these genes is becoming more readily available via the translation of diagnostic genetic testing from Sanger sequencing-based testing platforms to MPS platforms that test panels of genes in single assays.27–29 The vast majority of information about PALB2, CHEK2 and ATM, variants generated from these new testing platforms is not being used in clinical genetics services due to lack of reliable estimates of the cancer risk associated with individual variants, or groups of variants, in each gene. Previous analyses have been largely based on selected families, relying on data on the segregation of the variant. The present study is by far the largest to take a case-control approach. Consistent with previous reports,5 6 9 11–13 PALB2 c.3113G>A (p.Trp1038*), PALB2 c.1592delT (p.Leu531Cysfs) and ATM c.7217T>G (p.Val2424Gly) were found to be associated with substantially increased risk of breast cancer all with associated relative risk estimates of 3.44 or greater.

The estimates for the two loss-of-function PALB2 variants (c.1592delT and c.3113G<A) were consistent with each other and with estimates based on segregation analysis.5 6 9 We found no evidence of association with breast cancer for PALB2 c.2816T>G (p.Leu939Trp), with an upper 95% confidence limit excluding an OR >1.5 which is notable given the
Align-Grantham Variation Granthan Deviation (Align-GVGD) score and the observed impact on protein function.7 10 The estimate for ATM c.7271T>G (p.Val2424Gly) was also consistent with that found by segregation analysis.7 13 The substantial increased risk of breast cancer associated with ATM c.7271T>G (p.Val2424Gly) could be due to the reduction in kinase activity (with near-normal protein levels) observed for ATM p.Val2424Gly,14 thus this variant is likely to be acting as a dominant negative mutation.12

In contrast, we found no evidence of an association with risk of prostate or ovarian cancer with any of these three variants: however, the confidence limits were wide; based on the upper 95% confidence limit we could exclude an OR of >1.4 for prostate cancer for the loss-of-function PALB2 c.3113G>A and 1.9 for c.1592delT and c.3113G>A combined.

We analysed six rare missense variants in CHEK2. Two of these (CHEK2 c.349A>G (p.Arg117Gly; rs28909982) and c.1036C>T (p.Arg346Cys)) had evidence of a significant impact on the protein based on in silico prediction. We proposed these variants for inclusion in the iCOGS design as they had been identified in 3/1242 cases and 1/1089 controls and 3/1242 cases and 0/1089 controls, respectively, in a population-based case-control mutation screening study of CHEK2.11 In that study, Le Calvez-Kelm et al., estimated an OR of 8.75 (95% CI 1.06 to 72.2) for variants with an Align-GVGD score C65 (based on nine cases and one control). The current analysis provides confirmatory evidence of this association in a much larger sample (OR 2.18 (95% CI 1.23 to 3.85)) including 40 unselected case and 18 control carriers. The evidence that CHEK2 is a breast cancer susceptibility gene is largely based on studies of protein truncating variants, in particular CHEK2 1100delC.13 Reports of the association of the missense variant I157T, (C15) and breast cancer risk have been conflicting but a large meta-analysis involving 15 985 breast cancer cases and 18 609 controls estimated a modest OR of 1.58 (95% CI 1.42 to 1.75).14 We also found evidence (p=0.015) of an association for c.538C>T (Align-GVGD C25); OR 1.34 (95% CI 1.06 to 1.70), a risk comparable to I157T.

The p values reported above have not been adjusted for multiple testing. This was not considered appropriate for the associations with breast cancer risk of PALB2 c.1592delT, c.3113G>A and ATM c.7271T>G because these associations had previously been reported; our aim was to more precisely estimate the associated relative risks. All three associations with breast cancer risk reported for CHEK2 variants remained statistically significant after adjusting for the other tests conducted in relation to breast cancer risk, but not after correcting for all tests for all cancers. Nevertheless, the findings for CHEK2 c.349A>G and c.1036C>T confirmed those reported previously, although collectively. The association observed with CHEK2 c.538C>T requires independent replication.

Do this approach and new data have an impact on clinical recommendations for women and families carrying these rare genetic variants? Although age-specific cumulative risks for cancer are more informative for genetic counselling and clinical management of carriers, our study provides information that is relevant to clinical recommendations. As discussed in Easton et al.,15 a relative risk of 4 will place a woman in a ‘high-risk’ category (in the absence of any other risk factor) and a relative risk between 2 and 4 will place a woman in this category if other risk factors are present. Thus, several of the variants included in this report (PALB2 c.1592delT; c.3113G>A ATM c.7271T>G) would place the carrier in a high-risk group, especially if other risk factors, such as a family history, are present. The high level of breast cancer risk associated with PALB2 c.1592delT and c.3113G>A reported here is consistent with the penetrance estimate reported for a group of loss-of-function mutations in PALB210 and has an advantage in terms of clinical utility that the estimates in this study have been made at a mutation-specific level. Therefore, this work provides important information for risk reduction recommendations (such as prophylactic mastectomy and potentially salpingo-oophorectomy) for carriers of these variants. However, further prospective research is required to characterise these risks and to understand the potential of other risk-reducing strategies such as salpingo-oophorectomy and chemoprevention.

The consistency of the relative risk estimates with those derived through family based studies supports the hypothesis that these variants combine multiplicatively with other genetic loci and familial risk factors; this information is critical for deriving comprehensive risk models. Even with very large sample sizes such as those studied here, however, it is still only possible to derive individual risk estimates for a limited set of variants, and even for these variants the estimates are still imprecise. This internationally collaborative approach also has limited capacity to improve risk estimates for rare variants that are only observed in specific populations. Inevitably, therefore, risk models will depend on combining data across multiple variants, using improved in silico predictions and potentially biochemicalfunctional evidence to synthesise these estimates efficiently. It will also be necessary to develop counselling and patient management strategies that can accommodate a multifactorial approach to variant classification.
Cancer genetics

1. David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, CA, USA
2. Unit of Biostatistics, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
3. Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
4. Non-communicable Disease Epidemiology Department, London School of Hygiene and Tropical Medicine, London, UK
6. Division of Cancer Studies, NIHR Comprehensive Biomedical Research Centre, Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London, London, UK
7. Welcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, UK and Oxford NIHR Biomedical Research Centre, Headington, OX3 7LE
8. Surgery, Lane Institute for Translational Science, NILGalway, University Hospital Galway, Galway, Ireland
9. Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
10. National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
11. Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
12. Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
13. University Paris-Sud, UMRS 1018, Villejuif, France
14. Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
15. Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
16. Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Copenhagen, Denmark
17. Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
18. Centre de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
19. Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
20. Servicio de Cirugía General y Especialidades, Hospital Monte Narcano, Oviedo, Spain
21. Servicio de Anatomía Patológica, Hospital Monte Narcano, Oviedo, Spain
22. Department of Epidemiology, University of California Irvine, Irvine, California, USA
23. Beckman Research Institute of City of Hope, Duarte, California, USA
24. Department of Epidemiology, University of California Irvine, Irvine, California, USA
25. Department of Cancer Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
26. Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
27. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
28. Saarland Cancer Registry, Saarbrücken, Germany
29. Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart
30. University of Tübingen, Tübingen, Germany
31. Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University, Bochum (IPA), Germany
32. Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
33. Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
34. Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
35. Department of Radiation Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
36. N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
37. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
38. Department of Oncology – Pathology, Karolinska Institutet, Stockholm, Sweden
39. School of Medicine, Institute of Clinical Medicine, Rikshospitalet Medical Centre, University of Oslo, Norway
40. Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
41. School of Medicine, Institute of Clinical Medicine, Rikshospitalet Medical Centre, University of Oslo, Norway
42. Department of Clinical Genetics, Family Cancer Clinic, Erasmus MC Cancer Center, Rotterdam, The Netherlands
43. School of Medicine, Institute of Clinical Medicine, Rikshospitalet Medical Centre, University of Oslo, Norway
44. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
45. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
46. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
47. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
48. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
49. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
50. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
51. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
52. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
53. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
54. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
55. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
56. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
57. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
58. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
59. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
60. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
61. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
62. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
63. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
64. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
65. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
66. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
67. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
68. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
69. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
70. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
71. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
72. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
73. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
74. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
75. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
76. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
77. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
78. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
79. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
80. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
81. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
82. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
83. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
84. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
85. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
86. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
87. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
88. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
89. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
90. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
91. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
92. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
93. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
94. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
95. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
96. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
97. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
98. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
99. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
100. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
101. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
102. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
103. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
104. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
105. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
106. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
107. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
108. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
109. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
110. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA

References:

807
Acknowledgements The authors thank the following for their contributions to this study: Qin Wang (BCA), Lesley McCaughrf, and Ken Oliff (CIMBA), Andrew Lee, and Ed Dicks and the staff of the Centre for Genetic Epidemiology Research, Glasgow, UK.

198 Cancer Research UK Clinical Trials Unit, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow, G12 0YN

200 Department of Gynaecological and Endometrial Cancer, University of Copenhagen, Denmark

202 Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark

204 Department of Pathology and Laboratory Diagnostics, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland

206 International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland

207 Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland

208 Gyn Clinic, Rigshospitalet, University of Copenhagen, Denmark

209 Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark

211 Department of Epidemiology and Biostatistics, Stanford University School of Medicine, Stanford CA, USA

212 Epidemiology Center, College of Medicine, University of South Florida, Tampa, Florida, USA

214 The Cancer Research UK Clinical Trials Unit, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow, G12 0YN

215 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 1053 Great Westem Road, Glasgow, G12 0YN

216 Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA

217 Department of Biometry, Genomics and Informatics, Moffitt Cancer Center, Tampa, FL, USA

218 Public Health Ontario, Toronto, Canada

219 Women’s College Research Institute, University of Toronto, Toronto, Ontario, Canada

220 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA

221 Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA

222 Women’s Cancer, Institute for Women’s Health, UCL, London, United Kingdom

223 Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA

224 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

225 Department of Pathology and Laboratory Diagnostics, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland

226 Department of Medicine, The University of Melbourne Health, Australia

227 The Royal Melbourne Hospital, Victoria 3050, Australia

228 Cancer Epidemiology Centre, Cancer Council Victoria, Victoria, Australia

Research and Royal Marsden NHS Foundation Trust, London, UK.

195 Radboud university medical center, Department of Gynaecology, Nijmegen, Netherlands

196 Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, Netherlands

197 Netherlands Comprehensive Cancer Organization, Utrecht, Netherlands

198 Department of Obstetrics & Gynecology, Oregon Health & Science University

199 Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA

200 Canada’s Michael Smith Genomes Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada

201 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada

202 Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, SC, USA

203 Hollings Cancer Center, Medical University of South Carolina, SC, USA

204 Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA

205 Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada

206 International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland

207 Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland

208 Gyn Clinic, Rigshospitalet, University of Copenhagen, Denmark

209 Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark

211 Department of Epidemiology and Biostatistics, Stanford University School of Medicine, Stanford CA, USA

212 Epidemiology Center, College of Medicine, University of South Florida, Tampa, Florida, USA

214 The Cancer Research UK Clinical Trials Unit, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow, G12 0YN

215 Department of Gynaecological Oncology, Glasgow Royal Infirmary

217 Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford CA, USA

218 Public Health Ontario, Toronto, Canada

219 Women’s College Research Institute, University of Toronto, Toronto, Ontario, Canada

220 Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA

221 Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA

222 Women’s Cancer, Institute for Women’s Health, UCL, London, United Kingdom

223 Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA

224 Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

225 Department of Pathology and Laboratory Diagnostics, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland

226 Department of Medicine, The University of Melbourne Health, Australia

227 The Royal Melbourne Hospital, Victoria 3050, Australia

228 Cancer Epidemiology Centre, Cancer Council Victoria, Victoria, Australia

Acknowledgements The authors thank the following for their contributions to this study: Qin Wang (BCA), Lesley McCaughrf, and Ken Oliff (CIMBA), Andrew Lee, and Ed Dicks and the staff of the Centre for Genetic Epidemiology Research, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the Centre for Genetic Epidemiology Laboratory, staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidox

PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS