Higher-order (non-)modularity
Appel, Claus; van Oostrom, Vincent; Simonsen, Jakob Grue

Published in:
Proceedings of the 21st International Conference on Rewriting Techniques and Applications

DOI:
10.4230/LIPIcs.RTA.2010.17

Publication date:
2010

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
HIGHER-ORDER (NON-)MODULARITY

CLAUS APPEL1 AND VINCENT VAN OOSTROM2 AND JAKOB GRUE SIMONSEN1

1 Department of Computer Science, University of Copenhagen (DIKU)

Universitetsparken 1, 2100 Copenhagen Ø

Denmark

\textit{E-mail address}, C. Appel: \texttt{spectrum@diku.dk}

\textit{E-mail address}, J. G. Simonsen: \texttt{simonsen@diku.dk}

2 ZENO Research Institute, Department of Philosophy, Utrecht University

Heidelberglaan 8, 3584 CS Utrecht

The Netherlands

\textit{E-mail address}: \texttt{Vincent.vanOostrom@phil.uu.nl}

\textbf{Abstract.} We show that, contrary to the situation in first-order term rewriting, almost none of the usual properties of rewriting are modular for higher-order rewriting, irrespective of the higher-order rewriting format. We show that for the particular format of simply typed applicative term rewriting systems modularity of confluence, normalization, and termination can be recovered by imposing suitable linearity constraints.

1. Introduction and summary of results

The \textit{disjoint union} of two rewrite systems is the rewrite system obtained by taking the disjoint union of their signatures and taking the union of their respective sets of rules. \textit{Modularity} is the study of properties preserved and reflected when taking the disjoint union of two rewrite systems and has been studied intensely for first-order term rewriting systems.

Higher-order term rewriting adds two features to first-order term rewriting: meta-variables and binding. Meta-variables are variables for functions, i.e. they can be \textit{applied}. Binding allows to construct functions by means of \textit{abstraction}. There are a plethora of formats of higher-order rewriting, spanning the gap from very specific to very general systems. In this paper we consider the following common formats: \textit{Applicative} TRSs [24, Section 3.3.5], contain meta-variables, but no bound variables. The prototypical example of an applicative TRS is Curry’s combinatory logic. Equipping applicative TRSs with a simple type discipline results in Yamada’s \textit{simply typed term rewriting systems} (STTRSs) [28].

Klop’s (functional) \textit{combinatory reduction systems} (CRSs) [10], contain both meta-variables and bound variables. The prototypical example of a CRS is Church’s λ-calculus. Equipping CRSs with a simple type discipline (and generalizing the notion of substitution), results in Nipkow’s \textit{pattern rewrite systems} (PRSs) [13]. We have chosen these formats since they are

\textit{1998 ACM Subject Classification}: F.4.1, F.4.2.

\textit{Key words and phrases}: Higher-order rewriting, modularity, termination, normalization.
relatively well-known and moreover they allow for the ‘free’ construction of rules, without imposing a priori restrictions on them ensuring termination or confluence.

Modularity in higher-order systems has hitherto only been investigated in isolated cases: Klop proved that confluence is not a modular property in systems that can embed both TRSs and λ-calculus [8], and Klop, van Oostrom and van Raamsdonk showed that acyclicity (a term cannot be reduced to itself) of orthogonal systems, while modular for TRSs, is not a modular property of higher-order systems [9].

In this paper we perform the first systematic study of modularity for higher-order rewriting, see the overview in Table 1. The only non-standard notion employed in the table, is the notion of pattern.

Table 1: Modular properties of first- and higher-order term rewriting system. The results marked (†) are new and proved in this paper.

<table>
<thead>
<tr>
<th>Property</th>
<th>TRS</th>
<th>STTRS</th>
<th>CRS</th>
<th>PRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confluence</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Normalization</td>
<td>Yes</td>
<td>No †</td>
<td>No †</td>
<td>No †</td>
</tr>
<tr>
<td>Termination</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Completeness</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Confluence, for left-linear systems</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Completeness, for left-linear systems</td>
<td>Yes</td>
<td>No †</td>
<td>No †</td>
<td>No †</td>
</tr>
<tr>
<td>Unique normal forms</td>
<td>Yes</td>
<td>No †</td>
<td>No †</td>
<td>No †</td>
</tr>
<tr>
<td>Normalization, non-duplicating pattern systems</td>
<td>Yes</td>
<td>Yes †</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Termination, non-duplicating pattern systems</td>
<td>Yes</td>
<td>Yes †</td>
<td>?</td>
<td>No †</td>
</tr>
</tbody>
</table>

Definition 1.1. A left-hand side of a rule is a *pattern* if all meta-variables in it are only applied to sequences of pairwise distinct bound variables. A *pattern* rewrite system is one in which all left-hand sides of rules are patterns.

For applicative TRSs and STTRSs the restriction to patterns expresses that meta-variables do not occur *actively* in left-hand sides, i.e. left-hand sides do not have sub-terms of shape Zt, for Z a meta-variable. Combinatory Logic and all applicative TRSs obtained by Currying are pattern systems. CRSs and PRSs have the condition that left-hand sides of rules be patterns, built into their definition, making matching and unification of left-hand sides first-order like.

The structure of the paper is as follows. We first recapitulate the main positive and negative modularity results from first-order term rewriting, as well as the techniques employed for obtaining them. Next we show by means of a slate of counterexamples, that none of the standard rewriting properties is modular, neither for applicative TRSs, nor for CRSs and PRSs. We end on a positive note, showing that imposing appropriate linearity restriction allows one to regain modularity of some properties, in particular confluence, termination and normalization of STTRSs.

We classify the properties discussed into existence (a normal form can/must/cannot be obtained) and uniqueness (at most one normal form can be obtained) properties. Termination, normalization and acyclicity are existence properties, and confluence and the unique normal forms property are uniqueness properties. Completeness combines both into a unique existence property.
As presenting the counterexamples requires much less technical machinery than the positive results, we postpone the introduction of that machinery to the section containing those positive results. For now, we assume the reader to be familiar with the basic notation for first-order term rewriting systems (TRSs), with simple types, and with the notion of bound variables [3, 24]. This should be sufficient to understand the underlying phenomena, although familiarity with the formats of higher-order term rewriting we treat is an advantage. We refer the reader to [24, Section 3.3.5] for the definition of applicative TRSs, to [28] for STTRSs, to [8, 10, 20] for CRSs, and to [20, 13] for PRSs. Furthermore, we assume the reader to be familiar with the concept of orthogonality in first-order rewriting and its (straightforward) extension to higher-order rewriting; on several occasions we shall use the fact that orthogonal first/higher-order term rewriting systems are confluent [8, 15, 21].

Throughout the paper, we let Σ denote a (first- or higher-order) signature, and T denote a (first- or higher-order) rewriting system; we equip both of these with integer subscripts when more than one signature or system is needed. We denote by $A \uplus B$ the disjoint union of sets A and B, and we denote by $T_0 \uplus T_1 = (\Sigma_0 \uplus \Sigma_1, R_0 \uplus R_1)$ the disjoint union of the rewrite systems $T_i = (\Sigma_i, R_i)$ for $i \in \{0, 1\}$. A property P of a class C of rewrite systems is modular if $P(T_0 \uplus T_1) \iff P(T_0) \& P(T_1)$ for all $T_0, T_1 \in C$.1 We employ x, y, z to range over variables for terms of base type, and Z, W, X to range over meta-variables, i.e. variables which yield a term of base type when supplied with sufficiently many terms of the appropriate types. When appropriate, we underline the redex contracted in a rewrite step. Finally, we employ standard rewriting notation as given in [24].

1.1. Modularity in first-order rewriting

The study of modularity in term rewriting was essentially introduced by Toyama in two seminal papers showing, respectively, that confluence is modular for TRSs [26], but that termination is not [25]. Since then, modularity of various properties has been investigated, e.g., normalization (easily seen to be modular, see also [11]), the unique normal forms property (modular [14]), unique normal forms wrt. reduction (not modular [14]), completeness (not modular [25]). For the non-modular properties, restrictions (e.g., left- and/or right-linearity, non-collapsingness) have been put forth that ensure modularity, see for example [22, 27, 12, 23, 16]). Furthermore, modularity has been considered for several varieties of first-order rewriting, and new proofs have been given for modularity of confluence, cf., [19] and its references.

To set the stage for the rest of the paper, we recapitulate Toyama’s classical counterexample to modularity of termination for TRSs.

Counterexample 1.2. The single rule TRS
$$f(a, b, x) \rightarrow f(x, x, x)$$
is easily proved to be terminating. However, when taking its disjoint union with the, also trivially terminating, two-rule TRS
$$
g(x, y) \rightarrow x$$
$$g(x, y) \rightarrow y$$

1 An easy consequence of the fact that reduction steps in T_i can be embedded as reduction steps in $T_0 \uplus T_1$, is that each property P studied in this paper holds for T_i if it holds for $T_1 \uplus T_2$. Hence our focus is exclusively on (dis)proving $P(T_0 \uplus T_1) \iff P(T_0) \& P(T_1)$.

The rank, the maximum number of signature changes on a path from the root to a
leaf in a term, cannot increase along reduction. Here, the “white” system is
$R_0 = \{ f(x) \to g(x,x), g(a,x) \to f(x) \}$ and the “black” system is
$R_1 = \{ h(y) \to y \}$ (cf. Counterexample 1.2).

we obtain a non-terminating system as witnessed by the cycle:

$\begin{array}{c}
 f(a,b,g(a,b)) \to f(g(a,b),g(a,b),g(a,b)) \\
 \to f(a,g(a,b),g(a,b)) \to f(a,b,g(a,b)) \\
\end{array}$

Intuitively, termination of the first TRS above relies on the absence of a term which reduces both to a and b; a property destroyed by the second TRS by its ability to encode non-
deterministic choice.

Toyama’s counterexample above holds true for any higher-order format embedding
TRSs and their rewrite relation, in particular the formats considered in this paper.

The main proof technique for establishing modularity results for first-order TRSs is
based on terms in the disjoint union of TRSs being stratified in the sense that each term in
the disjoint union has a unique decomposition into layers of components residing in either
of the TRSs separately, and moreover that this stratification is preserved by rewriting in
the sense that the rank, i.e. the number of layers, cannot increase along a reduction (Figure 1).
In the higher-order case, preservation fails due to the presence of rules in which meta-
variables can be applied to each other, which allow for nesting in the rhs of rules, whence
the rank may increase along a reduction (Figure 2).
2. Counterexamples to modularity for applicative TRSs

In this section we set the stage for our positive modularity results for applicative TRSs in Sections 5 and 6. This we do by analysing known obstacles for obtaining such results, cf. [7], from the perspectives of simply typed STTRS and of pattern rules.

Applicative TRS can be embedded into ordinary (functional) TRSs by viewing the symbols from their signature as nullary function symbols and adjoining one binary function symbol for application. Therefore, one might naively expect the modularity results for TRSs to carry over to applicative TRSs. In fact, they do not, the reason being the change in status of the application symbol from being implicit in applicative TRSs to being an explicit element of the signature in their embedding; that is, the embedding of the disjoint union of two applicative TRSs is distinct from the disjoint union of their embeddings [7].

Remark 2.1. To prove, say, confluence of the disjoint union of the confluent applicative TRSs \{ f Z → Z \} and \{ g W → W \}, one might also proceed as follows, cf. [24, Section 3.3.5]:

1. Uncurrying yields the confluent functional TRSs \{ f(x) → x \} and \{ g(y) → y \};
2. Modularity [26] yields confluence of the disjoint union \{ f(x) → x, g(y) → y \}; and

The main obstacle following this route is that typically rules of applicative TRSs do contain active (higher-order) variables (this can be seen as the raison d’être of applicative TRSs) and such rules cannot be in the image of the currying transformation.

Uniqueness properties. Unlike what is the case for first-order TRSs, confluence is not a modular property of applicative TRSs as famously shown by Klop [8, Theorem III.1.2.12] who considered the disjoint union of combinatory logic and the applicative TRS \{ D Z Z → Z \}. In order to obtain our positive result of Section 5 we provide some further counterexamples and identify possible causes of non-modularity.

The confluence claims in the counterexamples below are readily verified by standard TRS theory (orthogonality resp. termination and critical pair criteria) applied to the embedding of the applicative TRSs. In our first counterexample the role of combinatory logic in Klop’s example is take over by the \(\mu \)-rule, directly modeling recursion instead of encoding it via a fixed-point combinator in combinatory logic.

Counterexample 2.2. Taking the disjoint union of the confluent applicative TRSs \{ \mu Z → Z (\mu Z) \} and \{ f W W → a, f W (s W) → b \} yields a non-confluent system as witnessed by
\[
\begin{align*}
a & \leftarrow f (\mu s) (\mu s) \rightarrow f (\mu s) (s (\mu s)) \rightarrow b.
\end{align*}
\]

Counterexample 2.3. The disjoint union of the confluent applicative TRSs \{ g (Z W) → g W \} and \{ h a → b \} is non-confluent as witnessed by
\[
\begin{align*}
ga & \leftarrow g (h a) → g b.
\end{align*}
\]

Assigning types as \(a, b, W : o, Z, g, h, s : o → o, \mu : (o → o) → o, \) and \(f : o → o → o \) shows that the applicative TRSs in both counterexamples are in fact STTRSs, which entails that confluence is not modular for STTRSs. However, note that the first counterexample employs a non-left-linear rule (e.g., the left-hand side \(f W W \)) and the second example a non-pattern rule (with left-hand side \(g (Z W) \)). In Section 5 we show that confluence is modular for left-linear pattern STTRSs.

The same counterexamples show that the unique normal forms property is not modular for applicative TRSs and STTRSs.
Remark 2.4. The problematic nature of non-pattern rules in applicative TRSs, i.e. rules which contain active variables as in the first rule in Counterexample 2.3, is well-known. For instance, adjoining to combinatory logic or the \(\lambda \)-calculus a combinator \(A \) defined by \(A(ZW) = Z \), i.e. which extracts the function from a function application, immediately renders these calculi inconsistent in the sense that all terms become convertible [4].

Existence properties. Toyama’s Counterexample 1.2 to modularity of termination for TRSs carries over immediately to applicative TRSs and even STTRSs, as the terminating TRSs involved can be viewed as terminating STTRSs by assigning appropriate types to the function symbols, e.g., the type \(o \rightarrow o \rightarrow o \rightarrow o \) to the ternary function symbol \(f \). But unlike the TRS case also normalization fails for applicative TRSs, under various restrictions, caused by the possibility to apply meta-variables.

In Section 6 we will show that termination and normalization are modular for applicative non-duplicating, typable, pattern TRSs. Here we show that any two of them are not sufficient for modularity of termination. The termination claims in the counterexamples below are readily verified by current automated termination tools.

Counterexample 2.5. Taking the disjoint union of the applicative (duplicating) typable pattern TRSs \(\{ f(aZ \rightarrow f(Za)Z) \} \) and \(\{ gW \rightarrow W \} \) enables the non-normalizable reduction \(f(a)g \leftrightarrow f(ga)g \) despite both TRSs being normalizing (even terminating, note that no redex-creation is possible in either of them).

The same example provides a counterexample to modularity of (left-linear, orthogonal) termination, acyclicity, and completeness.

Counterexample 2.6. Taking the disjoint union of the applicative left-and-right-linear (non-typable) pattern TRSs \(\{ fZW \rightarrow Zaf \} \) (‘left rotation’) and \(\{ gZW \rightarrow Wgb \} \) (‘right rotation’) enables the non-normalizable reduction \(fgb \leftrightarrow gaf \) despite both TRSs being normalizing (even terminating, based on the insertion of \(a \) and \(b \) in their ‘rotations’).

The same example provides a counterexample to modularity of (left-and-right-linear, orthogonal) termination, acyclicity, and completeness.

Counterexample 2.7. Taking the disjoint union of the applicative left-and-right-linear typable (non-pattern) TRSs: \(\{ fZW \rightarrow Z(af) \} \) and \(\{ gXY \rightarrow Y(gb) \} \) enables the non-normalizable reduction \(f(gb) \leftrightarrow g(af) \) despite both TRSs being normalizing (even terminating, based on the same idea as in the previous counterexample). The TRSs are seen to be typable by assigning types as: \(W,b:o, Z,f,Y,g:o \rightarrow o, \) and \(a,X:(o \rightarrow o) \rightarrow o \).

The same example provides a counterexample to modularity of (left-and-right-linear, typable) termination and acyclicity.

3. Counterexamples to modularity for functional CRSs

For PRSs, in general, properties are preserved under signature extensions, i.e. are modular when one of the rewrite systems has no rules at all. The basic idea is to replace each fresh function symbol (from the other signature) by a variable of identical type: If a property does not hold with fresh function symbols, it does not hold with all fresh function symbols replaced by fresh variables, a contradiction. Obviously, this idea fails when the
replacement of function symbols by variables is, for some reason, impossible. In particular, for functional CRSs the replacement is impossible in the absence of meta-variables in terms. More precisely, the rewrite relation of a functional CRS was defined in [10] as a relation on terms without meta-variables. As we show in this section, this causes that most properties are not even preserved under signature extensions.

Remark 3.1. The restriction of the rewrite relation to terms without meta-variables is analogous to the restriction of the rewrite relation of first-order TRSs to ground terms. From that perspective, the failure of modularity in case of signature extensions is unsurprising (e.g., normalization is not modular w.r.t. the ground rewrite relation of TRSs; to wit \{f(a) \rightarrow a, f(x) \rightarrow f(x)\} is ground normalizing but not so when the signature is extended with a constant b). We view our results below in a positive way, as suggesting to change the definition of the rewrite relation of a CRS to include meta-terms, having meta-variables.

Uniqueness properties.

Counterexample 3.2. The CRS given by the rules

\[
\begin{align*}
 f(f(W)) & \rightarrow f(W) \\
 f([x]Z(x)) & \rightarrow f(Z(a)) \\
 f([x]Z(x)) & \rightarrow f([x]Z(Z(x)))
\end{align*}
\]

can be shown to be confluent (an easy induction on terms), but is not so after extending the signature with a unary g:

\[
\begin{align*}
 f(g(a)) & \leftarrow f([x]g(x)) \rightarrow f([x]g(g(x))) \rightarrow f(g(g(a)))
\end{align*}
\]

deploying non-preservation of confluence.

In effect, the counterexample shows that a CRS can be confluent, i.e. confluent on terms, but not meta-confluent, i.e. not confluent on meta-terms. This is analogous to the fact that a TRS can be ground confluent, but not confluent.

By the same example it follows that the unique normal forms property is not preserved under signature extension either.

Existence properties. For TRSs, termination is preserved under signature extension, as follows by an easy induction on the rank of terms as fresh function symbols partition any term in the disjoint union into terminating components. For PRSs, termination is preserved under signature extension as explained above. For CRSs both of these methods fails, the former because of the lack of an appropriate notion of rank, and the latter because of the absence of fresh meta-variables.

Counterexample 3.3. The CRS having a single, unary function symbol f, and rule

\[
\begin{align*}
 f([x][y]Z(x,y)) & \rightarrow Z([x][y]Z(y,x),[x]x)
\end{align*}
\]

is terminating, as can be shown by induction on terms (noting that the rewrite relation for CRSs is defined on terms not on meta-terms, termination of the CRS is shown by an easy induction on terms using that a term may contain at most one bound variable, in
the absence of function symbols having arity greater than one). However, extending the
signature with a binary symbol \(g \) allows to ‘swap the roles of \(x \) and \(y \).’ For instance:

\[
\begin{align*}
f([x][y]g(f(x), f(y))) & \Rightarrow g(f([x][y]g(f(y), f(x))), f([x][y])) \\
& \Rightarrow g(f([x][y]g(f(x), f(y))), f([x][y]))
\end{align*}
\]

The reduction has shape \(t \rightarrow g(f([x][x]), f([x][x])) \) for \(t = g(f([x][x], t), f([x][x])) \), giving rise to the spiralling reduction:

\[
t \rightarrow g(g(f([x][x]), t), f([x][x])) \rightarrow g(g(f([x][x]), g(f([x][x]), t), f([x][x])), f([x][x])) \rightarrow \ldots
\]

showing non-preservation of termination. Note that it is essential for non-termination that \(Z(x,y) \) is instantiated by a term containing both \(x \) and \(y \), something impossible without function symbols of arity more than 1.

As the CRS is orthogonal and non-erasing, it is terminating iff it is normalizing, whence normalization is not preserved under signature extension either.

Both for TRSs and PRSs, left-linear completeness is preserved under signature extension. For TRSs this is just a special case of modularity of left-linear completeness [27, 23]. For PRSs, it follows by replacing fresh function symbols with fresh variables as explained above. For CRSs, left-linear completeness is not preserved under signature extension: The CRS in Counterexample 3.3 is orthogonal, hence left-linear and confluent, and is terminating, hence complete. However, it is not terminating after adding the fresh symbol \(g \).

4. Counterexamples to modularity for PRSs

In this section we present counterexamples to modularity for Nipkow’s pattern rewrite systems.

Since the terms of STTRSs can be embedded directly into PRSs, one might naively expect the counterexamples against modularity for STTRSs of Section 2 to carry over to PRSs. In fact, they do not, the reason being the possible presence of abstractions in PRS terms and the ensuing difference in substitution (of higher-order terms).

Example 4.1. As shown in Counterexample 2.5, the system \(\{ f \ a \ Z \rightarrow f (Z \ a) \ Z \} \) is terminating when viewed as an STTRS, but not so when viewed as a PRS. To wit, instantiating the meta-variable \(Z \) in the rule to \(x \cdot x \) yields the infinite looping reduction:

\[
f \ a \ (x\cdot x) \rightarrow f \ a \ (x\cdot x)
\]

Also, PRSs do, unlike CRSs, allow for function variables in terms, hence the counterexamples against modularity for CRSs of Section 3 based on signature extension, do not carry over to PRSs either.

Uniqueness properties. Klop showed in [8] that confluence is not a modular property for CRSs. In particular, his counterexample [8, Theorem III.1.2.10] involves (i) the non-left-linear first-order rule \(\{ D \ Z \ Z \rightarrow Z \} \), and (ii) the \(\beta \)-rule of the \(\lambda \)-calculus.

Similar to what we did in the case of applicative TRSs (Counterexample 2.2), we recast Klop’s example as a PRS replacing \(\lambda \)-calculus by the \(\mu \)-rule, directly modeling recursion instead of encoding it via the fixed-point combinator in the \(\lambda \)-calculus.
Counterexample 4.2. The first-order TRS consisting of the following two rules
\[
\begin{align*}
 f(x, x) & \rightarrow a \\
 f(x, s(x)) & \rightarrow b
\end{align*}
\]
is terminating and has no critical pairs, hence is confluent by Huet’s Critical Pair Lemma [5].

However, taking the disjoint union with the orthogonal—hence confluent—single-rule PRS \(\mu(x.Z(x)) \rightarrow Z(\mu(x.Z(x)))\) yields a non-confluent system as witnessed by:
\[
a \leftarrow f(\mu(x.s(x)), \mu(x.s(x))) \rightarrow f(\mu(x.s(x)), s(\mu(x.s(x)))) \rightarrow b
\]

Intuitively, confluence of the TRS above relies both on termination and on the absence of a critical pair involving the two rules, which in turn relies on non-left-linearity and non-convertibility of \(t\) and \(s(t)\) for any term \(t\). Both of those features are destroyed by the PRS above due to its ability to encode recursion, as witnessed by taking \(t = \mu(x.s(x))\).

The unique normal forms property is not modular for PRSs as shown by the same example employed above: As the rewrite systems are confluent they both have the unique normal forms property, but the terms \(a\) and \(b\) are distinct convertible normal forms in the disjoint union of the TRS and the PRS.

Existence properties. Left-linear completeness is modular for TRSs [27, 23], but fails to be so for PRSs.

Counterexample 4.3. Consider the PRS consisting of the single rule
\[
f(x, x, xy.Z(x, y)) \rightarrow g(Z(a, f(x.Z(x, a), xy.Z(x, y))))
\]
where \(f\) and \(g\) are second-order symbols and \(a\) is a first-order symbol. The PRS is orthogonal, hence confluent. A straightforward analysis of the terms substitutable for \(Z\) shows that no redexes can be created (in particular, the sub-term headed by \(f\) in the right-hand side cannot give rise to a redex, as that would require \(Z(x, y)\) to be instantiated by \(x\) which would cause the redex to be ‘erased before it is created’, so to speak), hence the system is terminating by the Finite Developments Theorem. However, taking the disjoint union with the left-linear and obviously complete TRS consisting of the single rule
\[
h(x, y) \rightarrow x
\]
yields a non-terminating PRS as witnessed by:
\[
f(x, x, xy.h(x, y)) \rightarrow g(h(a, f(x.h(x, a), xy.h(x, y)))) \rightarrow g(h(a, f(x, x, xy.h(x, y))))
\]
Note the reduction sequence above is of the form \(t \rightarrow g(h(a, t))\) for \(t = f(x, x, xy.h(x, y))\), hence gives rise to the infinite spiralling reduction:
\[
t \rightarrow g(h(a, t)) \rightarrow g(h(a, g(h(a, t)))) \rightarrow g(h(a, g(h(a, g(h(a, t)))))) \rightarrow \ldots
\]
Next we turn our attention to normalization. Normalization is modular in the first-order case as a simple bottom-up argument shows. The result does not extend to PRSs, to wit the following counterexample.

Counterexample 4.4. The PRS consisting of the two rules
\[
\begin{align*}
 f(x.Z(x), y.y) & \rightarrow f(x.Z(x), y.Z(Z(y))) \\
 f(x.x, y.Z(y)) & \rightarrow a
\end{align*}
\]
is normalizing as can be shown by induction on terms substitutable for \(Z\) (consider an \(f\)-term: if it is not a redex, it cannot become one; if the second rule applies to it, then \(a\) is its normal form; if only the first rule applies to it, it can only be applied once). However,
combining it with the trivially normalizing one-rule TRS \(g(g(x)) \rightarrow x \) yields a system which is not normalizing (it 'reanables' application of the first rule), as witnessed by the cycle:

\[
f(x.g(x), y.y) \leftrightarrow f(x.g(x), y.g(g(y)))
\]

in which each term is the only possible reduct of the other.

Normalization of the PRS above relies on the left-hand side of its first rule to be non-embeddable into its right-hand side: if it were embeddable, the term substituted for \(Z(Z(y)) \) should be reducible to, and therefore identical, to \(y \), but then the second rule would have been applicable to its lhs as well, ensuring normalization. By adding the projection rule of the TRS above, the left-hand side can be embedded, thus destroying normalization.

Counterexample 4.3 witnesses that left-linear completeness is not modular for PRSs.

5. Modularity of confluence in left-linear pattern systems

For first-order left-linear TRSs, modularity of confluence is a trivial consequence of modularity of confluence for arbitrary TRSs. However, since the latter fails in the higher-order case, one may wonder whether left-linearity would suffice to regain modularity of confluence. Indeed it does; the following is a direct corollary of the results of [21].

Theorem 5.1. Confluence is modular for left-linear pattern systems (applicative TRSs, CRSs, and PRSs).

The idea of the proof, as presented in the PhD thesis of van Oostrom [17], is to use the Hindley–Rosen Lemma and confluence of each of the PRSs, to reduce confluence of the union to their commutation. The latter holds, because since the signatures are disjoint, and since the rules of the respective PRSs were assumed to be left-linear pattern rules, they are therefore orthogonal to each other. The results for applicative pattern TRSs and CRSs follow since these can be embedded faithfully into PRSs.

As a consequence confluence is modular for left-linear pattern STTRSs as well.

Remark 5.2. One may wonder whether confluence is modular for non-duplicating rewrite systems. In the case of CRSs and PRSs the answer is negative [8] (note that the \(\beta \)-rule of the \(\lambda \)-calculus is non-duplicating as a higher-order rule). We leave the question whether confluence is modular for non-duplicating applicative pattern (ST)TRSs to future research.

6. Normalization and termination are modular for non-duplicating pattern STTRSs

In this section we show normalization and termination to be modular for non-duplicating pattern STTRSs. In order to overcome the problem illustrated in Figure 2 that the classical notion of layer will not do as the rank then could increase along reduction, we introduce appropriate notions of component and component-type size, the idea of the latter being that even though components may become nested (rendering the classical notion of rank useless), this can only be done by means of applying one component to another leading to a decrease in the size of the component types. Since this measure only takes creation
of components by means of application into account, not duplication of existing ones, the results are restricted to non-duplicating systems (they have to be in view of Section 2).

In order to stratify mixed applicative terms, we refine the standard notion of a multi-hole context (see e.g. [24, Section 2.1.1]) based on classifying symbols into colors. A function symbol belonging to \(\Sigma_\gamma \) is said to have color \(\gamma \). We will conventionally refer to color 0 as \textit{white}, 1 as \textit{black}, and employ both white (\(\Box \)) and black (\(\blacksquare \)) typed holes, to be filled by top-white and top-black terms of the appropriate types, respectively. A hole which may be either white or black is denoted by \(\square \). We will view colors both as booleans, applying negation (\(\overline{\gamma} \)) and exclusive-or (\(\gamma_1 \otimes \gamma_2 \)) to them, and as numbers, multiplying by them.

To illustrate our constructions we make use of the following running example.

Example 6.1. In \(\mathcal{T} \) the disjoint union of the white rewrite system \(\mathcal{T}_0 = \{ f Z W \rightarrow Z W \} \) with \(f : (o \rightarrow o) \rightarrow o \rightarrow o \) and \(o : 0 \), and the black rewrite system \(\mathcal{T}_1 = \{ g a \rightarrow a \} \) with \(g : o \rightarrow o \) and \(b : o \), we have the reduction:
\[
g (f (f g) b) \rightarrow g (f g b) \rightarrow g (g b) \rightarrow g b \rightarrow b
\]
One can think of components, to be defined next, as the applicative pendant of the notion of layer, well-known from the study of modular properties of first-order term rewriting systems, see e.g. [24, Section 5.7.1].

Definition 6.2. For \(\gamma \) either black or white, a \(\gamma \)-\textit{component} is a non-empty context built out of \(\gamma \)-symbols and \(\overline{\gamma} \)-holes, which does not have active holes, i.e. holes are not applied.

Example 6.3. For the STTRSs of Example 6.1, \(f \blacksquare \blacksquare \) and \(f (f \blacksquare \blacksquare) \) are 0-components, and \(b, g g \) and \(g (g (g \Box)) \) are 1-components. Non-examples of components are \(\blacksquare \) (empty), \(f g \) (symbols of mixed colors), \(\blacksquare \) (active hole), \(f \Box \) (same color symbol and hole), and \(f \blacksquare \blacksquare \).

We employ \(C, D, E \) to range over components. In the following algebraic semantics, we will view every component \(C \) of type \(\tau \) having holes of, from left to right, types \(\sigma_1, \ldots, \sigma_n \) as an \(n \)-ary function symbol \(C : \sigma_1 \times \ldots \times \sigma_n \rightarrow \tau \) of the \textit{component} signature \(\Sigma \). We employ \(t, s, u \) to range over \(\Sigma \)-terms.

Definition 6.4. The \textit{component} algebra has \(\Sigma \)-terms as carrier.
\[
[f] = f
\]
\[
\mathcal{A}(C(\overline{\ell}), D(\overline{s})) = (C \, D)(\overline{\ell}, \overline{s}) \quad \text{if } C, D \text{ have the same color}
\]
\[
(C \boxplus)(\overline{\ell}, D(\overline{s})) \quad \text{if } C, D \text{ have distinct colors}
\]
The component algebra gives rise to an obvious bijection mapping each (closed) \(\Sigma \)-term \(t \) to its interpretation as \(\Sigma \)-term, which we indicate by boldface \(\overline{t} \), and vice versa. A term is said to be \textit{top}-white/black if the root symbol of its interpretation is white/black.

Example 6.5. The interpretation of the top-black term \(t = g (f (f g) b) \) of Example 6.1 is the component term \(t = C(D(E_1, E_2)) \) with \(C = g \Box, D = f (f \blacksquare \blacksquare) \), \(E_1 = g, E_2 = b \).

Remark 6.6. Our choice to model decomposing terms by means of interpretation into the component algebra is at an abstraction level intermediate between traditional \textit{ad hoc} approaches (involving notions such as \textit{special subterms}, cf. [24, Section 5.7.1]), and more recent \textit{categorical} approaches (involving notions such as \textit{monads}, cf. [1]), to modularity. It should be interesting to investigate whether the latter approach, set up to deal with functional TRSs (and collapsing of components), can be adapted to the present setting of applicative TRSs (and application of components).
The idea of the following definition is to measure a term by the ‘applicative power’ of its components, as expressed by their types. More precisely, terms are measured by pairs the elements of which also take the color of the context in which the term is put, into account: if a top-white (top-black) term is put into a white (black) context, the type of the term itself does not contribute to its measure.

Definition 6.7. The component-type size $|t|^3$ of term t is defined to be the pair $|t|$ defined by:

$$|C(t)| = (\gamma \cdot \#\tau + \#\vec{t}, \gamma \cdot \#\tau + \#\vec{t})$$

if $C : \tau$ has color γ, where $\#b = 1$, $\#(\sigma \rightarrow \tau) = \#\sigma + 1 + \#\tau$, and $\#C(\vec{t}) = \#\tau + \#\vec{t}$ if $C : \tau$. We use $<$ to denote the order induced on Σ-terms by comparing their component-type sizes by means of the product order of the less-than relation on such pairs of natural numbers. We use $|_|_0$ ($|_|_1$) to denote the projection onto the first (second) element of the pair yielded by the component-type size function.

Example 6.8. Since we have $g \square : o$, $f (f \blacksquare) \blacksquare : o$, $g : o \rightarrow o$, and $b : o$, for the components in Example 6.3, the component-type size $|t|$ of the top-black term $t = g (f (f g) b)$ is $(1 \cdot \#o + n, 0 \cdot \#o + n)$ with $n = \#o + \#(o \rightarrow o) + \#o$. Therefore $n = 1 + 3 + 1 = 5$ and $|t| = (6, 5)$. That is, only if the (top-black) term t is put into a white context, the type o of the term itself also contributes (1) to the component-type size; otherwise, when put into a black context, only the sub-components contribute (5) to the component-type size.

Lemma 6.9. The component algebra equipped with $<$ constitutes a well-founded (weakly) monotone Σ-algebra [24, Definitions 6.2.1, 6.4.28].

Proof. Well-foundedness of $<$ is trivial. Application (\oplus) being the only non-nullary symbol it suffices to check its (weak) monotonicity. This follows by calculation. □

Example 6.10. Instead of computing directly $|g (g b)| = (1, 0) < (6, 5) = |g (f g) b|$, the lemma allows to conclude $|g (g b)| < |g (f g) b|$ from $|g b| = (1, 0) < (4, 5) = |f g b|$ by strict monotonicity of application in its second argument. The subterm property [24, Definition 6.4.28] does not hold: $|f| = (0, 3) \not< (0, 1) = |f a|$ (it does for ‘special’ subterms).

In the traditional terminology of the theory of modularity [16, 24], the following key lemma bounds the component-type size of a term having a monochrome top, by the component-type sizes of its principal/alien subterms.

Lemma 6.11. If all symbols in t have color γ and ϕ is a substitution, then for $b \in \{0, 1\}$:

$$|t^\phi|^b_b \leq (b \otimes \gamma) \cdot \#\tau + \sum_{Z \in t} |\phi(Z)|^\gamma$$

with equality holding in case t is a non-empty pattern. Conversely, t is a non-empty pattern in case equality holds and all $\phi(Z)$ are top-γ.4

Proof. By induction on t and calculation. □

3The component-type size is an adaptation of the rank introduced in [2, Definition 8.56].

4The summation in the inequality is intended to quantify over occurrences of variables in t.
Example 6.12. Let $\phi(Z) = g$ and $\phi(W) = b$.

If $l = fZW$ then all symbols in l are white and $|l^{\phi}| = |fgb| = (4, 5)$. Computing the right-hand side of the inequality in the lemma for, respectively, $b = 0$ and $b = 1$ yields the same pair $(4, 5)$. Since the range of ϕ consists of top-white terms, we must conversely have by the lemma that l is a non-empty pattern which indeed it is.

If $r = ZW$ then all (none!) symbols in r are white and $|r^{\phi}| = |gb| = (1, 0)$. Computing the right-hand side of the inequality in the lemma for, respectively, $b = 0$ and $b = 1$ yields the strictly greater pair $(4, 5)$.

Definition 6.13. A rewrite rule is non-duplicating if no free (meta-)variable occurs more often in its right-hand side than in its left-hand side.

The following lemma is an analogue of the classical lemma in the theory of modularity of functional TRSs that the rank of a term cannot increase along a reduction cf. e.g. [26, 24]. In the present applicative case, we have to require rules to be non-duplicating in the light of Counterexample 2.5. The condition entails that rule application can essentially only ‘recombine’ the components of a term, which will suffice for modularity of termination and normalisation of STTRSs, as for these ‘recombination’ will entail a decrease in the component-type size.

Lemma 6.14. If $t \rightarrow s$ in the disjoint union of non-duplicating pattern STTRSs, then $|t| \geq |s|$.

Proof. We claim $|l^{\phi}| \geq |r^{\phi}|$, for any rule $l \rightarrow r$ with l, r of type τ, and any substitution ϕ. Assuming the claim holds, the result follows by weak monotonicity (Lemma 6.9). The claim itself holds since for $b \in \{0, 1\}$

$$|l^{\phi}|_b = (b \otimes \gamma) \cdot \#\tau + \sum_{Z \in l} |\phi(Z)|_\gamma \geq (b \otimes \gamma) \cdot \#\tau + \sum_{Z \in r} |\phi(Z)|_\gamma \geq |r^{\phi}|_b$$

(6.1)

where the equality holds by Lemma 6.11 using the assumption that l is a pattern and is non-empty (not a single variable) by the general assumption on applicative TRSs, the first inequality holds by the assumption that rules are non-duplicating, and the second inequality holds by Lemma 6.11 again.

Example 6.15. For ϕ, l and r as in Example 6.12 we have $t = l^{\phi} \rightarrow r^{\phi} = s$ by an application of the rule $l = fZW \rightarrow ZW = r$. As was computed there, indeed $|t| = (4, 5) \geq (1, 0) = |s|$; the component-size type strictly decreases because the rule combines the arguments substituted for Z and W in its right-hand side ZW.

We show now that if the component-type size does not decrease across a rewrite step, then the components are not ‘combined’ and hence the step can be viewed as a step on component symbols. To that end, we define the rewrite relation \Rightarrow on component terms as being generated by the, infinitely many, rewrite rules $C(\bar{Z}) \rightarrow D(\bar{W})$ for all components C, D of the same color, such that $C[\bar{Z}] \rightarrow D[\bar{W}]$.

Lemma 6.16. If $t \rightarrow s$ and $|t| = |s|$ in the disjoint union of non-duplicating pattern STTRSs, then $t \Rightarrow s$.

Proof. We claim $t \Rightarrow s$ if $t = l^{\phi}$ and $s = r^{\phi}$, for any rule $l \rightarrow r$ with l, r of type τ, and any substitution ϕ such that $|l^{\phi}| = |r^{\phi}|$. Assuming the claim holds the result follows by
induction on the derivation of the \rightarrow-step as follows. By definition
\[
|t| = (\gamma \cdot \#_\tau + \#_{\vec{t}}, \vec{\tau} : \#_\tau + \#_{\vec{t}}) \quad \text{if } t = C(\vec{t}) \text{ and } C : \tau \text{ has color } \gamma
\]
\[
|s| = (\delta \cdot \#_\tau + \#_{\vec{s}}, \vec{\delta} : \#_\tau + \#_{\vec{s}}) \quad \text{if } s = D(\vec{s}) \text{ and } D : \tau \text{ has color } \delta
\]
hence $|t| = |s|$ and the fact that $0 \neq \#_\tau$ entail $\gamma = \delta$ and $\#_{\vec{t}} = \#_{\vec{s}}$, from which the result easily follows using Definitions 6.4 and 6.7 and the definition of \Rightarrow.

It remains to prove the claim. Let ϕ and χ be obtained by decomposing the substitution ϕ into γ and $\vec{\tau}$-components. Formally, ψ and χ such that $\phi = \psi \chi$, are obtained from ϕ by:
\[
\psi(Z) = E[\vec{W}] Z, \quad \chi(W_{Z,i}) = t_i, \quad \text{if } \phi(Z) = E(\vec{t}) \text{ and } E \text{ has color } \gamma
\]
\[
\psi(Z) = W_Z, \quad \chi(Z_Z) = \phi(Z), \quad \text{otherwise}
\]
Defining $\vec{l} = l^\psi$ and $\vec{r} = r^\psi$, we have by construction that \vec{l} is a non-empty pattern the symbols of which have color γ, so by the same reasoning as for Equation 6.1, the assumption $|t| = |s|$ yields:
\[
|t|_b = |[\vec{l}]|_b = (b \otimes \gamma) \cdot \#_\tau + \sum_{W \in \vec{\tau}} |\chi(W)|_{\gamma} = (b \otimes \gamma) \cdot \#_\tau + \sum_{W \in \vec{\tau}} |\chi(W)|_{\gamma} = |[\vec{r}]|_b = |s|_b
\]
(From this and the assumption that rules are non-duplicating, it follows that in fact each variable must occur the same number of times in \vec{l} and \vec{r}.) From this and Lemma 6.11 it follows that also \vec{r} is a non-empty pattern with symbols of color γ, since by construction r^ψ has color γ and all $\chi(W)$ are top-τ. Therefore, to the \rightarrow-step $\vec{l} \rightarrow \vec{r}$ the \Rightarrow-rule $C(\vec{Z}) \rightarrow D(\vec{W})$ is associated, for the components C and D and vectors of variables \vec{Z} and \vec{W}, such that $C[\vec{Z}] = \vec{l}$ and $D[\vec{W}] = \vec{r}$, and the claim follows: $t = C(\chi(\vec{Z})) \Rightarrow D(\chi(\vec{W})) = s$. ■

Example 6.17. As seen in Examples 6.8 and 6.10 for the step $g(f(fg)b) \rightarrow g(fg)bb$ it holds $|g(f(fg)b)| = (6,5) = |g(fg)bb|$. From Example 6.5, the corresponding component terms are $t = C(D(E_1,E_2))$ and $s = C(D'(E_1,E_2))$, using the component symbols given there and $D' = f$. We indeed have, as per the lemma, $t \Rightarrow s$ by an application of the rule $D(Z,W) \rightarrow D(Z,W)$ obtained from the white step $D[Z,W] = f(fZ)W \rightarrow fZ = D[Z,W]$.

Summarizing the above, steps either decrease the component-type size or respect components, in the sense that they can be lifted to the component algebra. This suffices for establishing modularity of termination and normalization for non-duplicating pattern STTRSs.

Theorem 6.18. Termination is modular for non-duplicating pattern STTRSs.

Proof. By Lemma 6.14 from some moment on all the terms along an hypothetical infinite \rightarrow-reduction must have the same component-type size. We conclude by Lemma 6.16 and the observation that if the rewrite relations \rightarrow_γ are terminating, then \Rightarrow is seen to be terminating by an application of recursive path orders induced by the precedences induced by \rightarrow_γ on components. ■
Theorem 6.19. Normalisation is modular for non-duplicating pattern STTRSs.

Proof. By Lemma 6.14 the component-type size cannot increase along \rightarrow-reduction, hence any term can be reduced to a term of minimal component-type size, that is, such that any further reduction will leave the component-type size unchanged. We conclude by Lemma 6.16 and the observation that if the rewrite relations \rightarrow_γ are normalising, then the corresponding \Rightarrow-strategy is seen to be terminating by an application of recursive path orders induced by the precedences induced by the normalising \rightarrow_γ-strategies on components.

Example 6.20. Each applicative TRS in Example 6.1 is a non-duplicating terminating/normalizing pattern STTRSs. Hence by Theorem 6.18/6.19 so is their disjoint union.

Remark 6.21. Since terms of base type are ‘applicatively inert’ it might be possible to lift the non-duplicatingness restriction on variables of base type in Theorem 6.19, by appropriately adapting the component-type size. We leave this to future research.

In view of the theorems and of the fact that termination and normalization are modular for non-duplicating functional TRSs [22, 14, 16], one may wonder whether normalization and termination are modular for non-duplicating (or left-and-right-linear) higher-order rewriting systems (CRSs or PRSs). Leaving the other cases to future research (but cf. [2, Chapter 9] for some initial and related results), we show modularity of termination fails for left-and-right-linear PRSs because linear PRS rules (such as the β-rule) can still ‘embed duplication’.

Counterexample 6.22. The following rules constitute a left-and-right-linear orthogonal PRS:

$$
\begin{align*}
 f(a, b, Z) & \rightarrow g(y. f(y, y, y), Z) \\
 g(y. Z(y), W) & \rightarrow Z(W)
\end{align*}
$$

which can be shown terminating by adapting e.g. the proof of FD à la Tait of [18], using that by confluence there is no term which can be reduced to both a and b. Note that this non-duplicating PRS can ‘simulate’ the duplicating first TRS of Counterexample 1.2:

$$
 f(a, b, x) \rightarrow g(y. f(y, y, y), x) \rightarrow f(x, x, x)
$$

hence termination is not preserved when taking the disjoint union with its second TRS.

Acknowledgements. We thank the organisers and participants of the Austria–Japan Summer Workshop on Term Rewriting, 8–13 August 2005, Obergurgl, for the opportunity to present an early version of this paper, and them, Andrzej Filinski, and the anonymous referees for feedback.

References

