The effect of inspiration on airway dimensions measured in CT images from the Danish Lung Cancer Screening Trial

Petersen, Jens; Wille, Mathilde; Thomsen, Laura; Feragen, Aasa; Dirksen, Asger; de Bruijne, Marleen

Published in:
Insights into Imaging

DOI:
10.1007/s13244-013-0228-x

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
FWMH and EI both showed statistically significantly lower values using IR instead of standard FBP (FWMH: B30/30=111.3 vs. 92.1; B50/50=167.6 vs. 115; B70/70=197.8 vs. 137.5; EI: B30/30=4.8 vs. 2.8; B50/50=11.3 vs. 5.8; B70/70=20 vs. 6.6). There was a significant lower variation between the different kernels using IR when compared to FBP. Image noise was reduced by 27% when compared to FBP.

Conclusion: Variation of quantitative emphysema chest CT parameters between different reconstruction kernels is significantly reduced with IR when compared to FBP and may increase the robustness for therapy planning.

B-0161 14:09

Assessing pulmonary perfusion in emphysema: automated quantification of perfused blood volume in dual-energy CTPA

F.G. Meinel, A. Graef, S. Thiesmeier, F. Bamberg, C. Neurohr, M.F. Reiser, T.R.C. Johnson; Munich/DE (felix.meinel@med.uni-muenchen.de)

Purpose: To determine whether automated quantification of lung perfused blood volume (PBV) in dual-energy computed tomography pulmonary angiography (DE-CTPA) can be used to assess the severity and regional distribution of pulmonary hypoperfusion in emphysema.

Methods and Materials: We retrospectively analysed 40 consecutive patients (mean age 67 ± 13 years) with pulmonary emphysema, no cardiopulmonary comorbidities and a DE-CTPA negative for pulmonary embolism. Automated quantification of global and regional pulmonary PBV was performed using the syngo dual-energy application (Siemens Healthcare). We further quantified the absolute and regional percentage of voxels with a CT density < -900 HU. Emphysema severity was rated visually and pulmonary function tests were obtained by chart review.

Results: Global pulmonary PBV showed a moderate but highly significant negative correlation with residual volume (RV) in % of predicted RV (r=-0.62, p=0.002, n=33) and a positive correlation with forced expiratory volume in 1 second (FEV1) in % of predicted FEV1 (r=0.67, p=0.001, n=33). Global PBV values strongly correlated with diffusing lung capacity for carbon monoxide (DLCO, r=0.80, p<0.001, n=23). Global pulmonary PBV were included from generations 0, 1, 2, 3, 4, and 5, respectively. Relative changes in RV were positively related to changes in TLV and coefficients increased with generation: 0.20 (±0.02), 0.19 (±0.02), 0.21 (±0.01), 0.25 (±0.01), 0.29 (±0.01), 0.34 (±0.01), 0.37 (±0.01). Relative changes in WT were inversely related to changes in TLV and generation: -0.01 (±0.02), 0.01 (±0.01), -0.02 (±0.01), -0.03 (±0.01), -0.05 (±0.01), -0.09 (±0.00), -0.08 (±0.00).

Conclusion: Subjects who inspire deeper prior to scanning tend to have larger LD and smaller WT. This effect is more pronounced in higher generation airways. Thus, adjustment for inspiration level is needed to accurately assess airway dimensions.

Author Disclosures:

M. de Brijnij; Grant Recipient; AstraZeneca.

B-0164 14:36

Chronic bronchitis in large airway: airway wall measurements on thin-slice low-dose CT

X. Xie, A.E. Dijkstra, J.M. Vonk, M. Oudkerk, H.J.M. Groen, R. Vliegenthart; Groningen/NL (x.xueqian@rad.umcg.nl)

Purpose: Chronic bronchitis (CB) is usually caused by smoking and characterised by chronic inflammation and remodelling of the airway wall, commonly in large airways. The study purpose is to determine differences in airway wall thickness (AWT) and wall area percentage (WA%) between subjects with and without CB symptoms.

Methods and Materials: 50 heavy smokers with CB symptoms (cough, mucus, dyspnoea and wheezing) and 50 heavy smokers without CB symptoms were randomly selected from 1,413 participants in a lung cancer screening trial. Airway walls were measured on images in thin-slice low-dose CT with a dedicated software tool, for airways with a luminal diameter ≥ 5 mm in 5 selected bronchi (RB1, RB4, RB10, LB1+2 and LB10). Differences in measurements between the groups were assessed by t-test. The association between CB symptoms and AWT and WA% was assessed using multivariate linear regression adjusted for age, body mass index, smoking habit, amount of emphysema, and lung function.

Results: Mean AWT measured at 5 bronchi was 1.55±0.44 mm and 1.42±0.40 mm in subjects with and without CB symptoms, respectively (P < 0.001). WA% was 47±12% and 43±11%, respectively (P < 0.001). With adjustment for confounders, a significant positive association between both CB symptoms and AWT and WA% was assessed using multiple linear regression adjusted for age, body mass index, smoking habit, amount of emphysema, and lung function.

Conclusion: Patients with chronic bronchitis symptoms have thicker airway walls and smaller WT. This effect is more pronounced in higher generation airways. Thus, adjustment for inspiration level is needed to accurately assess airway dimensions.

Author Disclosures:

M. de Brijnij; Grant Recipient; AstraZeneca.