Fluorescent biosensor for hyaluronidase
Chib, Rahul; Mummert, Mark; Bora, Ilkay; Shah, Sunil; Laursen, Bo Wegge; Sørensen, Thomas Just; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal

Published in:
Biophysical Society. Annual Meeting. Abstracts

DOI:
10.1016/j.bpj.2015.11.1812

Publication date:
2016

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
side, which is most likely related to different base pairing at the two miRNA-155 termini. The highest translocation rates were obtained with the dual extended DNA probe but the shortest dwell times with the 3'-only extension. These optimized parameters enable nanopore resistive pulse sensing of miRNA molecules over a larger concentration range.

1661-Pos Board B638

Nanopore as a Sensor Based on Avidin-Biotin System

Mathilde Lepoitevin, Mikhail Bechelany, Emmanuel Balanzat, Jean-Marc Janot, Sebastien Balme

1Université de Montpellier, Montpellier, France, 2European Institute of membranes, Université de Montpellier, Montpellier, France, 3Centre de recherche sur les Ions, les Matériaux et la Photonique, Caen, France.

This work aims to design a highly selective biosensor, able to detect selectively a molecule with a label or with an antigen/antibody system, and without the use of a microscope or a laser, and thus building a low cost detection system. To make this we have explored different strategies used to fashion artificial nanopore in order to mimic biological ligand-gated channel. This strategy is based on PEG-like-avidin tethering in track etched nanopore modified by atomic layer deposition (ALD). Track etched combined with ALD was chosen to control their geometry and the nanopore diameter (cylindrical) and to functionalize them with polymers and biomolecules. Then we have investigated the sensing aspect more in details. (i) the size of the spacer, with a long or short PEG chain, (ii) compare avidin and streptavidin, (iii) biotinylated proteins: IgG and BSA, (iv) and the addition of an antibody (anti BSA). This new strategy to tailor artificial ligand-gated nanopore permits to consider a simple and low cost biosensor for antibody detection.

1662-Pos Board B639

Fluorescent Biosensor for Hyaluronidase: Intensity Based Ratiometric Sensing and Time-Gated Detection using a Long Lifetime Azadiazatriangulenium (ADOTA) Fluorophore

Rahul Chib, Mark Mummert, Ilkay Bora, Sunil Shah, Bo Wegge Laursen, Thomas Just Sorensen, Ignacy Gryczynski, Julian Borejdo, Zygmunt Gryczynski, Rafal Fudala

1Center for Fluorescence Technologies and Nanomedicine, Department of Cell Biology and Microbiology, UNT Health Science Center, Fort Worth, TX, USA, 2Mental Sciences Institute, UNT Health Science Center, Fort Worth, TX, USA, 3Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.

We have designed a rapid and sensitive, intensity based ratiometric sensing and lifetime based sensing probe for the detection of hyaluronidase activity. Hyaluronidase has been reported to have upregulated in various pathological conditions like cancer. Therefore, developing an assay to estimate the enzyme activity is of utmost importance and can be used as a diagnostic method for cancer. We have developed a fluorescent probe by using hyaluronic acid as template and heavily labeling it with an orange/red emitting azadiazatriangulenium (ADOTA) fluorophore, which also has a long fluorescence lifetime. The heavily ADOTA labeled hyaluronic acid (HA-ADOTA) has a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal and a short fluorescence lifetime due to efficient self-quenching. In the presence of enzyme hyaluronidase, the brightness and fluorescence lifetime of the sample increases with a shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA - ADOTA probe at 560 nm and 605 nm can be used as the sensing signal for detecting hyaluronidase. Long fluorescence lifetime and red emission also makes it suitable for time-gated lifetime imaging. The proposed method makes it a rapid and sensitive assay, making it useful to assay hyaluronidase in relevant clinical samples.

1663-Pos Board B640

The Role of Conserved Polar Amino Acids at the Transmembrane Loop Regions of a Genetically Encoded Voltage Sensor

Masoud Sepheri Rad

1Center for Functional Connectomics, Korea Institute of Science & Technology, Seoul, Korea, seoul, Korea, Republic of.

To identify potential regions of the voltage-sensing domain that could shift the voltage sensitivity we aligned 183 voltage-gated sodium channels (Nav) from different organisms. Conserved polar residues were identified at multiple transmembrane loop junctions in the voltage sensing domain. Similar conservation of polar amino acids were found in the voltage sensing domain of the voltage-sensing phosphatase gene family. These conserved residues were mutated to nonpolar or oppositely charged amino acids in a Genetically Encoded Voltage Indicator(GEV) that utilizes the voltage sensing domain of the voltage sensing phosphatase from Ciona intestinals fused to the fluorescent protein, super ecliptic pHorin (A227D). Combined voltage clamp fluorescence measurements were made to determine their potential in sensing voltage across the plasma membrane. Different mutations shifted the voltage sensitivitin a more positive or a more negative direction. Some of these mutations also changed the kinetics of the optical response. Interestingly, some of these probes show a spatially dynamic internal signal from the nuclear envelope which gets brighter upon depolarization of the external membrane. These probes have a signal at the plasmamembrane which gets dimmer upon depolarizations.

Biomaterials & Biosurfaces

1664-Pos Board B641

A Facile Novel Method to Control Surface Topography of Conducting Polymer for Improved Coronary Stent Performance

Sahbazdreh Mohammad Nabeeluddin

Bioengineering, University of Strathclyde, Glasgow, United Kingdom.

Endothelium lines the inner layer of all the arteries, its very important for healthy artery functions, and denudation of its layer is unavoidable during angioplasty. Thereby, drug eluting coronary stents are associated with delayed healing of the endothelial cell monolayer. Our aim was to optimise factors affecting electrochemical polymerisation and establish the influence of any achieved morphology due to optimization method in terms of endothelialisation of stents by assessing cell adhesion, proliferation and migration. Conducting polymer - Polypyrrole(Ppy) was used by virtue of its application, influencing factors were identified and an optimized method was proposed for developing a consistent, reproducible method for obtaining homogenous distinct morphologies of Ppy as stent coating. A monomer(Py) and dopant(NaSa) concentration of 0.2M and 0.1M used respectively in optimised method for 5 and 15 minutes with applied potential of 0.9V, mainly resulting in two new topographies. First named as “Coral Reef” due to its resemblance to actual coral reef characterised by long open ended tubules(>250µm), second topography also demonstrate distinct features in the form of cups and bowls, which is never reported with the aforementioned monomer and dopant using potentiostatic method. Further, a method was successfully devised to control tubes of “coral reef” topography leading to a homogeneous rough lump. SEM and AFM were used for surface characterisation. Coated wires displaying “Noble Coral Reef” morphology were seeded with ECs, which exhibited variance in adherence to Ppy coatings. 4 Bare metal stents coated with/without coral reef topography were inflated exceeding their expansion limits to examine adherence of coating and for any visible fragmentation using SEM. Despite the previously reported brittle nature of Ppy, this test successfully exhibited near perfect adherence strength. These findings of increased surface area are promising for enhanced drug delivery in drug eluting stents.

1665-Pos Board B642

Design of an Amyloid-Like Nanosheet with Tunable Functionality as Bio-Nanomaterials

Cong Liu

Chinese Academy of Sciences, Shanghai, China.

Amyloid protein aggregation is closely related to a variety of devastating human diseases including Alzheimer’s, Huntington’s and Prion disease. However, many functional amyloids were recently found with important physiological functions, such as long-term memory persistence, biofilm formation and hormone storage. As self-assembled protein/polypeptide polymers, the amyloids feature highly ordered hierarchical structure with high thermal stability and stiffness, controllable assembly, and biocompatibility. Thus, development of amyloid as functional materials becomes one of the emerging new frontiers in bio-nanomaterial field.

In our work3, we found that a heptapeptide derived from Abeta, the key player in Alzheimer’s, is capable of forming a previously unreported giant nanosheet structure. We characterized the structure of a nanosheet by multiple biophysical approaches. Based on the structural model, we developed a series of amyloid-like nanosheets with tunable functionalities and used them as a new type of effective enhancers for retrovirus transduction. Our work demonstrates that amyloid-like nanosheets provides a robust platform for integrating different functionalities, shedding light on the development of amyloid-based bio-nanomaterials with novel functions.