Vectorized Method for Solving the n-queens Problem using Bohrium

Larsen, Mads Ohm

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Vectorized Method for Solving the n-queens Problem using Bohrium

Mads Ohm Larsen <ohm@nbi.ku.dk>

Introduction
On a normal 8×8-chessboard we find that 8 queens can be positioned in
\[
\binom{64}{8} = \frac{64!}{8!(64-8)!} = 4,426,156,082
\]
different legal ways. This is too many to brute force, especially as we go for larger n.
For the 8×8-queens problem we only have 92 distinct solutions.

Backtracking Algorithm
Since only one queen are allowed in each row and column, we can skip placing another queen in the same column or row in the backtracking algorithm.

Figure 1 shows the “identity” chessboard, with a queen in each row and column. It is of course not a solution, but permuting the rows will eventually grant the 92 solutions.

\[
\text{ legal configurations of the board, which can be boiled down to }
\]

\[
2^4 - 2^3 - 2^2 - 2^1 - 2^0 = 256
\]
positions where we only check the diagonals, but only $2^4 = 16$ permutations of rows.

The 4×4 “identity” chessboard, which is shown in figure 2, can be built similar to figure 1.

For the four-queens problem there are only two solutions. These are shown in figure 3.

Adding a Dimension
Now that we know how to solve one board, we can create all permutations of that board, to solve the entire n-queens problem for some n.

We can do this, by adding a dimension to our matrices above, creating a tensor of 4×4-chessboards.

Matrix Representation
One solution for the four-queens problem can be represented as the following matrix:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

To check if this is a solution, we can sum along each column, row, and diagonal, checking if the sum of any of these are greater than 1. If not, then we have a solution.

Gathering all the traces (the sums along the diagonals and offset-diagonals) for the 4×4 identity board we get

\[
[0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1]
\]

Here we see a 4, which means that the identity board isn’t a solution to the four-queens problem. In fact, the maximum trace must be equal to $\frac{1}{2}n^2$ to be a solution.

Using NumPy and Bohrium
With our knowledge, we can construct a simple Python program using NumPy or Bohrium to calculate how many distinct solutions are to the n-queens problem for a given n. In this program we simply list all permutations of the $n \times n$-chessboard, flip it, than trace all diagonals from $-n$ to n and max that matrix into a 10 vector. The result is then found by counting this in vector.

Future Work
Unfortunately we do not currently gain any performance boost using Bohrium, however this is largely due to the creation of the permutation boards.

We are planning to implement a permutation generator into the Bohrium runtime as a streaming generator for the GPU, and hopefully get a performance speed-up doing so.

```python
import numpy as np
from itertools import permutations

def nqueens(n):
    # Generate all permutations of n identity boards
    boards = list(permutations(np.eye(n)))
    # Attack the flipped boards as another dimension
    rotation_boards = np.array([boards, np.fliplr(boards)])
    # Calculate all the traces, from -n to n for all the boards
    traces = np.max(np.sum(np.eye(n), axis=0), axis=0)
    # Count the number of 1s in the maximum of the traces
    print(np.sum(traces == 1), “solutions for n”, “by”, n, “board”)

nqueens(8) # => 92 solutions for 8 by 8 board
```