Visualizing and representing the evolution of topological features
Fonseca, Rasmus; Jørgensen, Desirée Malene Schreyer

Publication date: 2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Visualizing and representing the evolution of topological features

Rasmus Fonseca∗ Desiré Malene Schreyer Jørgensen†

Abstract

Simplicial complexes are discrete representations of topological spaces that are practical for computational studies. The first three Betti-numbers (indicating the number of components, tunnels and voids), as well as the topological persistence of each such feature, is well-defined and can be efficiently computed for simplicial complexes embedded in 2D and 3D [1, 2].

We introduce a novel representation of the evolution of topological features in simplicial complexes using so-called tunnel-trees in 2D and void-trees in 3D. This new representation makes it possible to analyze topological evolution by applying tools for analysis of binary trees. Furthermore it supplies a new method for visualizing topological evolution.

Introduction

A simplicial complex, K, is a set of simplices where any face of a simplex in K is also in K and the intersection of two simplices in K is either empty or a face of both simplices. Delfinado and Edelsbrunner [1] define a filter to be a sequence of simplices, σ^1, σ^2, ..., σ^n, where K_i = {σ^1, σ^2, ..., σ^i} is a simplicial complex for any choice of i (see left part of Figure 1). The filter represents the evolution of a simplicial complex and will be the focus of the methods described here. The topological features of a complex can be described using the Betti-numbers, β_d, which indicate the rank of the dth homology group. The first three Betti-numbers (β_0, β_1, β_2) can be interpreted more intuitively as the number of components, holes, and voids respectively.

A O(n log(n))-time algorithm exists to calculate the evolution of β_d as a simplicial complex is grown using a filter [1]. This method identifies each k-simplex, σ^i, as either positive if it creates a new k-cycle and thereby increases β_k, or negative if it changes a k-cycle into a k-boundary and thereby decreases β_k-1. For each positive k-simplex, σ^i, the negative (k + 1)-simplex, σ^j, that is responsible for turning the k-cycle, created by σ^i, into a k-boundary can be efficiently identified [2]. The difference between the indices of such two simplices is defined to be the persistence of the k-cycle represented by σ^i.

Tunnel- and void-trees

One interesting observation about tunnels in simplicial complexes embedded in 2D is that, often, when a positive 1-simplex (edge) is added to the complex, it splits one tunnel in two. If the empty space around the complex is considered a bounding tunnel, then every positive edge will split an existing tunnel in two. Similarly, if the entire space around a simplicial complex embedded in 3D is considered a bounding void, then a positive 2-simplex (triangle) always splits an existing void in two.

Based on this observation we define a tunnel-tree (or β_1-tree) of a 2D filter to be a binary tree where each node represents a distinct tunnel (see right part of Figure 1). The root is the bounding tunnel, and the leaves are triangular tunnels that will not be split further. With each node n we associate the positive edge that represents the tunnel, e(n), and with each leaf, we associate the negative triangle that fills this tunnel, τ(n).

The tunnel-tree is ordered such that for any node n, the triangle of the rightmost leaf, τ(Tree-Max(n)), is the triangle that ‘destroys’ e(n), and hence determines its persistence. A void-tree (or β_2-tree) of a 3D filter is defined in a similar fashion, only with positive triangles as nodes and negative tetrahedra as leaves.

A β_k-tree is constructed by running through the filter backwards as shown in Algorithm 1. Leaves are created when a negative (k + 1)-simplex is encountered and the roots of leaves are connected when positive k-simplices are encountered.

Algorithm 1 Build a β_k-tree given a filter

1: Create a 'bounding node', n_b
2: for i = n to 1 do
3: if σ^i is a negative (k + 1)-simplex then
4: Create a new node, n, and set τ(n) ← σ^i
5: else if σ^i is a positive k-simplex then
6: (n_0, n_1) ← Nodes of the two (k + 1)-simplices adjacent to σ^i
7: (n_0, n_1) ← (Root(n_0), Root(n_1))
8: Swap n_0 and n_1 if τ(Tree-Max(n_0)) is younger than τ(Tree-Max(n_1))
9: Create a new node n with n.left ← n_0, n.right ← n_1, and e(n.left) ← σ^i
10: end if
11: end for
12: return Root(n_b)

∗Department of Computer Science, University of Copenhagen, rfonseca@diku.dk
†Department of Computer Science, University of Copenhagen, daisy@diku.dk

This is an abstract of a presentation given at CG:YRF 2012. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
In line 4, the \((k+1)\)-simplex can be associated with its node using a hash-map. This ensures that locating the nodes of adjacent \((k+1)\)-simplices in line 6 can be performed in constant time. In line 6, if one of the \((k+1)\)-simplices adjacent to \(\sigma_i\) is not defined then the bounding node \(n_b\) is used instead. If \(\sigma_i\) has no adjacent \((k+1)\)-simplices then a new node is created for \(n_0\), and \(n_1\) is set to \(n_b\). Line 8 guarantees that the youngest simplex in a subtree can always be found by going to the far right in the tree using TREE-MAX.

A \(\beta_k\)-tree may be arbitrarily unbalanced, so a straightforward implementation will run in \(O(n^2)\) time worst case. The TREE-MAX-method can be improved to \(O(1)\) time by maintaining the maximum of each sub-tree as they are constructed. A data structure similar to disjoint-sets can be used to make the ROOT method run in \(O(\alpha(n))\)-time, so the entire method runs in \(O(n\alpha(n))\) worst case time.

Applications

One attractive property of \(\beta_k\)-trees is that they give an alternative representation of the topological evolution of a filter. This can be used in several ways.

First, the fact that simplices in the subtree of a particular node will tend to be spatially close to each other gives rise to a new definition of local persistence. A particular edge, representing a tunnel, might be deemed particularly persistent if its subtree contains more than a certain number of nodes. Such a definition of persistence will not be affected by the addition of simplices outside the tunnel.

Using a Delaunay complex and the radius of the smallest empty circumcircle to generate an \(\alpha\)-filter [3], the arrangement of a particular sub-tree also gives an indication of the shape of the corresponding feature. For instance, a node with an unbalanced sub-tree indicates a tunnel that is narrowing, whereas a balanced node indicates a constant width.

For some applications, a tree might be a better visualization of the topological evolution than e.g. \(k\)-triangles [2]. The above mentioned properties of locality can be computationally analyzed, but they can also be derived simply by inspecting \(\beta_k\)-trees. The length of edges in the tree can furthermore be scaled to reflect the difference in birth time of the \(\epsilon(n)\) simplices.

Another interesting property of \(\beta_k\)-trees is that all \((k+1)\)-simplices within a particular tunnel/void are easily identified by locating the node in the tree with the desired \(\epsilon(n)\) and then collecting all leaves in the subtree using any tree-traversal method. In this manner the area of tunnels/volume of voids, for instance, is easily calculated.

Finally, any analysis method that works on trees is now applicable to topological evolutions. For instance the topology of two point-sets can be compared by finding the tree-edit-distance between the tunnel-trees (or void-trees) of their respective \(\alpha\)-filters.

References

