N-RAS lipid anchor adsorption to membranes as a function of lipid composition and curvature
Larsen, Jannik Bruun; Kennard, Celeste; Pedersen, Søren Ljungberg; Jensen, Knud Jørgen; Hatzakis, Nikos; Uline, Mark J.; Stamou, Dimitrios

Published in:
Biophysical Society. Annual Meeting. Abstracts

DOI:
10.1016/j.bpj.2015.11.3096

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Membrane Deformations Govern Interleaflet Coupling of Lipid-Ordered Domains

2859-Pos Board B236

Transbilayer Registration of Liquid-Ordered Domains: No Interactions at the Membrane Midplane Required

Timur R. Galimzyanov1,2, Veronika V. Alexandrova3, Peter Pohl1, 
Sergey A. Akimov1,2,3

1Biollectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Moscow, Russian Federation, 2Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISIS”, Moscow, Russian Federation, 3Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.

The mechanism responsible for the registration of liquid-ordered (Lo) domains in the two membrane leaflets is a matter of debate. As an alternative to the thus far enigmatic interactions at the membrane midplane, we propose that minimization of the two membrane leaflets is a matter of debate. As an alternative to the thus far enigmatic interactions at the membrane midplane, we propose that minimization of the amide-linked SM chain increases the deeper it penetrates to the opposing leaflet. We further showed that changes in the nanodomain structure of SM interdigitation by influencing the deformations require a minimum of energy F0 when the domain boundaries are shifted relative to each other by several nanometers Accumulation of lipids or peptides with non-zero spontaneous curvature in the thin rim around the domains further sharply decreases F0, thus explaining the line activity of monosialoganglioside GM1. In addition to F0, the mutual attraction of stiffer membrane regions must contribute to domain registration Since energy F0 is required to prevent membranes from undulating, maximizing the membrane area that is free to undulate by aligning the stiff Lo domains from opposing leaflets minimizes F0. Thus, domain registration minimizes F0 and F0 explaining why (i) transbilayer coupling can occur without interaction at the membrane midplane and (ii) registration does not require specific lipids in Lo domains.

The work was supported by the Russian Federation for Basic Research (15-54-15006) and by the Austrian Science Fund (112267).


2860-Pos Board B237

N-RAS Lipid Anchor Adsorption to Membranes as a Function of Lipid Composition and Curvature

Jannik B. Larsen1, Celeste Kennard2, Soren L. Pedersen1, Knud J. Jensen1, Nikos S. Hatzakis3, Mark J. Uline1, Dimitrios Stamou1

1Chemistry, Bionanotechnology and Nanomedicine Laboratory, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Copenhagen, Denmark, 
2Chemical Engineering, University of South Carolina, Columbia, SC, USA, 
3Chemistry, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, Copenhagen, Denmark.

Protein recruitment to biological membranes is motivated by either highly selective recognition of specific target membrane components or non-specific attraction to general physical properties of the membrane, such as charge, lipid heterogeneity, and curvature. Here we discuss the interaction between lipid-anchored proteins and lipid membranes from a comprehensive examination of how features of the membrane and its lipid constituents, including lipid headgroup size, composition, heterogeneity, membrane thickness, degree of unsaturation, and membrane geometry, effect the adsorption ability of the proteins. Of key importance is the small correlation among these compositional and morphological elements in mediating the binding of peripheral membrane proteins. As a model protein, we use the dual lipated (palmitoyl) and fatty acid esterified (acylated) N-Ras (N-Ras). We find marked augmentation in N-Ras adsorption with increasing degree of membrane curvature—a trend that is tightly regulated by the bilayer characteristics mentioned above. Experimental results are fully reproduced by a molecular level theoretical model of the systems under study. Of note, the theory suggests an explicit dependence on the lateral pressure profile of the membrane’s hydrophobic region to be the mechanism and cause of variation in protein density with membrane curvature and composition. Relief in the lateral pressure of the bilayer’s outer leaf, upon its expansion induced by increasing curvature, reduces the work requirement for lipid-anchor insertion into the membrane. Furthermore, the inherent pressure profile of the hydrophobic channel, at a given curvature, is unique with regard to membrane composition, which allows for fine-tuning of lipidated-protein density.

2861-Pos Board B238

Segmentation of Membrane Protein Motion in the Axon Initial Segment

Christian M. Winterflood1, David Albrecht2, Gabrielle de Wit3, Philipp Kakura4, Helge Ewers5

1Randall Division of Cell and Molecular Biophysics, King’s College London, London, United Kingdom, 2Institute of Biochemistry, ETH Zürich, Zürich, Switzerland, 3Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, United Kingdom, 4Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

The axon initial segment (AIS) is a structure rich in specific cytoskeletal molecules that play important roles in the concentration of ion-channels that are required for action-potential generation. The establishment of a postulated diffusion barrier to the lateral exchange of membrane molecules in the AIS correlates with the enrichment of specific cytoskeletal molecules at this structure during development.

Recently, a repetitive pattern of actin, spectrin and ankyrin forming ring-like structures perpendicular to the direction of axonal propagation has been discovered, that is interconnected via spectrin tetramers. This structure may finally provide the long sought direct physical correlate to the diffusion barrier at the AIS.

Here, we perform repeated high-throughput single-molecule tracking on individual live primary hippocampal neurons during AIS development (DIV 3 - 10). We furthermore analyze the lateral mobility of lipid-anchored and transmembrane molecules with microsecond tracking at a resolution of few nanometers via interferometric scattering (iSCAT). Finally, we correlate the lateral motion of membrane molecules to the organization of the AIS cytoskeleton.

We find that the lateral motion of membrane molecules becomes reduced in the AIS during development and that this reduction correlates with cytoskeletal organization into ring-like structures. The lateral motion of membrane molecules in the AIS plasma membrane is locally confined to within a repetitive pattern of 190 nm spaced segments along the AIS axis, consistent with the observed spacing of the cytoskeletal rings.

Our data provide mechanistic insight into the diffusion barrier function of the AIS.

2862-Pos Board B239

Mechanistic Insights into Membrane Bending by Protein Crowding: Understanding the Role of Membrane Composition, Phase Separation and Free Energy of Protein Binding

Gokul Raghunath1, Brian Dyer2

1Department of Chemistry, Emory University, Atlanta, GA, USA. 
2Chemical Morphological changes in lipid membranes are hallmarks of a number of cellular processes like sorting, transport, etc. The dense crowding of the membrane environment with proteins and receptors has motivated many thorough academic investigations into the effects of macromolecular crowding on membrane surfaces. A number of recent studies have indicated that membrane re-shaping could be driven by steric pressure between proteins co-localized on membrane domains. While these studies provide conclusive evidence for the membrane bending process, a detailed physical and mechanistic basis for this phenomenon is lacking. We provide a thermodynamic picture for this phenomenon through Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC) and fluorescence microscopy using Ni-Nitritiolacteic (NTA) acid and His-Tag interaction as a model system. Using ITC, we observe almost an order of magnitude increase in binding affinity for NTA-functionalized liposomes that display gel-fluid phase coexistence, as opposed to homogenous fluid compositions. This elevated affinity could be eliminated by thermal phase transition from gel-fluid to fluid, highlighting the importance of phase separation in modulating the strength of this binding interaction. DSC revealed that protein binding modulates the long-range lipid order sub-stantially. In conjunction with the ITC data, the DSC results indicate that the protein-binding event is coupled to a secondary exothermic process, presumably due to membrane deformation. Further ITC and fluorescence microscopy experiments reveal that the formation of